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THE GENERALIZED CASSELS-TATE DUAL EXACT SEQUENCE
FOR 1-MOTIVES

Cristian D. González-Avilés and Ki-Seng Tan

Abstract. We establish a generalized Cassels-Tate dual exact sequence for 1-motives

over global fields. We thereby extend the main theorem of [4] from abelian varieties to

arbitrary 1-motives.

1. Introduction

Let K be a global field and let M = (Y → G) be a (Deligne) 1-motive over K,
where Y is étale-locally isomorphic to Zr for some r ≥ 0 and G is a semiabelian variety
over K. Let M∗ be the 1-motive dual to M . If B is a topological abelian group, B∧

will denote the completion of B with respect to the family of open subgroups of finite
index. Let X1(M) (resp. X1

ω(M)) denote the subgroup of H1(K, M) of all classes
which are locally trivial at all (resp. all but finitely many) primes of K. There exists
a canonical exact sequence of discrete torsion groups

0→ X1(M)→ X1
ω(M)→

⊕
all v

H1(Kv,M)→ Q1(M)→ 0,

where, for each prime v of K, Kv denotes the completion of K at v and Q1(M)
denotes the cokernel of the middle map. Now, for any topological abelian group B,
let BD = Homcont.(B, Q/Z ) and endow it with the compact-open topology, where
Q/Z carries the discrete topology. Then, by the local duality theorem for 1-motives
[7], Theorem 2.3 and Proposition 2.9, the Pontryagin dual of the above exact sequence
is an exact sequence

0→ Q1(M)D →
∏
all v

H0(Kv,M∗)∧ → X1
ω(M)D → X1(M)D → 0,

where each group H0(Kv,M∗) is endowed with the topology defined in [7] p.99, (for
archimedean v, H0(Kv,M) denotes the reduced 0-th (Tate) hypercohomology group
of MKv

[7] p.103). A fundamental problem is to describe Q1(M)D. This problem was
first addressed in the case of elliptic curves E over number fields K (i.e., Y = 0 and
G = E above), by J.W.S.Cassels (see [2], Theorem 7.1, and [3], Appendix 2). Cassels
showed that Q1(E∗)D is canonically isomorphic to the pro-Selmer group T Sel(E) of
E. This result was extended to abelian varieties A over number fields K by J.Tate,
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under the assumption that X1(A) is finite (unpublished). In this case T Sel(A) is
isomorphic to H 0(K, A)∧ and H0(Kv,M)∧ = H 0(Kv, A)∧ = H 0(Kv, A) for any v
since H 0(Kv, A) is profinite. Further, X1

ω(A∗) = H 1(K, A∗) and X1(A∗)D =
X1(A). The exact sequence obtained by Tate, now known as the Cassels-Tate dual
exact sequence, is

(1) 0→ H 0(K, A)∧ →
∏
all v

H 0(Kv, A)→ H 1(K, A∗)D → X1(A)→ 0.

Further, the image of H 0(K, A)∧ is isomorphic to the closure H 0(K, A) of the diagonal
image of H 0(K, A) in

∏
all v H 0(Kv, A). See [12], Remark I.6.14(b), p.102. The

preceding exact sequence was recently extended to arbitrary 1-motives over number
fields by D.Harari and T.Szamuely [8], Theorem 1.2, again under the assumption
that X1(A) is finite, where A is the abelian part of M (this implies the finiteness of
X1(M)). They established the exactness of the sequence

0→ H0(K, M)→
∏
all v

H0(Kv,M)→ X1
ω(M∗)D → X1(M)→ 0,

where the middle map is induced by the local pairings of [7], §2. This natural analogue
of (1) was used in [op.cit., §6] to study weak approximation on semiabelian varieties
over number fields. However, the preceding sequence with M and M∗ interchanged
does not provide a description of Q1(M)D when X1(M∗) (or, equivalently, X1(M))
is finite. Our objective in this paper is to describe Q1(M)D for any K independently
of the finiteness assumption on X1(M). In order to state our main result, let

Sel(M∗)n = Ker

[
H 1(K, TZ/n(M∗))→

∏
all v

H1(Kv,M∗)n

]
be the n-th Selmer group of M∗, where n is any positive integer and TZ/n(M∗) is the
n-adic realization of M∗. Let T Sel(M∗) = lim←−n

Sel(M∗)n be the pro-Selmer group of
M∗. Our main theorem is the following result.

Theorem 1.1. (The generalized Cassels-Tate dual exact sequence for 1-motives). Let
M be a 1-motive over a global field K. Then there exists a canonical exact sequence
of profinite groups

0→ X2(M)D → T Sel(M∗)∧ →
∏
all v

H0(Kv,M∗)∧

→ X1
ω(M)D → X1(M)D → 0.

The proof of the theorem depends crucially on Poitou-Tate duality for finite mod-
ules ([12], Theorem I.4.10, p.70, and [5], Theorem 4.9).

An immediate corollary of the theorem is the existence of a canonical exact sequence

0→ Q1(M)→ (T Sel(M∗)∧)D → X2(M)→ 0.

When M = (0 → T ) is a torus, it seems likely that the above exact sequence is the
same as the toric case of an exact sequence obtained by J.Oesterlé in [14], Theorem
2.7(d), p.52. When M = (0 → A) is an abelian variety, X2(M) = 0 and our main
theorem reduces to the main theorem of [4] (properly corrected. See below).
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Applications of Theorem 1.1 will be given in [6].

Remark 1.2. We take this opportunity to correct the statement of the main theorem
of [4]. For it to be valid, for each prime v of K the field Kv appearing there must be
taken to be equal to the completion (rather than the henselization) of K at v. Since
the only application of the main theorem of [4] that we are aware of [15] makes use
of this corrected version, no harm appears to have resulted from the authors’ error.
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ing out an error in it and suggesting a solution. We also thank the referee for several
helpful suggestions. Finally, we thank C.U.Jensen, P.Jossen and J.S.Milne for helpful
comments.

2. Preliminaries

Let K be a global field, i.e. K is a finite extension of Q (the “number field case”)
or is finitely generated and of transcendence degree 1 over a finite field of constants k
(the “function field case”). For any prime v of K, Kv will denote the completion of
K at v and Ov will denote the corresponding ring of integers. Thus Ov is a complete
discrete valuation ring. Further, X will denote either the spectrum of the ring of
integers of K (in the number field case) or the unique smooth complete curve over k
with function field K (in the function field case).

All cohomology groups below are flat (fppf) cohomology groups.
If n is any positive integer, B/n will denote B/nB with the quotient topology. Let

B∧ = lim←−n∈N B/n with the inverse limit topology. Further, define B∧ = lim←−U∈U B/U ,
where U denotes the family of open subgroups of finite index in B. If B∼ :=
lim←−n∈N B

/
nB, where nB denotes the closure of nB in B, then there exists a canonical

isomorphism (B∼)∧ = B∧. Consequently, there exists a canonical map B∧ → B∧. If
nB is closed in B for every n (i.e., B/n is Hausdorff), then B∼ = B∧ and therefore
(B∧)∧ = B∧. We also note that B∧ = B if B is profinite (see, e.g., [16], Theorem
2.1.3, p.22). For any positive integer n, Bn will denote the n-torsion subgroup of B
and T B = lim←−n∈N Bn is the total Tate module of B. Note that TB = 0 if B is finite.

Let M = (Y → G) be a Deligne 1-motive over K, where Y is étale-locally iso-
morphic to Zr for some r and G is a semiabelian variety (for basic information on
1-motives over global fields, see [7] §1, or [5], §3. Let n be a positive integer. The
n-adic realization of M is a finite and flat K-group scheme TZ /n(M) which fits into
an exact sequence

0→ Gn → TZ /n(M)→ Y/n→ 0.

There exists a perfect pairing

TZ /n(M)× TZ /n(M∗)→ µn,

where µn is the sheaf of n-th roots of unity. Further, given positive integers n and
m with n |m, there exist canonical maps TZ /n(M) → TZ /m(M) and TZ /m(M) →
TZ /n(M). Let T (M)tors = lim−→TZ /n(M). Further, for any i ≥ 0, define

H i(K, T (M)) = lim←−
n

H i(K, TZ /n(M)).
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The groups H i(K, TZ /n(M)) will be endowed with the discrete topology. If v is
archimedean and i ≥ −1, Hi(Kv,M) will denote the (finite, 2-torsion) reduced (Tate)
hypercohomology groups of MKv

defined in [7], p.103. All groups Hi(Kv,M) will be
given the discrete topology, except for H0(Kv,M) for non-archimedean v. The latter
group will be given the topology defined in [7], p.99. Thus, there exists an exact
sequence 0→ I → H0(Kv,M)→ F → 0, where F is finite and I is an open subgroup
of H0(Kv,M) which is isomorphic to G(Kv)/L for some finitely generated subgroup
L of G(Kv). If n is a positive integer, G(Kv)/n is profinite (see [5], beginning of §5).
Thus the exactness of

L/n→ G(Kv)/n→ I/n→ 0

shows that I/n is profinite as well. Now the exactness of

Fn → I/n→ H0(Kv,M)/n→ F/n→ 0

shows that H0(Kv,M)/n is profinite (see [16], Proposition 2.2.1(e), p.28). The latter
also holds if v is archimedean. We conclude that H0(Kv,M)∧ is profinite for every v
(see [16], Proposition 2.2.1(d), p.28).

The groups Hi(K, M) will be endowed with the discrete topology.

For each i ≥ 0, let Pi(M) be the restricted direct product over all primes of K of
the groups Hi(Kv,M) with respect to the subgroups

Hi
nr(Kv,M) = Im

[
Hi(Ov,M)→ Hi(Kv,M)

]
for v ∈ U , where U is any nonempty open subscheme of X such that M extends to
a 1-motive M over U . The groups P i(F ) are defined similarly for any abelian fppf
sheaf F on Spec K. By [7], Lemma 5.31, for any positive integer n the group P0(M) /n
is the restricted direct product of the profinite groups H0(Kv,M)/n with respect to
the subgroups H0

nr(Kv,M)/n. It is therefore Hausdorff and locally compact (see [9],
6.16(c), p.57). In particular, (P0(M)∧)∧ = P0(M)∧. Further, since H0(Kv,M)/n
and H0(Kv,M)∧/n have the same continuous dual for every n and v, [7], Theorems
2.3 and 2.10, show that the dual of P0(M)∧ is P1(M∗)tors. Therefore the dual of the
profinite group P0(M)∧ is the discrete torsion group P1(M∗)tors.

Recall that a morphism f : A → B of topological groups is said to be strict if the
induced map A/Ker f → Im f is an isomorphism of topological groups. Equivalently,
f is strict if it is open onto its image [1], §III.2.8, Proposition 24(b), p.236. Every
continuous homomorphism from a compact group to a Hausdorff group is strict [1],
§III.2.8, p.237. We will need the following

Lemma 2.1. Let A
f−→ B

g−→ C be an exact sequence of abelian topological groups

and strict morphisms. If C → C∧ is injective, then A∧ bf−→ B∧ bg−→ C∧ is also exact.

Proof. The map A → Im f induced by f is an open surjection, so A∧ → (Im f)∧

is surjective as well. Further, since B → Im g is an open surjection, the sequence
(Im f)∧ → B∧ → (Im g)∧ → 0 is exact [7], Appendix. Finally, since C injects into
C∧, (Im g)∧ is the closure of Im g in C∧, whence (Im g)∧ → C∧ is injective. �

1This result and its proof are also valid in the function field case, using the fact that
H 1

v (Ov , TZ/pm (M)) = 0 for any m by [12], beginning of §7, p.349.
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3. The Poitou-Tate exact sequence for 1-motives over function fields

For any positive integer n, there exists a canonical exact commutative diagram

(2) 0 // H0(K, M)/n

��

// H 1(K, TZ/n(M)) //

��

H1(K, M)n

��

// 0

0 // P0(M) /n // P 1(TZ/n(M)) // P1(M)n
// 0,

whose vertical maps are induced by the canonical morphisms Spec Kv → Spec K. For
the exactness of the rows, see [7], p.109. Now, for any i ≥ −1, set

Xi(M) = Ker
[
Hi(K, M)→ Pi(M)

]
.

Further, define

Sel(M)n = Ker
[
H 1(K, TZ/n(M))→ P1(M)n

]
,

where the map involved is the composite

H 1(K, TZ/n(M))→ P 1(TZ/n(M))→ P1(M)n .

Diagram (2) yields an exact sequence

(3) 0→ H0(K, M)/n→ Sel(M)n → X1(M)n → 0

and a map
θ0,n : Sel(M)n → P0(M) /n.

Now the group H0(K, M) is countable (this follows by devissage from the Mordell-
Weil theorem, the finiteness of H 1(K, Y ) and the fact that H 0(K, T ) is a subgroup
of (L∗)d for some finite extension L of K and some positive integer d ). On the other
hand, by [13] and devissage again, X1(M)n is finite. Thus (3) shows that Sel(M)n

is discrete and countable, hence locally compact and σ-compact.

Lemma 3.1. The canonical map H 1(K, TZ/n(M))) � H1(K, M)n appearing in di-
agram (2) induces an isomorphism

H 1(K, TZ/n(M))/Sel(M)n ' H1(K, M)n/ X1(M)n.

Proof. This is immediate from (2) and the definitions of X1(M) and Sel(M)n. �

The above lemma shows that there exists a canonical exact commutative diagram

(4) 0 // Sel(M)n

θ0,n

��

// H 1(K, TZ/n(M)) // //

θn

��

H1(K, M)n/ X1(M)n� _

��
0 // P0(M) /n // P 1(TZ/n(M)) // // P1(M)n .

We conclude that Ker θ0,n = Ker θn = X1(TZ /n(M)), which is finite by [12], Theo-
rem I.4.10, p.70, and [5], Proposition 4.7.

Lemma 3.2. θ0,n is a strict morphism.
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Proof. By [9], Theorem 5.29, p.42, and [17], Theorem 4.8, p.45, it suffices to check
that Im θ0,n is a closed subgroup of the locally compact Hausdorff group P0(M) /n.
The image of the map θn in diagram (4) can be identified with the kernel of the map

P 1(TZ/n(M))→ H 1(K, TZ/n(M∗))D

coming from the Poitou-Tate exact sequence for TZ/n(M) ([12], Theorem I.4.10, p.70,
and [5], Theorem 4.12). Consequently Im θ0,n can be identified with the kernel of the
continuous composite map

P0(M) /n→ P 1(TZ/n(M))→ H 1(K, TZ/n(M∗))D.

Thus Im θ0,n is indeed closed in P0(M) /n. �

Now set
TSel(M) = lim←−

n

Sel(M)n

P 1(T (M)) = lim←−
n

P 1(TZ/n(M)).

Since (H0(K, M)/n) is an inverse system with surjective transition maps, the inverse
limit of (3) is an exact sequence

(5) 0→ H0(K, M)∧ → T Sel(M)→ T X1(M)→ 0.

Thus, if X1(M) is finite, then T Sel(M) is canonically isomorphic to H0(K, M)∧. In
particular, T Sel(M)∧ = (H0(K, M)∧)∧ = H0(K, M)∧.

Now consider the map

θ0 = lim←−
n

θ0,n : TSel(M)→ P0(M)∧ .

Proposition 3.3. There exists a perfect pairing

Ker θ0 ×X2(M∗)→ Q/Z ,

where the first group is profinite and the second is discrete and torsion.

Proof. By Poitou-Tate duality for finite modules ([12], Theorem I.4.10, p.70, and [5],
Theorem 4.9), Ker θ0 = lim←−n

X1(TZ /n(M)) is canonically dual to X2(T (M∗)tors) :=
lim−→n

X2(TZ /n(M∗)). Now [5], proof of Lemma 5.8(a), shows the last group to be
isomorphic to X2(M∗), which completes the proof. �

Remark 3.4. In the number field case, X2(M∗) has been shown to be finite by
P.Jossen [11]. Further, by [op.cit., proof of Theorem 9.4], the finite group Ker θ0 =
lim←−n

X1(TZ /n(M)) is canonically isomorphic to

Ker

[
H0(K, M)→

∏
all v

H0(Kv,M)∧

]
,

which conjecturally is the same as X0(M).

Lemma 3.5. θ0 is a strict morphism.

Proof. This follows from the fact that, by Lemma 3.2, θ0 is an inverse limit of strict
morphisms with finite kernel from an abelian discrete group to an abelian topological
group. See [7], Complement to the Appendix, for the details. �
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There exists a natural commutative diagram

(6) T Sel(M)

��

θ0 // P0(M)∧

��
T Sel(M)∧

β0 // P0(M)∧ ,

where β0 = θ̂0.

Lemma 3.6. The vertical maps in the preceding diagram are injective.

Proof. (Cf. [7], proof of Proposition 5.4, p.119) Let ξ = (ξn) ∈ T Sel(M) be nonzero.
Then, for some n, ξn ∈ Sel(M)n is nonzero. Since the canonical map Sel(M)n →
Sel(M)∧n is injective by [7], Lemma 5.5, we conclude that the image of ξn in Sel(M)∧n
is nonzero. Consequently, there exists a subgroup N of Sel(M)n, of finite index, such
that ξn /∈ N . It follows that ξ is not contained in the inverse image of N under the
canonical map T Sel(M) → Sel(M)n, which is an open subgroup of finite index in
T Sel(M). We conclude that the image of ξ in T Sel(M)∧ is nonzero. This proves the
injectivity of the left-hand vertical map in diagram (6). To prove the injectivity of
the right-hand vertical map, let x = (xv) ∈ P0(M)∧ be nonzero. Then x /∈ nP0(M)
for some n, whence xv /∈ nH0(Kv,M) for some v (see [7], Lemma 5.3, p.118). Thus
the image of x under the canonical map

P0(M)∧ → H0(Kv,M)/n = (H0(Kv,M)/n)∧

is nonzero, where the equality comes from the fact that H0(Kv,M)/n is profinite.
But the preceding map factors through P0(M)∧, so the image of x in P0(M)∧ is
nonzero. �

Proposition 3.7. The map Ker θ0 → Kerβ0 induced by diagram (6) is an isomor-
phism.

Proof. The injectivity of the above map is immediate from Lemma 3.6. Now, by
Lemmas 2.1, 3.5 and 3.6, the exact sequence

Ker θ0 → T Sel(M) θ0−→ P0(M)∧
induces an exact sequence

(Ker θ0)∧ → T Sel(M)∧
β0−→ P0(M)∧ .

But (Ker θ0)∧ = Ker θ0 since Ker θ0 is profinite by Proposition 3.3, so Ker θ0 → Kerβ0

is indeed surjective. �

For each v and any n ≥ 1, there exists a canonical pairing

(−,−)v : H0(Kv,M)/n×H1(Kv,M∗)n → Q/Z
which vanishes on H0

nr(Kv,M)/n×H1
nr(Kv,M∗)n. See [7], p.99 and proof of Theorem

2.10, p.104. Let γ ′0,n : P0(M) /n → (H1(K, M∗)n)D be defined as follows. For x =
(xv) ∈ P0(M) /n and ξ ∈ H1(K, M∗)n, set

γ ′0,n(x)(ξ) =
∑
all v

(xv, ξ|Kv
)v,
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where ξ|Kv is the image of ξ under the canonical map H1(K, M∗)n → H1(Kv,M∗)n

(the sum is actually finite since xv ∈ H0
nr(Kv,M)/n and ξ |Kv∈ H1

nr(Kv,M)n for all
but finitely many primes v). Consider the map

γ ′0 := lim←−
n

γ ′0,n : P0(M)∧ → H1(K, M∗)D.

By [7], p.122, the sequence

(7) TSel(M) θ0−→ P0(M)∧
γ ′
0−→ H1(K, M∗)D

is a complex.

Lemma 3.8. The sequence (7) is exact.

Proof. As noted in the proof of Lemma 3.2, Im θ0,n can be identified with the kernel
of the composite map

P0(M) /n→ P 1(TZ /n(M))→ H 1(K, TZ /n(M∗))D.

Now, using the fact that lim←−
(1)

n
X1(TZ /n(M)) = 0 (see [10], Proposition 2.3, p.14),

we conclude that Im θ0 can be identified with the kernel of the continuous composite
map

P0(M)∧ → P 1(T (M))→ H 1(K, T (M∗)tors)D.

Further, there exists a canonical commutative diagram

P0(M)∧

γ′
0

��

// P 1(T (M))

��
H1(K, M∗)D � � // H 1(K, T (M∗)tors)D,

where the bottom map is the dual of the surjection H 1(K, T (M∗)tors)→ H1(K, M∗)
(the latter map being the direct limit over n of the surjections appearing on the top
row of diagram (2) for M∗). We conclude that Im θ0 = Ker γ′0, as claimed. �

Lemma 3.9. γ ′0 is a strict morphism.

Proof. By Lemma 3.8, γ ′0 induces a continuous map γ ′
0 : Coker θ0 → H1(K, M∗)D,

where Coker θ0 is endowed with the quotient topology. On the other hand, there
exists a canonical exact commutative diagram

0 // TSel(M)

θ0

��

// H 1(K, T (M)) // //

θ

��

TH1(K, M)/T X1(M)� _

��
0 // P0(M)∧ // P 1(T (M)) // // TP1(M) ,

which shows that Coker θ0 (with the quotient topology) injects as a closed subgroup
of Coker θ. Now the Poitou-Tate exact sequence for finite modules ([12], Theo-
rem I.4.10, p.70 and [5], Theorem 4.12) shows that Coker θ is a closed subgroup
of H 1(K, T (M∗)tors)D, which is profinite. We conclude that Coker θ0 is profinite,
whence γ ′

0 is strict [1], §III.2.8, p.237. It follows that γ ′0 is strict, as claimed. �
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Now consider

γ0 = (γ ′0)
∧ : P0(M)∧ →

(
H1(K, M∗)D

)∧
= H1(K, M∗)D.

Proposition 3.10. The sequence

TSel(M)∧
β0−→ P0(M)∧

γ0−→ H1(K, M∗)D,

is exact.

Proof. This follows by applying Lemma 2.1 to the exact sequence (7) using Lemmas
3.5 and 3.9. �

The following is the main result of this Section. It extends [7], Theorem 5.6, p.120,
to the function field case.

Theorem 3.11. Let K be a global function field and let M be a 1-motive over K.
Assume that X1(M) is finite. Then there exists a canonical 12-term exact sequence

H−1(K, M)∧ � � γD
2 //

∏
all v

H2(Kv,M∗)D βD
2 // H2(K, M∗)D

��
H1(K, M∗)D

��

P0(M)∧
γ0oo H0(K, M)∧

β0oo

H1(K, M)
β1 // P1(M)tors

γ1 // (H0(K, M∗)D)tors

��
H−1(K, M∗)D

⊕
all v

H2(Kv,M)γ2oooo H2(K, M),
β2oo

where the maps βi are canonical localization maps, the maps γi are induced by local
duality and the unlabeled maps are defined in the proof.

Proof. The exactness of the first line follows as in [7], p.122, using [5], Theorem
4.12, and noting that [7], Lemma 5.8, remains valid (with the same proof) in the
function field case. The top right-hand vertical map H2(K, M∗)D → H0(K, M)∧ is
the composite

H2(K, M∗)D � X2(M∗)D ∼−→ Ker θ0
∼−→ Kerβ0

↪→ TSel(M)∧ = H0(K, M)∧,

where the isomorphisms come from Propositions 3.3 and 3.7 and the equality is a
consequence of the finiteness hypothesis on X1(M). The exactness of the second
line of the sequence of the theorem is the content of Proposition 3.10 (again using
the equality TSel(M)∧ = H0(K, M)∧). Since γ0 is the dual of the natural map
H1(K, M∗) → P1(M∗)tors and X1(M∗)D ' X1(M) by [7], Corollary 4.9 and
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Remark 5.10, and [5], corollary 6.7, we conclude that there exists an exact sequence

0 // H−1(K, M)∧ � � γD
2 //

∏
all v

H2(Kv,M∗)D βD
2 // H2(K, M∗)D

��
H1(K, M∗)D

����

P0(M)∧
γ0oo H0(K, M)∧

β0oo

X1(M).

The above is an exact sequence of profinite groups and continuous homomorphisms, so
each morphism is strict. Consequently, the dual of the preceding sequence is also exact
[17], Theorem 23.7, p.19. Exchanging the roles of M and M∗ in this dual exact se-
quence and noting that (H0(K, M∗)∧)D = (H0(K, M∗)D)tors and (H−1(K, M∗)∧)D =
H−1(K, M∗)D (since H−1(K, M∗) is finitely generated by [7], Lemma 2.1, p.98), we
obtain an exact sequence

X1(M)� _

��
H1(K, M) // P1(M)tors // (H0(K, M∗)D)tors

��
0 H−1(K, M∗)Doo

⊕
all v

H2(Kv,M)oo H2(K, M).oo

The sequence of the theorem may now be obtained by splicing together the preceding
two exact sequences. �

4. The generalized Cassels-Tate dual exact sequence

For i = 1 or 2, define

Xi(T (M)) = Ker

[
H i(K, T (M))→

∏
all v

H i(Kv, T (M))

]
and

Xi(M) = Ker

[
Hi(K, M)→

∏
all v

Hi(Kv,M)

]
,

where the v-component of each of the maps involved is induced by the natural mor-
phism Spec Kv → Spec K.

Proposition 4.1. There exists a perfect pairing

X1(T (M∗))× X2(M)→ Q/Z ,

where the first group is profinite and the second is discrete and torsion.

Proof. The proof is similar to the proof of Proposition 3.3. �
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Let S be any finite set of primes of K and define, for i = 1 or 2,

Xi
S(T (M)) = Ker

[
H i(K, T (M))→

∏
v/∈S

H i(Kv, T (M))

]
and

Xi
S(M) = Ker

[
Hi(K, M)→

∏
v/∈S

Hi(Kv,M)

]
.

Thus Xi
∅(T (M)) = Xi(T (M)) and Xi

∅(M) = Xi(M). Now partially order the
family of finite sets S by defining S ≤ S ′ if S ⊂ S ′. Then X1

S(M) ⊂ X1
S′(M) for

S ≤ S ′. Define

X1
ω(M) = lim−→

S

X1
S(M) =

⋃
S

X1
S(M) ⊂ H1(K, M),

where the transition maps in the direct limit are the inclusion maps. Thus X1
ω(M)

is the subgroup of H1(K, M) of all classes which are locally trivial at all but finitely
many places of K. Clearly, for each S as above, there exists an exact sequence of
discrete torsion groups

0→ X1(M∗)→ X1
S(M∗)→

∏
v∈S

H1(Kv,M∗)

whose dual is an exact sequence of profinite groups

(8)
∏
v∈S

H0(Kv,M)∧
bθ
S−→ X1

S(M∗)D → X1(M∗)D → 0.

The map θ̂S is given by

θ̂S((mv))(ξ) =
∑
v∈S

(mv, ξ|Kv
)v

where, for each v ∈ S, (−,−)v is the pairing of [7], Theorem 2.3(2) and Proposition
2.9, and ξ |Kv

is the image of ξ ∈X1
S(M∗) ⊂ H1(K, M∗) in H1(Kv,M∗) under the

map induced by Spec Kv → Spec K. We define θ̂ = lim←−S
θ̂S :

∏
all v H0(Kv,M)∧ →

X1
ω(M∗)D.

Proposition 4.2. There exists a canonical exact sequence

TSel(M)∧
bφ−→ ∏

all v

H0(Kv,M)∧
bθ−→ X1

ω(M∗)D.

Further, the map φ̂ factors as

TSel(M)∧
β0−→ P0(M)∧ →

∏
all v

H0(Kv,M)∧,

where the second map is the canonical one.

Proof. The sequence of Proposition 3.10 is an exact sequence of profinite groups and
strict morphisms, so its dual

H1(K, M∗)→ P1(M∗)tors
βD
0−→ (TSel(M)∧)D
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is also exact (cf. proof of Theorem 3.11). The above sequence induces an exact
sequence of discrete groups

X1
S(M∗)→

∏
v∈S

H1(Kv,M∗)→ (TSel(M)∧)D

whose dual is an exact sequence

TSel(M)∧ →
∏
v∈S

H0(Kv,M)∧
bθS−→ X1

S(M∗)D.

Taking the inverse limit over S above and noting that the inverse limit functor is
exact on the category of profinite groups [16], Proposition 2.2.4, p.32, we obtain the
exact sequence of the proposition. That φ̂ has the stated factorization follows from
the proof. �

Proposition 4.3. There exists a canonical isomorphism

Ker

[
TSel(M)∧

bφ−→ ∏
all v

H0(Kv,M)∧
]

= X2(M∗)D,

where φ̂ is the map of Proposition 4.2.

Proof. Since Kerβ0 = Ker θ0 = X2(M∗)D by Propositions 3.3 and 3.7, it suffices to
check, by Proposition 4.2, that the canonical map P0(M)∧ →

∏
all v H0(Kv,M)∧ is

injective. The argument is similar to that used in the proof of Lemma 3.6. Let x ∈
P0(M)∧ be nonzero. There exists an open subgroup U ⊂ P0(M) of finite index n (say)
such that the U -component of x, xU + U ∈ P0(M) /U is nonzero, i.e., xU /∈ U . Then
xU /∈ nP0(M), whence (xU )v /∈ nH0(Kv,M) for some v (see [7], Lemma 5.3, p.118).
Thus the image of x in H0(Kv,M)/n = (H0(Kv,M)/n)∧ (recall that H0(Kv,M)/n
is profinite) is nonzero. Since the map P0(M)∧ → (H0(Kv,M)/n)∧ factors through
H0(Kv,M)∧, the image of x in H0(Kv,M)∧ is nonzero. �

As noted earlier, the inverse limit functor is exact on the category of profinite
groups, so the inverse limit over S of (8) is an exact sequence∏

all v

H0(Kv,M)∧
bθ−→ X1

ω(M∗)D → X1(M∗)D → 0.

We now use Propositions 4.2 and 4.3 to extend the above exact sequence to the left.
We obtain

Theorem 4.4. (The generalized Cassels-Tate dual exact sequence) There exists a
canonical exact sequence of profinite groups

0→ X2(M∗)D → T Sel(M)∧ →
∏
all v

H0(Kv,M)∧

→ X1
ω(M∗)D → X1(M∗)D → 0. �

Corollary 4.5. There exists a canonical exact sequence of discrete torsion groups

0→ X1(M) → X1
ω(M)→

⊕
all v

H1(Kv,M)

→ (T Sel(M∗)∧)D → X2(M)→ 0. �
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We conclude this paper with the following result, which extends [8], Theorem 1.2,
to the function field case.

Theorem 4.6. Let K be a global function field and let M be a 1-motive over K.
Assume that X1(M) is finite. Then there exists an exact sequence

0→ H0(K, M)→
∏
all v

H0(Kv,M)→ X1
ω(M∗)D → X1(M)→ 0,

where H0(K, M) is the closure of the image of H0(K, M) in
∏

all v H0(Kv,M) under
the diagonal map.

Proof. The proof is essentially the same as that of [8], Theorem 1.2, noting that
T Sel(M)∧ = H0(K, M)∧ if X1(M) is finite and using Proposition 4.2 in place of
[8], Proposition 5.3(1). �
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[4] C.D. González-Avilés and K.-S. Tan, A Generalization of the Cassels-Tate dual exact sequence.

Math. Res. Lett. 14 (2007), no. 2, 295-302.
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Notes in Math. 254, Springer-Verlag, Heidelberg 1972.

[11] P. Jossen, On the second Tate-Shafarevich group of a 1-motive. Available at
http://arxiv.org/abs/0811.2917.

[12] J.S. Milne, Arithmetic Duality Theorems. Persp. in Math., 1. Academic Press Inc., Orlando

1986.
[13] , Elements of order p in the Tate-Shafarevic group. Bull. London Math. Soc. 2 (1970),

293–296.
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