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THE GENERALIZED CASSELS-TATE DUAL EXACT SEQUENCE
FOR 1-MOTIVES

CRISTIAN D. GONZALEZ-AVILES AND KI-SENG TAN

ABSTRACT. We establish a generalized Cassels-Tate dual exact sequence for 1-motives
over global fields. We thereby extend the main theorem of [4] from abelian varieties to
arbitrary 1-motives.

1. Introduction

Let K be a global field and let M = (Y — G) be a (Deligne) 1-motive over K,
where Y is étale-locally isomorphic to Z" for some r > 0 and G is a semiabelian variety
over K. Let M* be the 1-motive dual to M. If B is a topological abelian group, B"
will denote the completion of B with respect to the family of open subgroups of finite
index. Let IIT*(M) (vesp. II}(M)) denote the subgroup of H'(K, M) of all classes
which are locally trivial at all (resp. all but finitely many) primes of K. There exists
a canonical exact sequence of discrete torsion groups

0 — HI'(M) — HIL(M) — PH (K, M) - I (M) =0,

all v

where, for each prime v of K, K, denotes the completion of K at v and 1;ll(M )
denotes the cokernel of the middle map. Now, for any topological abelian group B,
let BP = Homeons.(B,Q/Z) and endow it with the compact-open topology, where
Q/Z carries the discrete topology. Then, by the local duality theorem for 1-motives
[7], Theorem 2.3 and Proposition 2.9, the Pontryagin dual of the above exact sequence
is an exact sequence

0— I'(M)P — [ HO (K, M) — TIL(M)P — 1" (M)P — 0,
all v
where each group H°(K,, M*) is endowed with the topology defined in [7] p.99, (for
archimedean v, HO(K,,, M) denotes the reduced 0-th (Tate) hypercohomology group
of Mg, [7] p.103). A fundamental problem is to describe U'(M)P. This problem was
first addressed in the case of elliptic curves E over number fields K (i.e., Y = 0 and
G = E above), by J.W.S.Cassels (see [2], Theorem 7.1, and [3], Appendix 2). Cassels
showed that U'(E*)P is canonically isomorphic to the pro-Selmer group T'Sel(E) of
E. This result was extended to abelian varieties A over number fields K by J.Tate,
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under the assumption that ITI'(A) is finite (unpublished). In this case T'Sel(A) is
isomorphic to HO(K, A)" and H°(K,, M)" = H°(K,,A)" = H°(K,, A) for any v
since HO(K,, A) is profinite. Further, III}(A*) = H'(K,A*) and III'(4*)P =
III'(A). The exact sequence obtained by Tate, now known as the Cassels-Tate dual
ezact sequence, is

(1) 0— HYK,A)" - [[ H (K., A) — H'(K, A")P — TI'(A) — 0.
all v

Further, the image of H(K, A)" is isomorphic to the closure H(K, A) of the diagonal
image of HY(K,A) in [],,, H%( Ky, A). See [12], Remark 1.6.14(b), p.102. The
preceding exact sequence was recently extended to arbitrary 1-motives over number
fields by D.Harari and T.Szamuely [8], Theorem 1.2, again under the assumption
that LHI(A) is finite, where A is the abelian part of M (this implies the finiteness of
1! (M)). They established the exactness of the sequence

0 — HO(K, M) — [[ H°(K,, M) — T (M*)P — TIT'(M) — 0,
all v
where the middle map is induced by the local pairings of [7], §2. This natural analogue
of (1) was used in [op.cit., §6] to study weak approximation on semiabelian varieties
over number fields. However, the preceding sequence with M and M™ interchanged
does not provide a description of U*(M)P when IIT' (M*) (or, equivalently, IIT* (M)
is finite. Our objective in this paper is to describe ql(M)D for any K independently
of the finiteness assumption on III*(M). In order to state our main result, let

Sel(M*),, = Ker | H'(K, Tz;,(M*)) = [ H'(K,, M*),
all v
be the n-th Selmer group of M*, where n is any positive integer and T ,,(M*) is the
n-adic realization of M*. Let T'Sel(M*) = lim Sel(M*), be the pro-Selmer group of
M*. Our main theorem is the following result.

Theorem 1.1. (The generalized Cassels-Tate dual exact sequence for 1-motives). Let
M be a 1-motive over a global field K. Then there exists a canonical exact sequence
of profinite groups

0— HI*(M)P — TSel(M*)" — [[H(K,, M*)"

allv

—  IIA(M)P — Y (M)P — 0.

w

The proof of the theorem depends crucially on Poitou-Tate duality for finite mod-
ules ([12], Theorem 1.4.10, p.70, and [5], Theorem 4.9).

An immediate corollary of the theorem is the existence of a canonical exact sequence

0 — U (M) — (TSel(M*)MP — TI*(M) — 0.
When M = (0 — T) is a torus, it seems likely that the above exact sequence is the
same as the toric case of an exact sequence obtained by J.Oesterlé in [14], Theorem

2.7(d), p.52. When M = (0 — A) is an abelian variety, III*(M) = 0 and our main
theorem reduces to the main theorem of [4] (properly corrected. See below).
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Applications of Theorem 1.1 will be given in [6].

Remark 1.2. We take this opportunity to correct the statement of the main theorem
of [4]. For it to be valid, for each prime v of K the field K, appearing there must be
taken to be equal to the completion (rather than the henselization) of K at v. Since
the only application of the main theorem of [4] that we are aware of [15] makes use
of this corrected version, no harm appears to have resulted from the authors’ error.
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2. Preliminaries

Let K be a global field, i.e. K is a finite extension of Q (the “number field case”)
or is finitely generated and of transcendence degree 1 over a finite field of constants k
(the “function field case”). For any prime v of K, K, will denote the completion of
K at v and O, will denote the corresponding ring of integers. Thus O, is a complete
discrete valuation ring. Further, X will denote either the spectrum of the ring of
integers of K (in the number field case) or the unique smooth complete curve over k
with function field K (in the function field case).

All cohomology groups below are flat (fppf) cohomology groups.

If n is any positive integer, B/n will denote B/nB with the quotient topology. Let
By =lm B/n with the inverse limit topology. Further, define B = im . B/U,
where U denotes the family of open subgroups of finite index in B. If B. :=
@nEN B / nB, where nB denotes the closure of n.B in B, then there exists a canonical
isomorphism (B. )" = B”. Consequently, there exists a canonical map B, — B". If
nB is closed in B for every n (i.e., B/n is Hausdorff), then B.. = B and therefore
(BA)N = B". We also note that B = B if B is profinite (see, e.g., [16], Theorem
2.1.3, p.22). For any positive integer n, B, will denote the n-torsion subgroup of B
and TB = @neN B,, is the total Tate module of B. Note that TB = 0 if B is finite.

Let M = (Y — @) be a Deligne 1-motive over K, where Y is étale-locally iso-
morphic to Z" for some r and G is a semiabelian variety (for basic information on
1-motives over global fields, see [7] §1, or [5], §3. Let n be a positive integer. The
n-adic realization of M is a finite and flat K-group scheme 77 ,,, (M) which fits into
an exact sequence

0—Gn— Ty /(M) —Y/n—0.
There exists a perfect pairing
TZ/n(M) X TZ/n(M*) — Hn,

where i, is the sheaf of n-th roots of unity. Further, given positive integers n and
m with n | m, there exist canonical maps 1%, (M) — Tz /(M) and Tz /(M) —
Tz jn(M). Let T(M)tors = lim 77y, (M). Further, for any i > 0, define
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The groups H'(K, Ty ;,(M)) will be endowed with the discrete topology. If v is
archimedean and i > —1, H'(K,, M) will denote the (finite, 2-torsion) reduced (Tate)
hypercohomology groups of M, defined in [7], p.103. All groups H*(K,, M) will be
given the discrete topology, except for H°(K,, M) for non-archimedean v. The latter
group will be given the topology defined in [7], p.99. Thus, there exists an exact
sequence 0 — I — H°(K,, M) — F — 0, where F is finite and I is an open subgroup
of HO(K,, M) which is isomorphic to G(K,)/L for some finitely generated subgroup
L of G(K,). If n is a positive integer, G(K,)/n is profinite (see [5], beginning of §5).
Thus the exactness of
L/n— G(Ky,)/n—I/n—0

shows that I/n is profinite as well. Now the exactness of
F, —1I/n—H(K, M)/n— F/n—0

shows that H°(K,, M) /n is profinite (see [16], Proposition 2.2.1(e), p.28). The latter
also holds if v is archimedean. We conclude that H(K,,, M), is profinite for every v
(see [16], Proposition 2.2.1(d), p.28).

The groups H*(K, M) will be endowed with the discrete topology.

For each i > 0, let P?(M) be the restricted direct product over all primes of K of
the groups H*(K,, M) with respect to the subgroups

Hy (Ko, M) = Im [H'(Oy, M) — H' (K, M)

for v € U, where U is any nonempty open subscheme of X such that M extends to
a 1-motive M over U. The groups P*(F) are defined similarly for any abelian fppf
sheaf F' on Spec K. By [7], Lemma 5.3%, for any positive integer n the group P°(M) /n
is the restricted direct product of the profinite groups H°(K,, M)/n with respect to
the subgroups HY (K,, M)/n. It is therefore Hausdorff and locally compact (see [9],
6.16(c), p.57). In particular, (P°(M),)" = PO(M)". Further, since H°(K,, M)/n
and H°(K,, M)"/n have the same continuous dual for every n and v, [7], Theorems
2.3 and 2.10, show that the dual of P®(M), is P'(M*),,,.. Therefore the dual of the
profinite group IP’O(M)A is the discrete torsion group P*(M*), ...

Recall that a morphism f: A — B of topological groups is said to be strict if the
induced map A/Ker f — Im f is an isomorphism of topological groups. Equivalently,
f is strict if it is open onto its image [1], §II1.2.8, Proposition 24(b), p.236. Every
continuous homomorphism from a compact group to a Hausdorff group is strict [1],
6I11.2.8, p.237. We will need the following

Lemma 2.1. Let A 2> B % C' be an exact sequence of abelian topological groups

and strict morphisms. If C — C” is injective, then A" I, Br Z, O is also exact.

Proof. The map A — Im f induced by f is an open surjection, so A® — (Im f)"
is surjective as well. Further, since B — Img is an open surjection, the sequence
(Im f)» — B — (Img)" — 0 is exact [7], Appendix. Finally, since C injects into
C”, (Im g)" is the closure of Im g in C*, whence (Im g)* — C” is injective. O

IThis result and its proof are also valid in the function field case, using the fact that
H} (Ov, Ty, jym (M)) = 0 for any m by [12], beginning of §7, p.349.
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3. The Poitou-Tate exact sequence for 1-motives over function fields

For any positive integer n, there exists a canonical exact commutative diagram

2)  0——=H"K,M)/n— H'(K,Tz/,(M)) —H"(K,M), —0

| | l

0—P%(M) /n —— PY(Ty),(M)) ——— P (M), —0,

whose vertical maps are induced by the canonical morphisms Spec K,, — Spec K. For
the exactness of the rows, see [7], p.109. Now, for any ¢ > —1, set

Y (M) = Ker [HY(K, M) — P{(M)].

Further, define

Sel(M),, = Ker [H" (K, Ty, (M)) — P*(M), ],
where the map involved is the composite

HY(K,Ty/n(M)) — P (Tz/n(M)) — PY(M),,.
Diagram (2) yields an exact sequence
(3) 0 — H%K,M)/n — Sel(M), — I (M), — 0
and a map

00.n: Sel(M),, — P°(M) /n.

Now the group H°(K, M) is countable (this follows by devissage from the Mordell-
Weil theorem, the finiteness of H!(K,Y) and the fact that H°(K,T) is a subgroup
of (L*)? for some finite extension L of K and some positive integer d ). On the other
hand, by [13] and devissage again, IIT'(M),, is finite. Thus (3) shows that Sel(M),,
is discrete and countable, hence locally compact and o-compact.

Lemma 3.1. The canonical map H'(K, Tz, (M))) - H' (K, M), appearing in di-
agram (2) induces an isomorphism

HY(K, Tz, (M))/Sel(M),, ~H"(K, M),/ 1" (M),.
Proof. This is immediate from (2) and the definitions of IIT* (M) and Sel(M),,. O

The above lemma shows that there exists a canonical exact commutative diagram

- [

0 —=PO(M) /n PYTy,,(M)) P! (M)

n

n

We conclude that Ker g , = Ker6,, = (7, /n(M)), which is finite by [12], Theo-
rem 1.4.10, p.70, and [5], Proposition 4.7.

Lemma 3.2. 6, is a strict morphism.
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Proof. By [9], Theorem 5.29, p.42, and [17], Theorem 4.8, p.45, it suffices to check

that Im @y, , is a closed subgroup of the locally compact Hausdorff group P°(M) /n.

The image of the map 6,, in diagram (4) can be identified with the kernel of the map
P (T (M) — H (K, Tz (M)

coming from the Poitou-Tate exact sequence for T, (M) ([12], Theorem 1.4.10, p.70,
and [5], Theorem 4.12). Consequently Im 6y ,, can be identified with the kernel of the
continuous composite map

PO(M) /n — PN Tz (M)) — H (K, Tz, (M*))".

Thus Im 6, is indeed closed in P°(M) /n. O
Now set
TSel(M) = limSel(M),
PUT(M)) = i P (Ts/0(M)).

Since (HO(K, M)/n) is an inverse system with surjective transition maps, the inverse
limit of (3) is an exact sequence
(5) 0 — H°(K, M), — TSel(M) — T (M) — 0.
Thus, if III'(M) is finite, then T'Sel(M) is canonically isomorphic to HO(K, M),. In
particular, TSel(M)" = (H°(K, M)5)" = HO(K, M)".
Now consider the map
0o =1lim 0o, ,,: TSel(M) — P°(M)

n

A"

Proposition 3.3. There exists a perfect pairing
Ker 6y x IT*(M*) — Q/7Z,
where the first group is profinite and the second is discrete and torsion.

Proof. By Poitou-Tate duality for finite modules ([12], Theorem 1.4.10, p.70, and [5],
Theorem 4.9), Kery = liLnnHll(TZ /n(M)) is canonically dual to (T (M*), o) ==
lim I1*(Ty, /,(M*)). Now [5], proof of Lemma 5.8(a), shows the last group to be
isomorphic to IT1%(M*), which completes the proof. O
Remark 3.4. In the number field case, IIT*(M*) has been shown to be finite by

P.Jossen [11]. Further, by [op.cit., proof of Theorem 9.4], the finite group Ker 6y =
lim | 1 (1, /n(M)) is canonically isomorphic to

Ker | HO(K, M) — [ HO(Ky, M)A |,

all v

which conjecturally is the same as II1°(M).
Lemma 3.5. 0 is a strict morphism.

Proof. This follows from the fact that, by Lemma 3.2, 8 is an inverse limit of strict
morphisms with finite kernel from an abelian discrete group to an abelian topological
group. See [7], Complement to the Appendix, for the details. O
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There exists a natural commutative diagram

(6) TSel(M) —% = PO(1)

| |

TSel(M)" —2~ po(ar)"

A

where Gy = 50.
Lemma 3.6. The vertical maps in the preceding diagram are injective.

Proof. (Cf. [7], proof of Proposition 5.4, p.119) Let £ = (§,) € T'Sel(M) be nonzero.
Then, for some n, &, € Sel(M),, is nonzero. Since the canonical map Sel(M), —
Sel(M)) is injective by [7], Lemma 5.5, we conclude that the image of &, in Sel(M),
is nonzero. Consequently, there exists a subgroup N of Sel(M),,, of finite index, such
that &, ¢ N. It follows that ¢ is not contained in the inverse image of N under the
canonical map T'Sel(M) — Sel(M),,, which is an open subgroup of finite index in
T'Sel(M). We conclude that the image of £ in T'Sel(M)” is nonzero. This proves the
injectivity of the left-hand vertical map in diagram (6). To prove the injectivity of
the right-hand vertical map, let z = (z,) € P°(M), be nonzero. Then z ¢ nlP?(M)
for some n, whence x, ¢ nH°(K,, M) for some v (see [7], Lemma 5.3, p.118). Thus
the image of x under the canonical map

PO(M),, — HO(K,, M)/n = (H"(K,, M)/n)"

is nonzero, where the equality comes from the fact that H°(K,, M)/n is profinite.
But the preceding map factors through ]P’O(M)A, so the image of z in PO(M)" is
nonzero. (]

Proposition 3.7. The map Ker 6y — Ker By induced by diagram (6) is an isomor-
phism.

Proof. The injectivity of the above map is immediate from Lemma 3.6. Now, by
Lemmas 2.1, 3.5 and 3.6, the exact sequence

Ker 0o — TSel(M) 22 PO(11)

induces an exact sequence

A

(Ker )" — TSel(M)" 2% pO(an)" .
But (Ker 6p)" = Ker 6, since Ker 6 is profinite by Proposition 3.3, so Ker 8y — Ker 3y
is indeed surjective. (Il
For each v and any n > 1, there exists a canonical pairing
(= =)o HO(Ky, M) /n x H (Ko, M*)n — Q/Z

which vanishes on H (K,, M)/nxH. (K,, M*),. See [7], p.99 and proof of Theorem
2.10, p.104. Let ~4,,: PO(M) /n — (H'(K, M*),)P be defined as follows. For z =
(z,) € PO(M) /n and € € HY(K, M*),, set

W (@)(€) =D (20,€lx, )os

all v
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where €|f, is the image of £ under the canonical map H!(K, M*), — H*(K,, M*),
(the sum is actually finite since z,, € HY (K,, M)/n and £ |k, € H. (K,, M), for all
but finitely many primes v). Consider the map

3 = lim g, : PO(M),, — H (K, M)P.

n

By [7], p.122, the sequence

(7) TSel(M) 22 PO(M), 2% H (K, M*)P
is a complex.
Lemma 3.8. The sequence (7) is exact.

Proof. As noted in the proof of Lemma 3.2, Im# ,, can be identified with the kernel
of the composite map

PO(M) /n — PY(Ty jn(M)) — H' (K, Ty /,(M*))P.

Now, using the fact that yin(nl)ﬂll(TZ /m(M)) = 0 (see [10], Proposition 2.3, p.14),
we conclude that Im 6 can be identified with the kernel of the continuous composite
map

PO(M),, — PHT(M)) — H' (K, T(M")sors) "

Further, there exists a canonical commutative diagram

PO(M), ————— PY(T(M))

4 |

H (K, M*)P = HY(K, T(M*)iors)”

)

where the bottom map is the dual of the surjection H (K, T(M*)tors) — H (K, M*)
(the latter map being the direct limit over n of the surjections appearing on the top
row of diagram (2) for M*). We conclude that Im 6y = Ker 7, as claimed. O

Lemma 3.9. 7 is a strict morphism.

Proof. By Lemma 3.8, v induces a continuous map 7 : Coker 6y — H* (K, M*)P,
where Coker 6y is endowed with the quotient topology. On the other hand, there
exists a canonical exact commutative diagram

0 ——>TSel(M) —— HY(K,T(M)) — TH"(K, M)/T II1*(M)

s

0 ——=PO%(M), —— PY(T(M)) ———— TP} (M),

which shows that Coker 6y (with the quotient topology) injects as a closed subgroup
of Cokerf. Now the Poitou-Tate exact sequence for finite modules ([12], Theo-
rem 1.4.10, p.70 and [5], Theorem 4.12) shows that Cokerf is a closed subgroup
of HY(K,T(M*)os)?, which is profinite. We conclude that Coker ) is profinite,
whence 7 is strict [1], §I11.2.8, p.237. It follows that ~{ is strict, as claimed. O
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Now consider
A

7= (30)": PO — (BN (K, M")P)" = H' (K, M")P.

Proposition 3.10. The sequence
TSel(M)" 22 PO(M)" 2% | (K, M*)P,
15 exact.

Proof. This follows by applying Lemma 2.1 to the exact sequence (7) using Lemmas
3.5 and 3.9. O

The following is the main result of this Section. It extends [7], Theorem 5.6, p.120,
to the function field case.

Theorem 3.11. Let K be a global function field and let M be a I-motive over K.
Assume that TII* (M) is finite. Then there exists a canonical 12-term ezact sequence

D
2

b 2 *\D
Hfl(K7M)/\CL- HH (Ky, M) LHQ(K,M*)D

allv l

HY(K, M*)P <2 po(a)r <2 Ok, M)A

71

Hl(KaM) —>P1(M)tors (HO(K7 M*)D)tors

|

2
H‘I(K,M*)D«L@H (Ko, M) % g2, ),

allv

where the maps B; are canonical localization maps, the maps ~y; are induced by local
duality and the unlabeled maps are defined in the proof.

Proof. The exactness of the first line follows as in [7], p.122, using [5], Theorem
4.12, and noting that [7], Lemma 5.8, remains valid (with the same proof) in the
function field case. The top right-hand vertical map H?(K, M*)P — HO(K, M)" is
the composite

H2(K, M*)P — OI*(M*)P? = Kerfy — Ker g
—  TSel(M)" = H(K, M)",

where the isomorphisms come from Propositions 3.3 and 3.7 and the equality is a
consequence of the finiteness hypothesis on I_Hl(M ). The exactness of the second
line of the sequence of the theorem is the content of Proposition 3.10 (again using
the equality T'Sel(M)" = HO°(K,M)"). Since 7 is the dual of the natural map
HY(K,M*) — PYM*)rs and HIYM*)P ~ IIIYM) by [7], Corollary 4.9 and



836 CRISTIAN D. GONZALEZ-AVILES AND KI-SENG TAN

Remark 5.10, and [5], corollary 6.7, we conclude that there exists an exact sequence

D « D

0 —=H-1 ()6, Myr e [T (B, MO)P 22 o e ey
allv

HY (K, M*)? <2 po(an” ——2 HO(K, M)"

|

1 (M).

The above is an exact sequence of profinite groups and continuous homomorphisms, so
each morphism is strict. Consequently, the dual of the preceding sequence is also exact
[17], Theorem 23.7, p.19. Exchanging the roles of M and M* in this dual exact se-
quence and noting that (H°(K, M*)M)P = (H(K, M*)P)iors and (H1 (K, M*)N)P =
H-Y (K, M*)P (since H™1(K, M*) is finitely generated by [7], Lemma 2.1, p.98), we
obtain an exact sequence

(HO(K7 M*)D)tors

0~ H-L(K, M*)P <~ DH(Ky, M)

allv

H2 (K, M).

The sequence of the theorem may now be obtained by splicing together the preceding
two exact sequences. O

4. The generalized Cassels-Tate dual exact sequence

For i =1 or 2, define

IIY(T(M)) = Ker | H'(K,T(M)) — [ H'(K,,T(M))

all v

and

(M) = Ker

H (K, M) — [] Hi(Kv,M)] :
all v

where the v-component of each of the maps involved is induced by the natural mor-

phism Spec K, — Spec K.

Proposition 4.1. There exists a perfect pairing
rY(T(M*)) x W*(M) — Q/Z,
where the first group is profinite and the second is discrete and torsion.

Proof. The proof is similar to the proof of Proposition 3.3. ]
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Let S be any finite set of primes of K and define, for i =1 or 2,

IIL(T(M)) = Ker | H' (K, T(M)) — [ H'(K,. T(M))

vgS

and

II5(M) = Ker

HY(K, M) — [ Hi(KU,M)] .
vegS

Thus HIj(T(M)) = TIY(T(M)) and TIIj(M) = TII*(M). Now partially order the

family of finite sets S by defining S < S’ if S € §’. Then IIIL(M) C IIIE, (M) for

S < §’. Define

200 =ty WI3OM) = | W0) © B D)
s
where the transition maps in the direct limit are the inclusion maps. Thus III} (M)
is the subgroup of H!(K, M) of all classes which are locally trivial at all but finitely
many places of K. Clearly, for each S as above, there exists an exact sequence of
discrete torsion groups

0— HI'(M*) — TIgM*) — [[ H (K, M*)
veS
whose dual is an exact sequence of profinite groups

a.
(8) [[HEO(K,, M)» = Tg(M)P — 1T (M*)P — 0.
veS

The map 9\5 is given by

~

95((mv))(€) = Z (mz)7€|K1,)v

veES
where, for each v € S, (—, —), is the pairing of [7], Theorem 2.3(2) and Proposition
2.9, and &|g, is the image of ¢ € II§(M*) c HY(K, M*) in H'(K,, M*) under the
map induced by Spec K, — Spec K. We define 6 = liLnS Os: [Ty, HO(Ky, M) —
I} (M*)P.
Proposition 4.2. There exists a canonical exact sequence
TSel(M)" - HH (K, M) = T (V)P

allv
Further, the map QAS factors as
TSel(M)" 2% PO(a1)" — ] HO(K,, M)",
allv

where the second map is the canonical one.

Proof. The sequence of Proposition 3.10 is an exact sequence of profinite groups and
strict morphisms, so its dual

H (K, M*) — PY(M*) tors 2 (TSel(M)")P
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is also exact (cf. proof of Theorem 3.11). The above sequence induces an exact
sequence of discrete groups
g (M*) — [[ H' (K, M*) — (TSel(M)")”
veS
whose dual is an exact sequence

TSel(M)" — ] HO(K,, M)" 2= 1rk(ar)P
veS
Taking the inverse limit over S above and noting that the inverse limit functor is
exact on the category of profinite groups [16], Proposition 2.2.4, p.32, we obtain the
exact sequence of the proposition. That Zs has the stated factorization follows from
the proof. O

Proposition 4.3. There exists a canonical isomorphism

Ker | TSel(M)" 25 H HO(K,, M) | = HI*(M*)P,

allv
where (E is the map of Proposition 4.2.

Proof. Since Ker 3y = Ker 6y = III*(M*)? by Propositions 3.3 and 3.7, it suffices to
check, by Proposition 4.2, that the canonical map PO(M)" — [] ., , HO(K,, M)" is
injective. The argument is similar to that used in the proof of Lemma 3.6. Let = €
PO(M)" be nonzero. There exists an open subgroup U C PO(M) of finite index n (say)
such that the U-component of z, zy + U € P°(M) /U is nonzero, i.e., zyy ¢ U. Then
xy ¢ nPO(M), whence (zy), ¢ nHO(K,, M) for some v (see [7], Lemma 5.3, p.118).
Thus the image of z in H(K,, M)/n = (H°(K,, M)/n)" (recall that H°(K,, M)/n
is profinite) is nonzero. Since the map PO(M)" — (H(K,, M)/n)" factors through
H°(K,, M)", the image of z in H°(K,, M)" is nonzero. O

As noted earlier, the inverse limit functor is exact on the category of profinite
groups, so the inverse limit over S of (8) is an exact sequence
[[ w0, m)» = 11l +)P — 1t ()P — o,

all v

We now use Propositions 4.2 and 4.3 to extend the above exact sequence to the left.
We obtain

Theorem 4.4. (The generalized Cassels-Tate dual exact sequence) There exists a
canonical exact sequence of profinite groups

0— HI*(M*)P — TSel(M)" — [[HO(K,, M)"
allv

—  Il(M*)P - mH(M*)P —0. O

Corollary 4.5. There exists a canonical exact sequence of discrete torsion groups

0— MY(M) — — PH' (K, M)
allv

— (TSel(M*)A)D—> m?*(M) —o0. O



THE GENERALIZED CASSELS-TATE DUAL EXACT SEQUENCE 839

We conclude this paper with the following result, which extends [8], Theorem 1.2,
to the function field case.

Theorem 4.6. Let K be a global function field and let M be a I-motive over K.
Assume that TIL* (M) is finite. Then there exists an exact sequence
0 — HO(K, M) — [ HO(K,, M) — IIL(M*)P — T (M) — 0,
allv
where HO (K, M) is the closure of the image of H°(K, M) in []
the diagonal map.

H°(K,, M) under

allv

Proof. The proof is essentially the same as that of [8], Theorem 1.2, noting that
TSel(M)" = HO(K, M)" if II*(M) is finite and using Proposition 4.2 in place of
[8], Proposition 5.3(1). O
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