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RESURGENCE OF THE FRACTIONAL POLYLOGARITHMS

OvIDIU COSTIN AND STAVROS (GAROUFALIDIS

ABSTRACT. The fractional polylogarithms, depending on a complex parameter a, are
defined by a series which is analytic inside the unit disk. After an elementary conversion
of the series into an integral presentation, we show that the fractional polylogarithms
are multivalued analytic functions in the complex plane minus 0 and 1. For non-integer
values of a, we prove the analytic continuation, compute the monodromy around 0 and
1, give a Mittag-Leffler decomposition and compute the asymptotic behavior for large
values of the complex variable. The fractional polylogarithms are building blocks of
resurgent functions that are used in proving that certain power series associated with
knotted objects are resurgent. This is explained in a separate publication [CG3]. The
motivic or physical interpretation of the monodromy of the fractional polylogarithms for
non-integer values of « is unknown to the authors.

1. Introduction

1.1. The fractional polylogarithm and its history. For a complex number «,
let us define the a-polylogarithm function Li,(2) by the following series:

oo

(1) Lia() = > =

n=1

ZTL

which is absolutely convergent for |z| < 1. These functions appear in algebraic ge-
ometry, number theory, mathematical physics, applied mathematics and the theory
of special functions. Since

(2) Z%Lia(z) = Lig_1(2)

we really need to study Li,(z) for o mod Z.

For integer « a lot is known about the a-polylogarithm. For example, Lig(z) =
1/(1 — z), thus (2) implies that for all & € Z~, Lis(2) € Q(2) is a rational function
with a single singularity at z = 1.

When « € N, the functions Li, (z) were studied in the nineteenth century, forgotten
for many years, and rediscovered by the algebraic geometers in the late 1970s; see for
example Lewin’s book [Lw], Bloch’s paper [Bl] and the survey articles [Oe, Zal, Za2].
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It is well known that Li,(z) is a multivalued function defined on C\ {0,1} with
computable monodromy; see [We, Ha, BD, Oe] and [MPV]. For o € N, the a-
polylogarithms are special functions that play a key role in algebraic geometry. For
a € N, the special values

3) Lia(1) = ¢(a)

are well-known examples of periods; see [KZ]. This is not an accident. Zagier and
Deligne conjectured that special values (at integers) of L-functions of algebraic vari-
eties are expressed by the a-polylogarithm for a € N; see [Zal] and [De]. A motivic
interpretation of Li, (z) for & € Nis given in [BD], as well as a conjecture that the a-th
Beilinson-Deligne regulator maps are expressed by the a-polylogarithm for o € N.

For integer «, elliptic polylogarithms that resemble Li,(e*) were introduced by
Beilinson-Levin in [BL], and further studied in [Lv] in relation to motivic cohomology
conjectures for elliptic curves. For a recent survey on the better-known dilogarithm,
see [Za2].

The a-polylogarithms for noninteger « are also classical and modern objects. They
were studied in the eighteenth century by Jonquiére as a function of two complex vari-
ables « and z; see [Jo|. Several approximation formulas were obtained by Jonquiere
and half a century later by Truesdell, whose motivation was asymptotic properties
of polymer structures; see [Tr]. Further results regarding approximation and analytic
continuation were obtained by Pickard in the sixties, and more recently by Kenyon-
Wilson in relation to resonance of some statistical mechanical models; see [Pi, KW]
and also [CLZ, Prop.1].

The a-polylogarithm functions for half-integer o appear naturally in the context
of an Fuler-MacLaurin summation, and are also used in proving resurgence of some
power series associated to knotted objects; see [CG2] and [CG3]. They also play
a prominent role in proving analytic continuation of some power series that encode
quantum invariants of knotted objects; see for example [Ga, Sec.7].

In addition, in 1994, M. Kruskal proposed to the first author to study the analytic
continuation and the global bahavior of the function Li;/5(2). This problem was a
motivation for a global reconstruction theorem of resurgent functions from local data,
developed by the first author several years ago (and independently by Ecalle in [Ec2]),
and recently written in [C].

The purpose of this short note is to study the

(a) the analytic continuation
(b) the Mittag-Leffler decomposition
(c) the asymptotic behavior for large |z|

of the polylogarithm function Li,(2) for non-integer . With over a century of history
on the fractional polylogarithm, some of our results resemble statements of the above
mentioned literature. However, we were not able to find the key Equation (13), nor
an explicit computation of the monodromy around z = 0 and z = 1 in the literature.
The latter does not seem to have a finite dimensional faithful representation, and its
motivic or physical origin is unknown when o € Q \ Z.

1.2. Statement of the results. Let us recall first what is a multivalued analytic
function on C\ {0,1}. Such functions are examples of global analytic functions (see
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[Ah]) and examples of resurgent functions in the sense of Ecalle, [Ecl]. Let X denote
the universal cover of (C\ {0,1},1/2) with base point at 1/2. As a set, we have:

1
(4) X = {homotopy classes [c] of paths ¢ in C\ {0, 1} starting at 2} .

There is an action of F' = m1(C\ {0,1},1/2) on X given by g - [c] = [y.c] for g = [a]
and [c] € X. By a multivalued analytic (in short, resurgent) function f on C\ {0,1}
we mean an analytic function on X. For [¢] € X, where ¢ is a path from 1/2 to z, we
write, following [Oe]:

(5) F9(z) = f([e).

Observe that F is a free group on [¢g] and [¢1], where

1 . 1 )
Co(t) _ 562Mt, 1 (t) =14+ 5627711‘/

are paths around 0 and 1 respectively:

¢ c
Oml

1/2

In what follows, « is not an integer. Let us introduce some useful notation. Let
~v denote a Hankel contour that encircles the positive real axis: The next definition

v

_— -

uses notation familiar to algebraic geometry. See for example the survey paper [Oe].

Definition 1.1. For a € C\Z, let M,(z) denote the multivalued function on C\{0, 1}
given by:

(6) Mq(2) = Co (log 2)*
where
(7) Co = ™21 —a)

For k € Z, let us define the twisted multivalued functions M, [k](z) for z € C\ {0, 1}
by:

(8) M [E)(2) := Mo (2 e*™*) = C,, (log z + 2mik)>~ L.
The following theorem converts the series (1) of Li, (z) into an integral, from which
we can easily deduce the existence of analytic continuation.

Theorem 1. (a) For |z| < 1 and « such that Re(a) > 0, Li,(z) has an integral
representation:

Q L) = g [ 0
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known as Appell’s integral in [Tr, Sec.2].

(b) For |z] < 1 and « € C\ Z, Li,(2) has an integral representation:
Ca _

(10) Lia(2) = == [ ¢ 1—Z dq

; q
211 ~ el —z

(c) For all @ € C\ Z, Li,(z) has an analytic continuation to a multivalued function on
C\ {0,1}. More precisely, let z € C\ {0, 1} and ¢ any path from 1/2 to z in C\ {0, 1}.
Then, we have:

(11) Lilod () = Lill(2) Lil (2) = Lild(2) — (1 — e2™) Ml ()
(12) M) = MU MEd(z) = —(1 - 2T M ()
(d) For a such that Re(«) < 0, Li, (%) has a Mittag-Leffler type decomposition:

(13) Lia(2) = Cy ((log 2)* 4 Z(logz + 2mik)* ! + (log z — 2m'k)“_1>
k=1

where the series is uniformly convergent on compact sets. Thus, we have:

(14) Lig = Y Mu[k]:= lim > My[k].

N—o0
keZ

When « is a negative integer, the right hand side of (14) is an Eisenstein series;
see [Ap]. The Mittag-Leffler decomposition (14) is an analogue of Hurwitz’s theorem,
see [Ap]. The Mittag-Leffler (14) implies is the following corollary.

Corollary 1.2. For « such that Re(a) < 0 and z such that Re(z) < 0 and |z| < 27
we have:

(15) Lia(e") = Caz®™ ' + 3 Wzn

n=0

Compare with [CLZ, Prop.1].
The integral formula (9) and some stationary phase implies the following estimate
for the behavior of the fractional polylogarithms for large |z|.

Corollary 1.3. For Re(a) > 0 and z large we have:

(16) Lig(2) = — ((log2)* +0(1)).

INa+1)
For o € N| this is known; see [Oe, Eqn.7].

1.3. Plan of the proof. Once we convert the series definition of the
a-polylogarithms into an integral formula, analytic continuation follows from a general
principle, i.e., by moving the contour of integration and achieving analytic continua-
tion. If we move the contour of integration to —oo, and the integral vanishes at —oo,
collecting residues gives a Mittag-Leffler type decomposition of Li,(z) for a@ < 0,
a ¢ Z.



RESURGENCE OF THE FRACTIONAL POLYLOGARITHMS 821

1.4. Acknowledgement. An early version of this paper was presented at talks in
Orsay and the University of Maryland in the fall of 2006. The authors wish to thank J.
Ecalle for encouraging conversations. M. Kontsevich pointed out to the second author
that some aspects of the fractional polylogarithms have been studied independently
by M. Kontsevich and D. Zagier. After the paper was written, J. Morava informed us
of [EM], where the fractional polylogarithms are also studied from the point of view
of distributions over the real numbers.

2. Proofs

2.1. Proof of Theorem 1. In this section we give a proof of Theorem 1.

Proof. (a) For Re(a) > 0 and n € NT we have:

1 I Sl
i a nd
ne NMA ¢ e

Interchanging summation and integration (valid for |z| < 1) gives:

1
Lig(z) = Zn—az"
n=1
S /mqali(ze 7y dg
I'(a) Jo 1
1 a1 %
= — @ dq.
F(a)/o P
(b) Let
1 In(2) =Cy [ ¢*'—2—d
(1) ©)=Co [0 G

denote the right hand side of Equation (10). Observe that I,(z) is well-defined for
ae€C\Z,and z € C\ [1,00).

Since for fixed z inside the unit disk, both sides of (10) are analytic functions of
a € C\ Z, it suffices to prove (10) for Re(a) > 0, a ¢ Z. We claim that for such a,
we have:

> z 1 z
18 a-l dg = : a-l dq.
(18) /0 ¢ 1_62,”&/7(1 %

Indeed, we push the Hankel contour v until its upper (resp. lower) part touches R™
from above (resp. below) and push the tip of the contour to touch zero. On the upper

part we have ¢! = |¢|*~!, and on the lower side we have

(19) qa—l — e(a—l)ln\q\-{-Qwi(a—l) — |q‘(x—1e27ria.

Moreover, the upper integral is traversed in the direction (0, 00) while the lower one
is traversed from (00,0). We thus get

1 - e 1
20 a—1 da = (1 — 2mic / a—1 d
(20) Jatada= ) [ ]

el —z
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Thus, (18) follows. Since for @ € C\ Z the T function satisfies the the reflexion
symmetry (see eg. [Ol]):

1 wi(fafl)r 1— "
(21) = o) _Ca
(1 — 2 () 27i 27i

(b) follows.

(¢) Fix a such that Re(a) > 0, a ¢ Z. The integral representation (9) analytically
continues Li, (z) for z in the cut plane C\ [1,00). Let us compute the variation (i.e.,
jump) of the function across the cut z € (1,00). Changing variable to e? = z in (9),

we have: ( o1
1 * (logx)*~t =z
Li =
fa(2) o) /1 x x— de

Fix z € (1,00). Then the above equality gives by contour deformation and Cauchy’s
theorem (see eg. [Df]):

; a—1
6lir(%(Lia(z +ie) — Lig(z —ie)) = % Res (amgz)miz, x = z)
2me
— 1 a—1
T(a) 108 %)

= (1 -e*™NM,(2).
On the other hand, Equation (19) implies that

11161+(Ma(z +i€) — Mo(z —i€)) = (1 —e2™*)My(2).
Since
(22) f9(z) = = Tim (£ + i) = (= — ie)),
the above equations imply that
Litd(z) = Lill(z) — (1 =) M)
M) = —(1 = e M),

On the other hand, (9) defines an analytic function for z € (—0c0,0), and the mon-
odromy of M,(z) for z = 0 can be computed from the definition of M, (z). Thus, we
obtain

Lifl(z) Lil(2)

Mz = ME(2).

This proves that when Re(a) > 0, a ¢ Z, Li, (z) is a multivalued function on C\ {0, 1}
with monodromy given by (11) and (12). If o € C\ Z, use (2), the fact

(23) Zdilea (2) = My—1(2)

and differentiation to conclude (c).

(d) Since both sides of (13) are analytic functions of « for fixed z, it suffices to
prove (13) for « such that Re(a) < 0, o ¢ Z. For such «, we will use the integral
representation of Li,(z) given by (10). Fix a complex number z € C\ [1,00) and
the Hankel contour v which separates the plane into two regions so that 2wik + log z
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lies in the region that contains —oo for all k € Z. This is possible since the points
2mik+log z lie in a vertical line. Now, push the Hankel contour to the left, and deform
it to —oo. Since Re(a) < 0, the integral vanishes when the contour is deformed to
—o0. In the process of deformation, we apply Cauchy’s theorem and collect residues
at the singularities. The singularities of the integrand are simple poles at the points
where ¢ = log z 4+ 2mik for integer k. The residue is given by:

Res <qa—1z g=logz+ 2m'k) = (log z + 2mik)>~!

b
el — 2z

When we push the contour to —oo, we collect the series (13) which is absolutely
convergent on compact sets. The result follows. O

Remark 2.1. Part (b) of Theorem 1 states that for all @ € C\ Z and |z| < 1 we have:

Lio(2) = In(2).

Moreover, Li,(z) satisfies the differential equation (2). It is easy to show indepen-
dently from Theorem 1 that for every a € C\Z, I,(z) satisfies the differential equation

d
(24) zafa(z) =I,_1(2).
Indeed, use the algebraic identity:
d q d -1
(25) z e

dz el — 2 (eq—z)zzdiqeq—z

After differentiation and integration by parts, we have:

/ a—1 el
2I0(2) = Cuaz | ¢ (
.

el — z)?
d -1

— Ca a—1 " d

z/yq dged —z a4

= Coé(()zfl)z/qo‘*2 !
.

el —z

1
= Ca,lz/qo‘_Qidq
v

ed — 2z
= Ia,l(z).

dq

dgq

Remark 2.2. An alternative way to prove part (d) of Theorem 1 is to use the Mittag-
Leffler decomposition of the function ¢ — 1/(e? — z) (see [Cn, Sec.V])

o0

z 1 1 1 1
(26) Ly

— + —,
el —z q —log z kilq—logz+2mkz q — log z — 2mik

interchange summation and integration in (17) and use the fact that

dgq
a—1 . s a—1
= 2mi(l 2mik
Lq q — log z — 2mik mi(log z + 2mik)
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Remark 2.3. In Ecalle’s language, (18) is a special case of

(27) | st = L [ i

together with the fact that if f(¢) = ¢!, then f(q) = (1 — €2>™)~1f(q). For a
self-contained introduction to majors/minors, see also [Ma].

Remark 2.4. The Mittag-Leffler type decomposition (13) implies that Li,(2) is mul-
tivalued on C\ {0, 1}, for all & such that Re(a) < 0, a ¢ Z. Tt also implies Equations
(11) and (12). Indeed, for z near 1 and k # 0, M,(z) is analytic. Thus, (13) implies
that for z near 1 we have

Lig(2) = My (2) + h(z)
where h is analytic for z near 1. This proves the second part of Equation (11). If z
is near 0, then

Lig(2e?™) — Lig(2) = My[1](2) + Z My[k +1](2) + Mo[—k + 1](2)
k=1

oo
—Ma[0)(2) = > Malk)(2) + Ma[-F](z) = 0.
k=1
This implies the first part of Equation (11). Equation (12) follows easily from the
definition of M, (z).

2.2. Proof of Corollaries 1.2 and 1.3. Corollary 1.2 follows by expanding the
sum in (13) as a convergent power series in log z, and using the functional equation
for the Riemann zeta function:

¢(s) = 2°7°"tsin (%) (1 —=9)¢(1—s).

Compare with [CLZ, Prop.1].

To prove Corollary 1.3, let us fix o with Re(a) > 0 and consider the right hand
side of Equation (9), which makes sense for z € C\ [1,00). The idea is to make some
changes of variables and integration by parts. Let us fix an angle § € (0,27) and
consider a complex z = |z|e? with |z| large.

Making the change of variables ¢ = log T, integrating by parts, and making a
change of variables 7 = z + s and s = zt, we obtain that:

e > (1 a-lg < 1
A e A (D
0 el —z 1 T—2Z T a )y T—=z

= [Tl s [T o),

! (=22 alf_. 2

dt.

B l /OOeie (10g(Z+Zt))a dt B l /oogw (logz+10g(t + 1))O¢
(6]

1/2-1 t2 Q J1/z—1 t2

Let us separate the domain of integration in two parts: |t| < |logz| and |log z| < |¢|.
The first integral gives:
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l/logz (log z + log(t + 1))~ gt

= Q0B [ (L log(1+ )jlog2y
o 1

1/2-1 t2 @ Ja—1 t2

Note that the numerator of the integrand satisfies:

I 1)\* log1
(Hog(tﬂ) :1+o(°g°gz) — 14 o(1).
log =z log 2

So, the first integral gives:

dt = %(1 +0o(1))

1/1"“ (log = + log(t + 1))°
& J1/z—1 t2

For the second integral, use (A 4+ B)* < (2max{A4, B})* < 2*(A~ + B®) (valid for
A, B > 0 and Re(a) > 0). It follows that we can estimate the second integral by:

—i0 —10
20 [0 1 @ 20 o€ log(t+ 1)~
gt < 7/ |0g22| dt+—/ |log(t + DI ,,
o Jy t « Jy t2

1 /Ooeie ‘ (log z + log(t + 1))«

« t2

log z og z

= O ((log2)*").

og z

The result follows.

Remark 2.5. In fact, we can give a transseries expansion of Li,(z) for large z in terms
of log z and loglog z.
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