Π_2 CONSEQUENCES OF BMM + NS $_{\omega_1}$ IS PRECIPITOUS AND THE SEMIPROPERNESS OF STATIONARY SET PRESERVING FORCINGS

Philipp Doebler and Ralf Schindler

ABSTRACT. We investigate which Π_2 sentences (over H_{ω_2}) that are consequences of MM also follow from $\mathsf{BMM} + \mathsf{NS}_{\omega_1}$ is precipitous. It turns out that admissible club guessing (acg), $\delta_2^1 = \omega_2$, the club bounding principle (CBP), and ψ_{AC} as well as ϕ_{AC} follow from this weaker theory. This was known for $\delta_2^1 = \omega_2$ and ψ_{AC} but not for ϕ_{AC} and acg. Additionally we show that if for all regular $\theta \geq \omega_2$ there is a semiproper partial ordering that adds a generic iteration of length ω_1 with last model H_θ , then all stationary set preserving forcings are semiproper.

1. Introduction

By NS_{ω_1} we denote the nonstationary ideal on ω_1 . A V-generic G for the forcing $(\mathcal{P}(\omega_1) \setminus \text{NS}_{\omega_1}, \subset)$ is an ultrafilter on V that extends the club filter. Hence we can form the ultrapower $j: V \to \text{Ult}(V, G)$ in $V[G]$. We will always assume the wellfounded part of such an ultrapower to be transitive. Clearly j has critical point ω_1 . If every condition $S \in \mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1}$ forces that $Ult(V, G)$ is well-founded, then we call NS_{ω_1} precipitous. Since the precipitousness of an ideal can be recast as a first order statment, the model $Ult(V, G)$ has a precipitous nonstationary ideal if V has one. One can now pick a Ult (V, G) -generic for $(\mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1}, \subset)^{\mathrm{Ult}(V, G)}$ and form another ultrapower. This leads to the notion of generic iterations.

Definition 1.1 Let M be a transitive model of $\mathsf{ZFC}^* + \text{``}\omega_1$ exists" and let $I \subseteq \mathcal{P}(\omega_1^M)$ be such that $\langle M; \in, I \rangle \models "I$ is a uniform and normal ideal on ω_1^M ." Let $\gamma \leq \omega_1$. Then

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \le j \le \gamma \rangle, \langle G_i; i < \gamma \rangle \rangle \in V
$$

is called a *putative generic iteration of* $\langle M; \in, I \rangle$ (*of length* $\gamma + 1$) iff the following hold true.

- (1) $M_0 = M$ and $I_0 = I$.
- (2) For all $i \leq j \leq \gamma$, $\pi_{i,j}$: $\langle M_i, \in, I_i \rangle \to \langle M_j, \in, I_j \rangle$ is elementary, $I_i = \pi_{0,i}(I)$, and $\kappa_i = \pi_{0,i}(\omega_1^M) = \omega_1^{M_i}$.
- (3) For all $i < \gamma$, M_i is transitive and G_i is $(\mathcal{P}(\kappa_i) \setminus I_i, \subset)$ -generic over M_i .
- (4) For all $i+1 \leq \gamma$, $M_{i+1} = \text{Ult}(M_i; G_i)$ and $\pi_{i,i+1}$ is the associated ultrapower map.
- (5) $\pi_{i,k} \circ \pi_{i,j} = \pi_{i,k}$ for $i \leq j \leq \gamma$.
- (6) If $\lambda \leq \gamma$ is a limit ordinal, then $\langle M_{\lambda}, \pi_{i,\lambda}, i \langle \lambda \rangle$ is the direct limit of $\langle M_i, \pi_{i,j}, i \leq j < \lambda \rangle$.

Received by the editors February 16, 2009.

We call

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \le j \le \gamma \rangle, \langle G_i; i < \gamma \rangle \rangle
$$

a generic iteration of $\langle M; \in, I \rangle$ (of length $\gamma + 1$) iff it is a putative generic iteration of $\langle M; \in, I \rangle$ of length $\gamma + 1$ and M_{γ} is transitive. $\langle M; \in, I \rangle$ is generically $\gamma + 1$ iterable iff every putative generic iteration of $\langle M; \in, I \rangle$ of length $\gamma + 1$ is an iteration.

The theory ZFC^* is defined in [10, 3.1]. Notice that we want (putative) iterations of a given model $\langle M; \in, I \rangle$ to exist in V, which amounts to requiring that the relevant generics G_i may be found in V.

In [2] the notion of forcing $\mathbb{P}(\theta, \text{NS}_{\omega_1})$ was defined for regular $\theta \geq \omega_2$. Granted the precipitousness of nonstationary ideal NS_{ω_1} the forcing is nonempty and preserves stationary subsets of ω_1 . Forcing with $\mathbb{P}(\theta, \text{NS}_{\omega_1})$ adds a generic iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle
$$

such that all M_i with countable index are countable and the last model M_{ω_1} equals H_{θ} of V. Here I_i is M_i 's nonstationary ideal and the $\kappa_i = \omega_1^{M_i}$ are the critical points of the generic ultrapowers $\pi_{i,i+1} : M_i \to M_{i+1} \simeq \text{Ult}(M_i, G_i)$. It is also possible to produce iterations as above with generically iterable M_0 . This fact is used in [2] to show that BMM + NS_{ω_1} is precipitous implies $\delta_2^1 = \omega_2$. Note that $\delta_2^1 = \omega_2$ is a Π_2 statment in H_{ω_2} . In this paper we use generic iterations as above to analyse which Π_2 sentences in H_{ω_2} that are consequences of $\mathsf{ZFC}+\mathsf{MM}$ are also consequences of the weaker theory $\mathsf{ZFC} + \mathsf{BMM} + \mathsf{NS}_{\omega_1}$ is precipitous. Note that MM implies that NS_{ω_1} is ω_2 -saturated [3] but by [10, 10.103, 10.99] BMM + NS_{ω_1} is precipitous does not¹. We consider two Π_2 statements in H_{ω_2} . Both are known to hold in H_{ω_2} if MM holds.

Definition 1.2

(1) We call the following principle admissible club guessing (acg). For all clubs $C \subseteq \omega_1$ there exists a real x such that

 $A_x := {\alpha < \omega_1 ; L_{\alpha}[x] \text{ is admissible} \} \subset C.$

(2) Let $S \subset \omega_1$. Then we set

$$
\tilde{S} := \{ \alpha < \omega_2 \, ; \, \omega_1 \leq \alpha \wedge \mathbf{1}_{\mathbb{B}} \Vdash \check{\alpha} \in j(\check{S}) \},
$$

where $\mathbb{B} = \text{ro}(\mathcal{P}(\omega_1) \setminus \text{NS}_{\omega_1})$ and j is a name for the corresponding generic elementary embedding $V \to (M, E) \subset V^{\mathbb{B}}$. Note that $\alpha \in \tilde{S}$ if and only if for all (one) canonical function(s) f_{α} for α , there is a club C such that if $\beta \in C$ then $f_{\alpha}(\beta) \in S$.

Let $\vec{S} = \langle S_i : i \in \omega \rangle$, $\vec{T} = \langle T_i : i \in \omega \rangle$ be sequences of pairwise disjoint subsets of ω_1 , such that all S_i are stationary and

$$
\omega_1 = \bigcup \{T_i \, ; \, i \in \omega\}.
$$

 $\varphi_{AC}(\vec{S}, \vec{T})$ is the conjunction of the following two statements:

¹In the situation of [10, 10.103] one considers a ² \mathbb{P}_{max} extension; there NS_{ω_1} is not saturated but one can check that it is precipitous using the 2 P_{max} analysis in [10, 6.14].

- (a) There is an ω_1 sequence of distinct reals.²
- (b) There is $\gamma < \omega_2$ and a continuous increasing function $F : \omega_1 \to \gamma$ with range cofinal in γ such that for all $i \in \omega$

$$
F^{\omega}T_i \subset \tilde{S}_i.
$$

$$
\varphi_{AC}(\vec{S}, \vec{T})
$$
 is clearly $\Sigma_1(\{\vec{S}, \vec{T}\})$ in $\langle H_{\omega_2}; \in \rangle$. We set

$$
\phi_{AC} := \forall \vec{S} \forall \vec{T} \varphi_{AC}(\vec{S}, \vec{T}).
$$

Note that ϕ_{AC} is equivalent to a Π_2 statement in $\langle H_{\omega_2}; \in \rangle$.

Remark 1.3 The principle acg was isolated by Woodin. If MM holds, then the universe is closed under the sharp operation (this is already a consequence of BMM). So by [10, 3.17] $\delta_2^1 = \omega_2$ and hence by [10, 3.16, 3.19] acg holds.

The axiom ϕ_{AC} is due to Woodin. By [10, 5.9] MM implies ϕ_{AC} . Note that by an observation of Larson $MM(c)$ already suffices, see [10, p.200].

We now state our results.

Theorem 1.4 If BMM holds and additionally NS_{ω_1} is precipitous, then acg and ϕ_{AC} hold.

We will prove the above theorem using (a variant of) $\mathbb{P}(\theta, \text{NS}_{\omega_1})$. The technology developed to show ϕ_{AC} can also be used to yield ψ_{AC} . We sketch such a construction only since Woodin has shown that $\mathsf{BMM}+\mathsf{NS}_{\omega_1}$ is precipitous implies ψ_{AC} using more straightforward methods, see [10, 10.95]. The following diagram illustrates the logical structure of the various statements:

Here CBP is the club bounding principle, i.e. the statement that every function $f: \omega_1 \to \omega_1$ is bounded by a canonical function for some ordinal $\langle \omega_2 \rangle$ on a club. The implication from ψ_{AC} to CBP is due to Aspero and Welch, see [1]. The implication from ϕ_{AC} to CBP follows easily from the next lemma. All implications from acg are due to Woodin, see [10, (proof of) 3.19].

Lemma 1.5 (Folklore?) The following are equivalent:

²We are working in models of ZFC so this will trivially hold. It is more interesting if working in models of $ZF + DC$.

- (1) CBP
- (2) For every club $C \subset \omega_1$ there is some $\alpha \in \tilde{C}$ such that $\omega_1 < \alpha$.

Note that \tilde{C} contains ω_1 if and only if C is club.

Proof. We assume CBP. Let $C \subset \omega_1$ be club. Inductively we construct a sequence $\langle f_i; i \rangle \langle \omega \rangle$ and a sequence $\langle \alpha_i; i \rangle \langle \omega \rangle$ of ordinals $\langle \omega_2 \rangle$ such that ran $(f_i) \subset C$ and such that there is a club D_i such that $f_i(\xi) < f_{\alpha_i}(\xi) < f_{i+1}(\xi)$ for all $\xi \in D_i$ where f_{α_i} is a canonical function for α_i . Set $f_0(\xi) = \min(C \setminus (\xi + 1))$ for $\xi < \omega_1$. Then by CBP there is some $\alpha_0 < \omega_2$, a canonical function f_{α_0} for α_0 and a club D_0 such that $f_{\alpha_0}(\xi) > f_0(\xi)$ for $\xi \in D_0$. In the induction step set $f_{i+1}(\xi) = \min(C \setminus (f_{\alpha_i}(\xi) + 1)$ for $\xi < \omega_1$. Note that by the choice of f_0 every α_i is $>\omega_1$. Set $D = \bigcap_{i < \omega} D_i$. Then for all $\xi \in D$

$$
\sup_{i<\omega} f_i(\xi) = \sup_{i<\omega} f_{\alpha_i}(\xi) \in C,
$$

since ran $(f_i) \subset C$ by construction. It is easy to see that $f : \omega_1 \to \omega_1$; $f(\xi) :=$ $\sup_{i\leq\omega}f_{\alpha_i}(\xi)$ is a canonical function for $\alpha := \sup_{i\leq\omega} \alpha_i$. Hence $f(\xi) \in C$ for all $\xi \in D$ which instantly yields $\alpha \in C$.

It remains to show the converse; let $f : \omega_1 \to \omega_1$ be a function and let $C := \{ \beta \leq \alpha \}$ ω_1 ; $f''\beta \subset \beta$. By the hypothesis there is an $\alpha > \omega_1$ such that $\alpha \in \tilde{C}$. Unraveling the definition of C yields a club D and a canonical function $f_{\alpha}: \omega_1 \to \omega_1$ for α such that $f_{\alpha}(\beta) \in C$ for all $\beta \in D$. Since $\alpha > \omega_1$ the set of points where $\beta \geq f_{\alpha}(\beta)$ is nonstationary. Hence we can assume without loss of generality that $f_\alpha(\beta) > \beta$ for $\beta < \omega_1$. If $\beta \in D$, then $f_\alpha(\beta) \in C$. Hence $f''f_\alpha(\beta) \subset f_\alpha(\beta) > \beta$ for $\beta \in D$. So especially $f(\beta) < f_{\alpha}(\beta)$ for all $\beta \in D$.

The second part of this paper deals with the semiproperness of $\mathbb{P}(\theta, \text{NS}_{\omega_1})$ for all regular $\theta \geq \omega_2$ (or more general the semiproperness of any class of forcings that adds generic iterations like above). We will show:

Theorem 1.6 The following are equivalent:

(1) For arbitrarily large $\theta \geq \omega_2$ there is a semiproper partial order $\mathbb P$ that adds a generic iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle.
$$

such that $H_{\theta} \subset M_{\omega_1}$ and all M_i are countable.

(2) All stationary set preserving forcings are semiproper.

2. The principle acg

In this section, we shall clean up [2] by showing the following.

Lemma 2.1 BMM + NS_{ω_1} is precipitous \implies acg.

Proof. Fix some club C . We show that admissible club guessing holds under BMM if the nonstationary ideal is precipitous. The forcing $\mathbb{P}'(\omega_2, \text{NS}_{\omega_1})$ from [2] adds a

countable generically iterable M_0 generically iterating in ω_1^V many steps to $\langle (H_{\omega_2}^V)^{\sharp}, \in$ $\langle NS_{\omega_1} \rangle^3$, i.e. an iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle.
$$

Note that $(H_{\omega_2}^V)^{\sharp}$ exists because BMM holds, see [6] or [7]. For brevity we write π_α instead of π_{α,ω_1} . So there is some $\alpha_0 < \omega_1$ such that $C \cap \omega_1^{M_{\alpha_0}} \in M_{\alpha_0}$ and $\pi_{\alpha_0}(C \cap \omega_1^{M_{\alpha_0}}) = C$. We can assume w.l.o.g. by changing some indices that $0 = \alpha_0$. We now show that in the extension by $\mathbb{P}'(\omega_2, \mathsf{NS}_{\omega_1})$ there is a real y such that $A_y \subset C$. Let x be a real that codes M_0 and let y code x^{\sharp} .

Writing $C_{\alpha} = C \cap \omega_1^{M_{\alpha}}$ we have $C_{\alpha} \in M_{\alpha}$ and $\pi_{\alpha}(C_{\alpha}) = C$ for all $\alpha < \omega_1$. By elementarity, C_{α} is unbounded in $\omega_1^{M_{\alpha}}$. So by the closedness of C we have $\omega_1^{M_{\alpha}} \in C$.

Claim 1. If α is an x-indiscernible and

$$
\langle\langle M'_i,\pi'_{i,j},I'_i,\kappa'_i;i\leq j\leq\alpha\rangle,\langle G'_i;i<\alpha\rangle\rangle
$$

is an *arbitrary* generic iteration of $M = M_0'$ then $\alpha = \omega_1^{M'_\alpha}$.

Proof of Claim 1. First note that M is generically $\omega_1 + 1$ iterable, by Theorem 18 of [2]. Fix an x-indiscernible α and an iteration as above. Every x-indiscernible is inacessible in $L[x]$, so for all $\beta < \alpha$

$$
L[x]
$$
^{Col(ω,β)} $\models \alpha$ is inaccessible.

Let $g \text{Col}(\omega, \beta)$ be $L[x]$ -generic. Assume w.l.o.g. that g is a real. Then, by [10, 3.15] (compare Lemma 19 in [2]), $M'_{\beta} \cap OR < \omega_1^{L[x,g]}$. Hence $\omega_1^{M'_{\beta}} < \alpha$. This implies $\omega_1^{M'_{\alpha}} \leq \alpha$. So it follows easily that $\omega_1^{M'_{\alpha}}$ \Box (Claim 1)

If α is x^{\sharp} -admissible, then α is x-indiscernible. Hence by the above claim it follows that each y-admissible $\langle \omega_1 \rangle$ is in C. Hence $A_{x^{\sharp}} \subset C$. Since the existence of a real y such that $A_y \subset C$ can be recast as a Σ_1 -statement over H_{ω_2} with C as a parameter, BMM implies that it is already true in V .

3. Obtaining ϕ_{AC}

We modify the forcing $\mathbb{P}'(\omega_2, \text{NS}_{\omega_1})$ from [2] to show an arbitrary instance of ϕ_{AC} in the generic extension. An application of BMM will then give us the desired result.

3.1. Hitting many regular cardinals. The following lemma states that for a generically iterable $\langle M, I \rangle$ there is a generic iteration that realizes many regular cardinals.

³For a set X we denote by X^{\sharp} the least X-mouse. Note that the universe of X^{\sharp} is a model of ZFC^* +" ω_1 exists." See (the proof of) [2, Theorem 18] for more details on sharps and generic iterability.

Lemma 3.1 (Hitting many regular cardinals lemma) Let $\langle M, I \rangle$ be a countable model of ZFC^{*}+ " ω_1 exists" and let I be a precipitous ideal on ω_1^M . Assume that $\mathcal{P}(\mathcal{P}(\omega_1))$ exists in M. Let $\theta, \alpha \in M$ be such that

$$
M \models (2^{2^{\omega_1}})^+ = \theta = \aleph_{\alpha},
$$

furthermore assume that

$$
M \models (\aleph_{\alpha+\omega_1})^M \text{ exists.}
$$

Let $\theta' := (\aleph_{\alpha+\omega_1})^M$. Then a genericity iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \theta' \rangle, \langle G_i; i < \theta' \rangle \rangle
$$

of $M_0 = M$ exists such that for all $\beta < \omega_1^M$

$$
\pi_{0,\aleph^M_{\alpha+\beta+1}}(\omega_1^M) = \aleph^M_{\alpha+\beta+1}.
$$

Proof. Let $g \text{ }\subset \text{Col}(\omega, \langle \theta' \rangle)$ be generic over M. Since M is countable in V the generic g can be chosen in V. Let $\mathbb{P} := \mathcal{P}(\omega_1^M)^M \setminus I$. For $\beta < \omega_1^M$ we set

$$
g_{\alpha+\beta+1} := g \cap \text{Col}(\omega, \langle \aleph^M_{\alpha+\beta+1}).
$$

Clearly all the g_i defined in this fashion are generic over M . Recursively we construct a generic iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \theta' \rangle, \langle G_i; i < \theta' \rangle \rangle
$$

such that for $\beta < \omega_1^M$ the sequence $\langle G_i : i < \aleph_{\alpha+\beta+1}^M \rangle$ is in $M[g_{\alpha+\beta+1}]$. We inductively maintain the following:

• For $\beta < \omega_1^M$ and $i < \aleph_{\alpha+\beta+1}^M$ the set

$$
D_i = \{ d \in M_i \, ; \, d \subset \pi_{0,i}(\mathbb{P}) \land M_i \models d \text{ is dense in } \pi_{0,i}(\mathbb{P}) \}
$$

is countable in $M[g_{\alpha+\beta+1}].$

Set $M_0 = M$, $I_0 = I$ and $\kappa_0 = \omega_1^M$. Assume we are at stage $i < \theta'$ of the construction. Let $\beta < \omega_1^M$ be least such that $i < \aleph_{\alpha+\beta+1}^M$. Inductively we have that D_i is countable in $M[g_{\alpha+\beta+1}]$. Choose a D_i -generic G_i in $M[g_{\alpha+\beta+1}]$. At limit stages form direct limits.

Let us check our inductive hypotheses in the successor case, the limit case being an easy consequence of the fact that the sequence $\langle G_i; i \rangle \langle \aleph_{\alpha+\beta+1}^M \rangle$ is in $M[g_{\alpha+\beta+1}]$. For the successor case note that an appropriate hull of

$$
\pi_{0,i+1} \text{``}(H_{\theta})^{M_0} \cup \{\kappa_j \text{ ; } j < i+1\}
$$

is $(H_{\theta_{i+1}})^{M_{i+1}}$ where $\theta_{i+1} = \pi_{0,i+1}(\theta)$. This hull can be calculated in $M[g_{\alpha+\beta+1}]$. Hence $D_{i+1} \subset (H_{\theta_{i+1}})^{M_{i+1}}$ is also countable in $M[g_{\alpha+\beta+1}]$. It is trivial to maintain that the sequence $\langle G_j : j < i + 1 \rangle$ is in $M[g_{\alpha+\beta+1}]$. Now we need that $\aleph_{\alpha+\beta+1}^M$ is regular in M. Hence

$$
\omega_1^{M[g_{\alpha+\beta+1}]}=\aleph_{\alpha+\beta+1}^M.
$$

So an easy calculation shows that for all $\beta < \omega_1^M$

$$
\pi_{0,\aleph^M_{\alpha+\beta+1}}(\omega^M_1)=\aleph^M_{\alpha+\beta+1}.
$$

 \Box

Clearly the previous lemma can be generalized further. Since we only need the case above, we refrained to state it in a more general fashion. Note that we have a lot of freedom when choosing the generics of the iteration; the only true restriction is that they come from small generic extensions. We will make use of this later.

We define a set of ordinals relative to a generic iteration. This set will come in handy in the proof of the main result of this section.

Definition 3.2 Let $\langle M, I \rangle$ be a model of ZFC^{*} + " ω_1 exists," such that $M \models I$ is precipitous. Let θ be a cardinal in M. Let

$$
\mathcal{J} := \langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \rho \rangle, \langle G_i; i < \rho \rangle \rangle
$$

be a generic iteration of $\langle M_0, I_0 \rangle = \langle M, I \rangle$. We inductively define the *important* ordinals of $\mathcal J$ relative to θ .

- (1) 0 is an important ordinal.
- (2) If α is an important ordinal then the least ordinal γ such that $\pi_{0,\alpha}(\theta) \leq \gamma = \kappa_{\gamma}$ is the next important ordinal.
- (3) Limits of important ordinals are important.

Remark 3.3 Let $\langle M, I \rangle$ be countable and as in the previous definition and let J as in the previous defintion and $\rho = \omega_1$. Then clearly the set of important ordinals of J relative to θ is a club in ω_1 . Also, if α is important, then $\kappa_\alpha = \alpha$.

3.2. Forcing ϕ_{AC} . We will show the following theorem:

Theorem 3.4 Let $\aleph_{\alpha} = 2^{2^{\omega_1}}$. Let $\theta := \aleph_{\alpha + \omega_1}$. Let NS_{ω_1} be precipitous and suppose H^{\sharp}_{θ} exists. Let $F:\omega_1 \to \theta$ defined by

$$
F(\beta) = \aleph_{\alpha+\beta+1}.
$$

Let $\vec{S} = \langle S_k : k \in \omega \rangle$, $\vec{T} = \langle T_k : k \in \omega \rangle$ be sequences of pairwise disjoint subsets of ω_1 , such that all S_k are stationary and $\omega_1 = \bigcup \{T_k \, ; \, k \in \omega\}$. There exists a forcing construction $\mathbb{P} = \mathbb{P}'(\theta, \text{NS}_{\omega_1}, \vec{S}, \vec{T})$ that preserves stationary subsets of ω_1 such that if G is $\mathbb P$ -generic over V, then in $V[G]$ there is generic iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle
$$

such that if $i < \omega_1$, then M_i is countable and $M_{\omega_1} = \langle H^{\sharp}_{\theta}; \in, \mathsf{NS}_{\omega_1} \rangle$. In particular, M_0 is generically ω_1 -iterable. Additionally the following holds in $V[G]$ for all $k \in \omega$:

$$
F^{\mu}T_k\subset \tilde{S}_k.
$$

We use a similar setup as [2], i.e. we assume:

$$
\theta = 2^{<\theta} < 2^{\theta} < \rho = 2^{<\rho},
$$

for some cardinal ρ . For reasons of convenience we like to think of $\aleph_{\alpha} = 2^{2^{\omega_1}}$ as \aleph_3 . This eases notation considerably. Note that we can force $\aleph_3 = 2^{2^{\omega_1}}$ with stationary set preserving forcing. If $2^{\omega_1} = \aleph_2$, then the precipitousness of NS_{ω_1} is preserved by forcing with $Col(\omega_3, 2^{2^{\omega_1}})$, since no new subsets of 2^{ω_1} are added, see [4, 22.19]. Nevertheless the reader will gladly verify that all of the following arguments go through for an arbitrary \aleph_{α} instead of \aleph_3 . If $\aleph_{\alpha} = \aleph_3$, then clearly $\theta = \aleph_{\omega_1}$.

At this point a remark is in order. In [2] θ is supposed to be regular. Nevertheless it is straightforward to check that if one can add generic iterations like in in [2] with last model H_n for arbitrarily large regular η you can also add generic iterations with last model H_{θ} . We can hence work with a singular θ and use the theory of [2].

Fix a well-order \langle of H_{ρ} as in [2]. We now fix $\vec{S} = \langle S_k; k \in \omega \rangle$, $\vec{T} = \langle T_k; k \in \omega \rangle$ sequences of pairwise disjoint subsets of ω_1 , such that all S_k are stationary and $\omega_1 = \bigcup \{T_k \, ; \, k \in \omega\}.$ We use

$$
\mathcal{H}=\langle H_\rho;\in, H_\theta^\sharp, \mathsf{NS}_{\omega_1},<\rangle
$$

and

$$
\mathcal{M}=\langle H_\theta^\sharp ; \in, {\mathsf{NS}}_{\omega_1}, <\rangle
$$

since we are defining a variant of $\mathbb{P}'(\theta, \text{NS}_{\omega_1})$. We will now define our modified forcing construction $\mathbb{P}'(\theta, \text{NS}_{\omega_1}, \vec{S}, \vec{T}).$

Definition 3.5 Conditions p in $\mathbb{P}'(\theta, \text{NS}_{\omega_1}, \vec{S}, \vec{T})$ are triples

$$
p = \langle \langle \kappa_i^p; i \in \text{dom}(p) \rangle, \langle \pi_i^p; i \in \text{dom}(p) \rangle, \langle \tau_i^p; i \in \text{dom}_-(p) \rangle \rangle
$$

such that the following conditions hold:

- (1) Both dom(p) and dom (p) are finite, and dom $(p) \subset \text{dom}(p) \subset \omega_1$.
- (2) $\langle \kappa_i^p : i \in \text{dom}(p) \rangle$ is a sequence of countable ordinals.
- (3) $\langle \pi_i^p : i \in \text{dom}(p) \rangle$ is a sequence of finite partial maps from ω_1 to $H_{\theta}^{\sharp} \cap \mathsf{OR}$.
- (4) $\langle \tau_i^p; i \in \text{dom}_-(p) \rangle$ is a sequence of complete H-types over H_θ , i.e., for each $i \in \text{dom}_p$) there is some $x \in H_\rho$ such that, having φ range over H-formulae with free variables u, \vec{v} ,

$$
\tau_i^p = \{ \langle \ulcorner \varphi \urcorner, \vec{z} \rangle \; ; \; \vec{z} \in H_\theta \land \mathcal{H} \models \varphi[x, \vec{z}] \}.
$$

(5) If $i, j \in \text{dom}_-(p)$, where $i < j$, then there is some $n < \omega$ and some $\vec{u} \in \text{ran}(\pi_j^p)$ such that

$$
\tau_i^p = \{ (m, \vec{z}) \; ; \; (n, \vec{u}^\frown m^\frown \vec{z}) \in \tau_j^p \}.
$$

(6) In $V^{\text{Col}(\omega,\theta)}$, there is a model which certifies p with respect to M, i.e. a model $\mathfrak A$ such that $H_{\theta}^{\sharp} \in \text{wp}(\mathfrak A), \mathfrak A \models \textsf{ZFC}^-,$ for all stationary $S \subset \omega_1$ in V we have $\mathfrak{A} \models$ "S is stationary", and inside $\mathfrak A$ there is a generic iteration

$$
\mathcal{J}^{\mathfrak{A}}:=\langle \langle M^{\mathfrak{A}}_i, \pi^{\mathfrak{A}}_{i,j}, I^{\mathfrak{A}}_i, \kappa^{\mathfrak{A}}_i; i \leq j \leq \omega_1 \rangle, \langle G^{\mathfrak{A}}_i; i < \omega_1 \rangle \rangle
$$

such that

- (a) if $i < \omega_1$, then $M_i^{\mathfrak{A}}$ is countable,
- (b) if $i < \omega_1$ and if $\xi < \theta$ is definable over M from parameters in $\text{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$, then $\xi \in \text{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}),$
- (c) $M_{\omega_1} = \langle H_\theta^\sharp; \in, \mathsf{NS}_{\omega_1} \rangle,$
- (d) if $i \in \text{dom}(p)$, then $\kappa_i^p = \kappa_i^{\mathfrak{A}}$ and $\pi_i^p \subset \pi_{i,\omega_1}^{\mathfrak{A}},$
- (e) if $i \in \text{dom}_-(p)$, then for all $n < \omega$ and for all $\vec{z} \in \text{ran}(\pi^{\mathfrak{A}}_{i,\omega_1}),$

$$
\exists y \in H_{\theta} \ (n, y^{\frown} \vec{z}) \in \tau_i^p \Longrightarrow \exists y \in \text{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}) \ (n, y^{\frown} \vec{z}) \in \tau_i^p.
$$

(f) Let $D^{\mathfrak{A}}$ be the set of important ordinals of $\mathcal{J}^{\mathfrak{A}}$ relative to $(\pi_{0,\omega_1}^{\mathfrak{A}})^{-1}(\theta)$. If $\gamma \in D^{\mathfrak{A}}$ then for all $\beta < \gamma = \kappa_{\gamma}^{\mathfrak{A}}$ and all $k \in \omega$.

$$
\aleph_{3+\beta+1}^{M^{\mathfrak{A}}_{{\gamma}}}\in S_k \iff \beta\in T_k.
$$

If $p, q \in \mathbb{P}'(\theta, \mathsf{NS}_{\omega_1}, \vec{S}, \vec{T})$, then we write $p \leq q$ iff $\text{dom}(q) \subset \text{dom}(p)$, $\text{dom}(q) \subset$ $\text{dom}_-(p)$, for all $i \in \text{dom}(q)$, $\kappa_i^p = \kappa_i^q$ and $\pi_i^q \subset \pi_i^p$, and for all $i \in \text{dom}_-(q)$, $\tau_i^q = \tau_i^p$.

Note that the only difference between the above forcing $\mathbb{P}'(\theta, \text{NS}_{\omega_1})$ in [2] is condition (6)(f) which is not required to hold for elements of $\mathbb{P}'(\theta, \text{NS}_{\omega_1})$.

We now show Theorem 3.4. First we show that $\mathbb{P} := \mathbb{P}'(\theta, \mathsf{NS}_{\omega_1}, \vec{S}, \vec{T}) \neq \emptyset$, i.e. the analog of Lemma 5 in [2]. Then we proceed as in [2] but we will skip all lemmata and theorems that are literally the same and have literally the same proof.

Lemma 3.6 $\mathbb{P} \neq \emptyset$.

Proof. We need to verify, that in $V^{\text{Col}(\omega,\theta)}$ there is a model which certifies the trivial condition with respect to M. Let g be $Col(\omega, \langle \rho \rangle)$ -generic over V. We work in $V[g]$ until further notice. So $\langle V; \in, \mathsf{NS}_{\omega_1} \rangle$ is $\rho + 1$ iterable, by [10, 3.10, 3.11]. Hence $\langle H_\theta^{\sharp} \rangle \in N \mathsf{S}_{\omega_1}$ is also $\rho+1$ iterable. We prepare a book-keeping device: pick a bijection $g: [\rho]^{<\rho} \to \rho$ and a family $\langle U_{\nu}, \nu < \rho \rangle$ of pairwise disjoint stationary subsets of ρ . Now define $f : \rho \to [\rho]^{<\rho}$ by

$$
f(i) = u \iff i \in U_{g(u)}.
$$

Note that each u is enumerated stationarily often. We recursively construct a generic iteration

$$
\mathcal{J} := \langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \rho \rangle, \langle G_i; i < \rho \rangle \rangle
$$

of $M_0 = \langle V; \in, \mathsf{NS}_{\omega_1} \rangle$ togethter with a set of local generics g_i . Later the restriction of this iteration to $\langle H_{\theta}^{\sharp}, \in, \mathsf{NS}_{\omega_1} \rangle$ will be of interest. For each important ordinal of the iteration a local generic g_i will be picked. Suppose we have already constructed J to some $i < \rho$. Note that we can calculate the important ordinals of $\mathcal J$ relative to θ while we construct J . The following three clauses define the iteration.

- (1) If i is an important ordinal of J relative to θ , then pick some $g_i \subset \text{Col}(\omega, \leq$ $\pi_{0,i}(\theta)$ in $V[g]$ that is generic over M_i . Then pick G_i in $M_i[g_i]$ such that if for a (unique) j the set $\pi_{j,i}(f(i))$ is a stationary subset of $\omega_1^{M_i}$ in M_i then $\pi_{j,i}(f(i)) \in G_i$. Note that j is unique because $f(i)$ can only be stationary in M_j if $\sup f(i) = \omega_1^{M_j}$.
- (2) If i is not important and γ is the largest important ordinal below i, then we already have chosen some $g_{\gamma} \subset \text{Col}(\omega, \langle \pi_{0,\gamma}(\theta) \rangle)$ in $V[g]$ that is generic over M_{γ} . In the case that $i = \omega_{3+\beta+1}^{M_{\gamma}}$ for some $\beta < \kappa_{\gamma} = \gamma$ we pick some G_i in $M_{\gamma}[g_{\gamma} \cap \text{Col}(\omega, \langle \omega_{3+\beta+2}^{M_{\gamma}} \rangle]$ such that

$$
\beta \in \pi_{0,\gamma}(T_k) \iff \pi_{0,i}(S_k) \in G_i.
$$

Note that since \vec{T} is a partition of ω_1 , there is a unique k such that $\beta \in$ $\pi_{0,i}(T_k)$.

(3) If the first and second clause do not hold and γ is the largest important ordinal below *i*, then we already have chosen some $g_{\gamma} \subset \text{Col}(\omega, \langle \pi_{0,\gamma}(\theta) \rangle)$ in $V[g]$ that is generic over M_{γ} . In the case that i is not a successor cardinal $<\pi_{0,\gamma}(\theta)$ in M_{γ} there is a least $\beta < \kappa_{\gamma}$ such that $i < \omega_{3+\beta+1}^{M_{\gamma}}$. We pick some arbitrary G_i in $M_{\gamma}[g_{\gamma} \cap \text{Col}(\omega, \langle \omega_{3+\beta+1}^{M_{\gamma}})]$. Else we pick a completely arbitrary generic.

Fix some important $\gamma > 0$. So J restricted to $[\gamma, \pi_{0,\gamma}(\theta)]$ is an iteration like in the "Hitting many regular cardinals lemma" 3.1. Hence we know that the iteration is well defined and additionally we have for $\beta < \kappa_{\gamma} = \gamma$ and $i := \aleph_{3+\beta+1}^{M_{\gamma}}$

$$
i = \pi_{\gamma,i}(\kappa_{\gamma}) = \kappa_i.
$$

By the second clause of the iteration we hence have for i as above and $k \in \omega$:

$$
\beta \in \pi_{0,\gamma}(T_k) \iff \pi_{0,i}(S_k) \in G_i \iff \kappa_i \in \pi_{0,i+1}(S_k) \iff i \in \pi_{0,\rho}(S_k).
$$

Let D denote the club of important ordinals and let U be a stationary subset of $\omega_1^{M_\rho} = \rho$. Let $j < \rho$ and u be such that $\pi_{j,\rho}(u) = U$. If $i \in D \setminus j$ and $f(i) = u$, then $\pi_{j,i}(u) \in G_i$. This shows that

$$
D \cap U_{g(u)} \setminus j \subset \{i < \rho \, ; \, \kappa_i \in U\},
$$

so that in fact U is stationary in $V[g]$.

Hence in $M_{\rho}^{\text{Col}(\omega,\pi_{0,\rho(\theta)})}$ there is a model that certifies the empty condition with respect to $\pi_{0,\rho}(\langle H^{\sharp}_{\theta},\in,NS_{\omega_1}\rangle)$. Now we can literally complete our proof by following the last paragraph of the proof Lemma 5 in [2]. \Box

We can now literally adopt lemmata 6 through 15 of [2]. So we have, using the notation of [2]:

Lemma 3.7 Let $G \subset \mathbb{P}$ is V-generic. Let $\kappa_i = \kappa_i^p$ for some $p \in G$. Then in $V[G]$

$$
H_{\theta}^{\sharp} \cap \mathsf{OR} = \cup \{ \operatorname{ran}(\pi_i) \, ; \, i < \omega_1 \}
$$

and

$$
\mathcal{J}_G := \langle \langle M_i, \tilde{\pi}_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1^V \rangle, \langle G_i; i < \omega_1 \rangle \rangle
$$

is a generic iteration of M_0 such that if $i < \omega_1$, then M_i is countable, and $M_{\omega_1} =$ $\langle H_\theta^\sharp ;\in,I\rangle.$

Let D_G denote the important ordinals of \mathcal{J}_G . We can assume without loss of generality that there are $\vec{s}, \vec{t} \in M_0$ such that $\tilde{\pi}_{0,\omega_1}(\langle \vec{s}, \vec{t} \rangle) = \langle \vec{S}, \vec{T} \rangle$.

Lemma 3.8 D_G is club and for all $\gamma \in D_G$ the following holds: if $\beta < \kappa_\gamma$ then for all $k \in \omega$

$$
\beta \in \pi_{0,\gamma}(t_k) \iff \aleph_{3+\beta+1}^{M_\gamma} \in \pi_{0,\omega_1}(s_k),
$$

which by the choice of \vec{s} and \vec{t} means

$$
\beta \in T_k \iff \aleph_{3+\beta+1}^{M_\gamma} \in S_k
$$

Proof. That D_G is club is obvious.

Claim 1. $p \Vdash \check{\gamma} \in D_{\dot{G}}$ if and only if for all \mathfrak{A} which certify $p, \gamma \in D^{\mathfrak{A}}$.

Proof of Claim 1. Fix p such that $p \Vdash \check{\gamma} \in D_{\check{G}}$ and some structure $\mathfrak A$ which certifies p. Towards a contradiction suppose $\gamma \notin D^{\mathfrak{A}}$. Then there is some $\gamma' < \gamma, \gamma' \in D^{\mathfrak{A}}$ with

$$
(\pi^{\mathfrak{A}}_{\gamma',\omega_1})^{-1}(\theta) > \gamma.
$$

We can extend p to p' also certified by $\mathfrak A$ such that $\text{dom}(p')$ contains all the relevant points. Then

$$
p' \Vdash \check{\gamma} \notin D_{\dot{G}}.
$$

Contradiction! The other direction is easy. \Box (Claim 1)

Now if $\beta \in \pi_{0,\gamma}(t_k)$ and $\gamma \in D_G$ there is some $p \in G$ with $p \Vdash \check{\gamma} \in D_G$ and $\beta \in (\pi_\gamma^p)^{-1} \circ \pi_0^p(t_k)$ (Note the following subtlety: π_0^p is only defined on the ordinals, but using the well ordering \lt on H_{θ}^{\sharp} we can assume that $\text{dom}(\pi_0^p)$ contains t_k). Let $p' \leq p$ be arbitrary and let \mathfrak{A} certify p' . Then $\aleph_{3+\beta+1}^{M^{\mathfrak{A}}}_{3+\beta+1} \in S_k$ by the above claim and the fact that $\mathfrak A$ certifies p' . So we may extend p' to p'' making sure

$$
p'' \Vdash \aleph_{3+\beta+1}^{M_\gamma} \in \tilde{\pi}_{0,\omega_1}(s_k).
$$

Hence the set of p'' forcing the desired result is dense below p . The other direction is \Box similar.

We can now literally adopt lemmata 16 and 17 of [2] and their proofs; i.e. it is clear that $\mathbb{P}'(\theta, \text{NS}_{\omega_1}, S, T)$ is stationary set preserving.

To finish the proof of 3.4 we have to show that in $V[G]$ for all $k \in \omega$

$$
F^{\mu}T_k \subset \tilde{S}_k.
$$

For this fix $k \in \omega$ and some $\beta \in T_k$. By 3.8 we have for all $\gamma \in D_G \setminus (\beta + 1)$

$$
\beta\in T_k \iff \aleph_{3+\beta+1}^{M_\gamma}\in S_k.
$$

Lemma 3.9 The function $f : D_G \setminus (\beta + 1) \to \omega_1$

$$
\gamma \mapsto \aleph_{3+\beta+1}^{M_\gamma}
$$

is a canonical function for $\aleph_{3+\beta+1}^V < \omega_2^{V[G]}$ in $V[G]$.

Proof. Let

$$
\mathcal{J}_G := \langle \langle M_i, \tilde{\pi}_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1^V \rangle, \langle G_i; i < \omega_1 \rangle \rangle
$$

denote the iteration that is added by G. Set $\eta := \aleph_{3+\beta+1}^V$. Fix some bijection $g: \omega_1 \to \eta$ in $V[G]$. Let $\langle X_i : i \in \omega_1 \rangle$ be a continuous elementarty chain of countable submodels of $H_{\omega_2}^{V[G]}$ such that $g, H_{\theta}^V \in X_0$. So clearly $H_{\theta}^V \subset \cup \{X_i : i \in \omega\}$. So for all $i \in \omega_1$ we have

$$
X_i \cap \eta = g^{\mathfrak{a}}(X_i \cap \omega_1).
$$

Clearly $\langle X_i \cap H_{\theta}^V : i \in \omega_1 \rangle$ is club in $[H_{\theta}^V]^{\omega}$. Since the set $\{\text{ran}(\tilde{\pi}_{i,\omega_1}) \cap H_{\theta} : i \in \omega_1\}$ is also a club in $[H_{\theta}^V]^{\omega}$ there is a club $C \subset \omega_1$ such that for all $i \in C$

$$
X_i \cap \eta = \operatorname{ran}(\tilde{\pi}_{i,\omega_1}) \cap \eta.
$$

So for all $i \in C$ we have

$$
i = \operatorname{ran}(\tilde{\pi}_{i,\omega_1}) \cap \omega_1 = X_i \cap \omega_1
$$

and thus

$$
otp(g``i) = otp(ran(\tilde{\pi}_{i,\omega_1}) \cap \eta) = \aleph_{3+\beta+1}^{M_i} = f(i).
$$

Hence f is a canonical function.

So the club $D_G \setminus (\beta + 1)$ and f from the previous lemma witness that in $V[G]$

$$
\mathbf{1}_{\mathbb{B}} \Vdash \aleph_{3+\beta+1}^V \in j(S_i),
$$

where $\mathbb B$ is $(\mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1})^{V[G]}$ and j is a name for the generic embedding added by forcing with \mathbb{B} . Hence $\aleph_{3+\beta+1}^{\check{V}} \in \tilde{S}_i$. This finishes the proof of 3.4.

Observe that the single instance of ϕ_{AC} that holds in $V^{\mathbb{P}'(\theta,\text{NS}_{\omega_1},\vec{S},\vec{T})}$ is a Σ_1 statement in H_{ω_2} in the parameters \vec{S} and \vec{T} . Since $\mathbb{P}'(\theta, \text{NS}_{\omega_1}, \vec{S}, \vec{T})$ preserves stationary subsets an application of BMM yields the following corollary.

Corollary 3.10 If NS_{ω_1} is precipitous + BMM then ϕ_{AC} .

4. Obtaining ψ_{AC}

Definition 4.1 (Woodin) ψ_{AC} : Let $S \subset \omega_1$ and $T \subset \omega_1$ be stationary, costationary sets. Then there exists a canonical function f for some $\eta < \omega_2$ such that for some club $C \subset \omega_1$

$$
\{\alpha < \omega_1 \,;\, f(\alpha) \in T\} \cap C = S \cap C.
$$

Note the following reformulation of the above definition in terms of generic ultrapowers: let j be a name for the embedding induced by some generic $G \subset \mathcal{P}(\omega_1) \backslash \text{NS}_{\omega_1}$, with S, T as above we have

$$
\mathbf{1}_{\mathbb{P}(\omega_1)\setminus \mathsf{NS}_{\omega_1}} \Vdash \check{S} \in \dot{G} \iff \eta \in j(T).
$$

Woodin has shown:

Theorem 4.2 ([10, 10.95]) If BMM + NS_{ω_1} is precipitous then ψ_{AC} .

With the technology from the previous section on ϕ_{AC} it is possible to give a different proof of 4.2. Since this is very similar to the section on ϕ_{AC} , we shall only state the required results. The proofs are very similar to the ϕ_{AC} case.

Lemma 4.3 (Hitting regular cardinals lemma) Let $\langle M, I \rangle$ be a countable model of **ZFC**^{*} and let I be a precipitous ideal on ω_1^M . Assume that $\mathcal{P}(\mathcal{P}(\omega_1))$ exists in M. Let $\theta \in M$ be such that

$$
M \models \text{Card}(\mathcal{P}(\mathcal{P}(\omega_1)))^+ = \theta,
$$

and let $\theta' \geq \theta$ such that θ' is a regular cardinal in M. Then a genericity iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \theta' \rangle, \langle G_i; i < \theta' \rangle \rangle
$$

of $M_0 = M$ exists in V such that $\pi_{0,\theta'}(\omega_1^M) = \theta'$

We again modify the forcing $\mathbb{P}'(\omega_2, \text{NS}_{\omega_1})$ to show a weak form of ψ_{AC} in the generic extension. An application of BMM will then give us the desired result.

Theorem 4.4 Let NS_{ω_1} be precipitous and suppose H_{θ}^{\sharp} exists, where $\theta = 2^{2^{N_1+}}$. For all S, T stationary and costationary there exists a forcing construction \mathbb{P} = $\mathbb{P}'(\theta, \text{NS}_{\omega_1}, S, T)$ that preserves stationary subsets, such that if G is P-generic over V, then in $V[G]$ there is generic iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle
$$

such that if $i < \omega_1$, then M_i is countable and $M_{\omega_1} = \langle H_\theta^{\sharp}, \in, \mathsf{NS}_{\omega_1} \rangle$. In particular, M_0 is generically ω_1 -iterable. Additionally the following holds in $V[G]$: there is a club $C \subset \omega_1$, such that for all $\alpha \in C$

$$
\omega_1^{M_\alpha} \in S \iff \theta_\alpha \in T,
$$

where $\theta_{\alpha} = \pi_{\alpha,\omega_1}^{-1}(\theta)$.

We will now define our modified forcing construction $\mathbb{P} := \mathbb{P}'(\theta, \text{NS}_{\omega_1}, S, T)$.

Definition 4.5 Conditions p in $\mathbb{P}'(\theta, \text{NS}_{\omega_1}, S, T)$ are triples

$$
p = \langle \langle \kappa^p_i ; i \in \mathrm{dom}(p) \rangle, \langle \pi^p_i ; i \in \mathrm{dom}(p) \rangle, \langle \tau^p_i ; i \in \mathrm{dom}_-(p) \rangle \rangle
$$

such that the following conditions hold:

- : Conditions i.,ii.,iii.,iv.,v. as in definition 3.5 hold. We replace condition vi. as follows:
- : vi. In $V^{\text{Col}(\omega,\theta)}$, there is a model which certifies p with respect to M, i.e. a model $\mathfrak A$ such that $H_{\theta}^{\sharp} \in \text{wp}(\mathfrak A), \ \mathfrak A \models \textsf{ZFC}^-$, for all stationary $S, \ \mathfrak A \models$ "S is stationary", and inside $\mathfrak A$ there is a generic iteration

$$
\mathcal{J}^{\mathfrak{A}} := \langle \langle M^{\mathfrak{A}}_i, \pi^{\mathfrak{A}}_{i,j}, I^{\mathfrak{A}}_i, \kappa^{\mathfrak{A}}_i; i \leq j \leq \omega_1 \rangle, \langle G^{\mathfrak{A}}_i; i < \omega_1 \rangle \rangle
$$

such that conditions $(a),(b),(c),(d)$ and (e) as in definition 3.5 hold. We replace (f).

: (f) Let $D^{\mathfrak{A}}$ be the club of *limits* of important ordinals of $\mathcal{J}^{\mathfrak{A}}$ relative to $\pi_{0,\omega_1}^{\mathfrak{A}-1}(\theta)$. Let $\alpha \in D^{\mathfrak{A}}$. Let β be the next important ordinal above α . Then

$$
\omega_1^{M^{\mathfrak{A}}_{\alpha}} \in S \iff \pi^{\mathfrak{A}-1}_{\alpha,\omega_1}(\theta) = \omega_1^{M^{\mathfrak{A}}_{\beta}} \in T.
$$

If p, q are conditions, then we write $p \leq q$ iff $p \leq_{\mathbb{P}'(\theta,\text{NS}_{\omega_1})} q$.

Applying the "Hitting regular cardinals lemma" 4.3 one can show that certifying structures exist. Hence one has:

Lemma 4.6 $\mathbb{P} \neq \emptyset$.

. — Первый процесс в серверності процесс в серверності процесс в серверності процесс в серверності процесс в с
Первої в серверності процесс в серверності процесс в серверності процесс в серверності процесс в серверності п

We can now literally adopt lemmata 6 through 15 of [2]. So we have, using the definitions for $\pi_i, M_i, I_i, \kappa_i, G_i, \tilde{\pi}_{i,j}$, of [2]:

Lemma 4.7 Let $G \subset \mathbb{P}$ is V-generic. Let $\kappa_i = \kappa_i^p$ for some $p \in G$. Then

$$
H_{\theta}^{\sharp} \cap \mathsf{OR} = \cup \{ \operatorname{ran}(\pi_i) \, ; \, i < \omega_1 \}
$$

and

$$
\mathcal{J}_G := \langle \langle M_i, \tilde{\pi}_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1^V \rangle, \langle G_i; i < \omega_1 \rangle \rangle
$$

is a generic iteration of M_0 such that if $i < \omega_1$, then M_i is countable, and $M_{\omega_1} =$ $\langle H^\sharp_\theta$ ϵ, ϵ, I).

We set

$$
\theta_i := \tilde{\pi}_{i,\omega_1}^{-1}(\theta),
$$

an we let D_G denote the club of limits of important ordinal of J relative to θ_0 . A densitiy argument shows:

Lemma 4.8 D_G is club and for all $i \in D_G$

$$
\omega_1^{M_i} \in S \iff \theta_i \in T.
$$

 \Box

Since the sequence $\langle \theta_i : i \in D_G \rangle$ is a canonical function for θ in the forcing extension, we have

$$
\mathbf{1}_{\mathbb{P}(\omega_1) \backslash \mathrm{NS}_{\omega_1}} \Vdash \check{S} \in \dot{G} \iff \theta \in \check{j}(T).
$$

We can now literally adopt lemmata 16 and 17 of [2] and their proofs; i.e. it is clear that $\mathbb{P}'(\theta, \text{NS}_{\omega_1}, S, T)$ is stationary set preserving. Hence theorem 4.4 follows. The referee observed that it is possible to formulate an ad hoc combinatorial principle that implies ϕ_{AC} as well as ψ_{AC} . Such a principle could then be shown to follow from BMM and the precipitousness of NS_{ω_1} by the methods for ϕ_{AC} and ψ_{AC} .

5. The semiproperness of $\mathbb{P}(NS_{\omega_1}, \theta)$

In [2] it was shown that $\mathbb{P}(NS_{\omega_1}, \theta)$ preserves stationary subsets of ω_1 provided that NS_{ω_1} is precipitous. Since it is consistent relative to large cardinals that all stationary set preserving forcings are semiproper, the forcing $\mathbb{P}(NS_{\omega_1}, \theta)$ can clearly be semiproper. We show that the semiproperness of the forcings $\mathbb{P}(N\dot{S}_{\omega_1}, \theta)$ implies a generalization of Chang's Conjecture which in turn implies the semiproperness of all stationary set preserving forcings.

Recall the definition of semiproperness.

Definition 5.1 A notion of forcing $\mathbb P$ is semiproper if for every sufficiently large λ , every well-ordering \lt of H_λ and every countable elementary submodel $X \lt \langle H_\lambda; \in, \lt \rangle$ the following holds:

$$
\forall p \in X \cap \mathbb{P} \; \exists q \le p : q \text{ is } (X, \mathbb{P}) \text{-semigeneric},
$$

where q is (X, \mathbb{P}) -semigeneric if for every name $\alpha \in X$ for a countable ordinal

$$
q \Vdash \exists \beta \in X : \dot{\alpha} = \check{\beta}.
$$

Definition 5.2 ([8, XIII. 1.5])

- Let x, y be countable. We write $x \sqsubset y$ if $x \cap \omega_1 = y \cap \omega_1$ and $x \subset y$.
- A set $S \subset [W]^\omega$ is semistationary in $[W]^\omega$ if $\{y \in [W]^\omega : \exists x \in S : x \sqsubset y\}$ is stationary in $[W]^{\omega}$.
- Let $\lambda \geq \omega_2$. We denote by $SSR([\lambda]^\omega)$ the following principle: For every S semistationary in $[\lambda]^\omega$ there is $W \subset \lambda$, Card $(W) = \omega_1 \subset W$ and $S \cap [W]^\omega$ is semistationary in $[W]^{\omega}$.
- If $SSR([\lambda]^\omega)$ holds for all cardinals $\lambda \geq \omega_2$ then we will say that *Semistationary* Reflection (SSR) holds.

Note that [8] has a more general notation for the above reflection principles. In [8] the principle $SSR([\lambda]^\omega)$ is called $Res(\aleph_2, \lambda)$ and SSR is called $Res(\aleph_2)$.

Lemma 5.3 ([8, XIII.1.7(3)]) Semistationary Reflection implies that all stationary set preserving forcings are semiproper.

Definition 5.4 ([3]) (†) is an abbreviation for: every stationary set preserving forcing is semiproper.

Foreman, Magidor and Shelah have shown:

Lemma 5.5 ([3, Theorem 26]) If (†) holds, then NS_{ω_1} is precipitous.

We will consider a generalization of Chang's Conjecture that we call CC^{∗∗}.

Definition 5.6 Let $\lambda \geq \omega_2$. CC^{*}(λ) is the following axiom: There are arbitrarily large regular cardinals $\theta > \lambda$ such that for all well-orderings \lt of H_{θ} and for all $a \in [\lambda]^{\omega_1}$ and for all countable $X \prec \langle H_\theta; \in, \le \rangle$ there is a countable $Y \prec \langle H_\theta; \in, \le \rangle$ such that $X \sqsubset Y$ and there is some $b \in Y \cap [\lambda]^{\omega_1}$ such that $a \subset b$. CC^{**} is CC^{*}(λ) for all cardinals $\lambda \geq \omega_2$.

Note that $CC^*(\omega_2)$ implies Todorčević's CC^* ; in the case of CC^* one only requires for an X as above that there is $Y \prec \langle H_\theta; \in, \le \rangle$ such that $X \sqsubset Y$ and $X \cap \omega_2 \neq Y \cap \omega_2$, see [9]. Note that $CC^*(\omega_2)$ (and also CC^*) implies the usual Chang Conjecture by building a continuous chain of countable elementary submodels of length ω_1 ; at each successor stage apply CC^{**} . So the countable ordinals of the last model of the chain are the same as the first model's.

The next theorem answers a question of Todorcevic who asked the second author under which cirumstances $\mathbb{P}(NS_{\omega_1}, \theta)$ is semiproper.

The authors would like to thank Daisuke Ikegami for communicating valuable results about the relationship of CC∗∗, SSR and (†).

Theorem 5.7 The following are equivalent:

- (1) NS_{ω_1} is precipitous and for all regular $\theta \geq \omega_2$ the partial ordering $\mathbb{P}(\mathsf{NS}_{\omega_1}, \theta)$ is semiproper.
- (2) For arbitrarily large $\theta \geq \omega_2$ there is a semiproper partial order $\mathbb P$ that adds a generic iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle.
$$

such that $H_{\theta} \subset M_{\omega_1}$ and all M_i are countable.

- (3) CC^{**}
- (4) SSR
- (5) (†)

Before we prove the above theorem note that the Namba-like forcing in [5] is stationary set preserving (cf. [11]) and hence $\mathbb{P}(NS_{\omega_1}, \theta)$ is not the only example witnessing the consistency of 2.

Proof. (1) \implies (2) is trivial and (4) \implies (5) is Lemma 5.3.

 $(5) \implies (1)$ is clear since by 5.5, NS_{ω_1} is precipitous in this case and so by [2] the forcing $\mathbb{P}(NS_{\omega_1}, \theta)$ exists for all regular $\theta \leq \omega_2$ and preserves stationary subsets of ω_1 . It remains to show $(2) \implies (3)$ and $(3) \implies (4)$ For the first implication we assume that CC∗∗ does not hold and work toward a contradiction. So there is a least cardinal $\lambda_0 \geq \aleph_2$ for which CC^{**} fails. Since (2) holds there is a least $\theta_0 > \lambda_0$ such that a semiproper P exists that adds an iteration

$$
\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle
$$

such that $H_{\theta_0} \subset M_{\omega_1}$ and all M_i are countable. Let $\theta > \theta_0$ large enough so that a name for an iteration as above and $\mathcal{P}(\mathbb{P})$ are both in H_{θ} . Let \lt be some well-ordering of H_{θ} . Now fix some arbitrary $X \prec \langle H_{\theta}; \in, \le \rangle$ and some $a \in [\lambda_0]^{\omega_1}$. Our aim is now to construct a $Y \prec \langle H_\theta; \in, \le \rangle$ like in CC^{∗∗}. For this we first show that it suffices to do so in a generic extension:

Claim 1. If there is some generic extension of V that contains some $Y \prec \langle H_\theta; \in, \leq \rangle$ such that $X \sqsubset Y$ and there is some $b \in Y \cap [\lambda_0]^{\omega_1} \cap V$ such that $a \subset b$ then there is already some $Z \in V$ with $Z \prec \langle H_\theta; \in, \le \rangle$, $X \sqsubset Z$ and $b \in Z$.

Proof of Claim 1. If Y is in some generic extension W of V, then by $b \in V$ there is a tree $T \in V$ searching for a countable $Z \prec \langle H_\theta; \in, \le \rangle$ such that $b \in Z$ and $X \sqsubset Z$. So T has a branch in W , this is clearly witnessed by Y . By the absoluteness of wellfoundedness we have a branch through T in V and hence there is some countable $Z \prec \langle H_\theta; \in, \le \rangle$ with $X \sqsubset Z$ and $b \in Z$ in V. \square (Claim 1)

By the minimality of λ_0 and θ_0 some semiproper forcing and some name for an iteration as above exist in X. Let us call this forcing P again. Let $G \subset \mathbb{P}$ be generic over V .

Claim 2. $X[G] \prec H_{\theta}[G]$.

This claim is part of the folklore. For the readers convenience we give a Proof of Claim 2. An induction along the first order formulae will yield the desired result: let ϕ be a formula and let $\sigma \in X$ denote some name such that

$$
H_{\theta}[G] \models \exists y \phi(y, \sigma^G).
$$

Then by the fullness of the forcing names we have

$$
H_{\theta} \models \exists \tau \forall p \in \mathbb{P}(p \Vdash \exists y \phi(y, \sigma) \implies p \Vdash \phi(\tau, \sigma)).
$$

So by elementarity such a τ exists in X. By the inductive hypothesis we have

$$
H_{\theta}[G] \models \phi(\tau^G, \sigma^G) \iff X[G] \models \phi(\tau^G, \sigma^G).
$$

$$
\Box(\text{Claim 2})
$$

By our hypothesis we can force the existence of a generic iteration

$$
\dot{\mathcal{J}}^G = \langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle.
$$

with $M_{\omega_1} \supset H_{\theta}$. So by the regularity of θ we have $a \in M_{\omega_1}$. Note that $X[G]$ can calculate M_0 .

Claim 3. Let $\beta < \alpha \leq \omega_1$. All elements of M_α are of the form $\pi_{\beta,\alpha}(f)(\vec{\xi})$ for some $f: \kappa_\beta^n \to M_\beta, \, f \in M_\beta$ and ordinals $\xi_1,...,\xi_n < \omega_1^{M_\alpha}$.

This claim is also part of the folklore. Nevertheless we give a proof for the readers convenience.

Proof of Claim 3. Fix $\beta < \omega_1$. We show this by induction on α . Let $\alpha = \gamma + 1$. Then M_{α} is isomorph to Ult (M_{γ}, G_{γ}) . Hence every element of M_{α} has the form $\pi_{\gamma,\alpha}(f)(\kappa_{\gamma})$ for some $f:\kappa_{\gamma}\to M_{\gamma},\ f\in M_{\gamma}$. By the inductive hypothesis f is of the form $\pi_{\beta,\gamma}(g)(\vec{\xi})$ for some $g : \kappa_\beta^n \to M_\beta, g \in M_\beta$ and $\vec{\xi} \in \kappa_\gamma^n$. Then

$$
\pi_{\gamma,\alpha}(f)(\kappa_\gamma)=\pi_{\gamma,\alpha}(\pi_{\beta,\gamma}(g)(\vec{\xi}))(\kappa_\gamma)=\pi_{\beta,\alpha}(g)(\vec{\xi})(\kappa_\gamma),
$$

since the critical point of $\pi_{\gamma,\alpha}$ is κ_{γ} .

The case $\lim_{\alpha}(\alpha)$ simply uses the fact that M_{α} is the direct limit of all M_{γ} for $\gamma < \alpha$. if $x \in M_\alpha$, then $x = \pi_{\gamma,\alpha}(\bar{x})$ for some $\gamma < \alpha$ and some $\bar{x} \in M_\gamma$. Without loss of generality we may assume $\beta < \gamma$. Then \bar{x} is of the form $\pi_{\beta,\gamma}(g)(\vec{\xi})$ for some $g: \kappa_\beta^n \to M_\beta, g \in M_\beta$ and ordinals $\vec{\xi} \in \kappa_\gamma^n$. Then

$$
x = \pi_{\gamma,\alpha}(\bar{x}) = \pi_{\gamma,\alpha}(\pi_{\beta,\gamma}(g)(\vec{\xi})) = \pi_{\beta,\alpha}(g)(\vec{\xi}).
$$

$$
\Box(\text{Claim 3})
$$

By setting $\beta = 0$ and $\alpha = \omega_1$ in the above claim, we have that there is some $f \in M_0$, $f : \kappa_0^n \to M_0$ and $\vec{\xi} = \xi_1, ..., \xi_n < \omega_1$ such that

$$
a = \pi_{0,\omega_1}(f)(\vec{\xi}).
$$

This f is in $X[G]$. We set

$$
b:=\bigcup\{\pi_{0,\omega_1}(f)(\vec{\alpha})\,;\,\vec{\alpha}\in\omega_1^n\wedge\pi_{0,\omega_1}(f)(\vec{\alpha})\in([H_\theta]^{\omega_1})^V\}.
$$

Clearly $a \subset b$ and Card(b) = ω_1 . Since the parameters $\pi_{0,\omega_1}(f)$, $[H_\theta]^{\omega_1}$ used in the definition of b are in V we have that $b \in V$. Also $b \in X[G]$. By the semiproperness of $P X \subseteq X[G]$. So $X[G]$ witnesses that in some generic extension of V there is some Y as desired. This suffices to show by claim 1.

We now show that 3. \implies 4. This implication is a slight generalization of [9, Lemma 6. Fix an ordinal $\lambda \geq \omega_2$ and a semistationary $S \subset [\lambda]^\omega$. We set

$$
\mathcal{W} := \{ W \subset \lambda \, ; \, \text{Card}(W) = \omega_1 \subset W \}
$$

and

$$
T:=\{y\in [\lambda]^{\omega}\,;\,\exists x\in S: x\sqsubset y\}.
$$

By the very definition of semistationarity T is stationary. Let us assume that SSR does not hold and work toward a contradiction. For all $W \in \mathcal{W}$

$$
S_W := \{ y \in [W]^\omega \, ; \, \exists x \in S \cap [W]^\omega : x \sqsubset y \}
$$

is nonstationary. For each $W \in \mathcal{W}$ we may hence pick a function

$$
f_W: [W]^{<\omega} \to W
$$

such that

$$
S_W \cap \{x \in [W]^\omega \, ; \, f_W \, \text{``}[x]^{<\omega} \subset x\} = \emptyset.
$$

Let F denote the collection of these f_W . Let $\theta > \lambda$ be regular large enough such that $\mathcal{F}, \mathcal{W}, S, T \in H_{\theta}$ and such that the implications of $CC^*(\lambda)$ hold for this θ . Let \lt be a well-ordering of H_{θ} . Pick a countable $M \prec \langle H_{\theta}; \in, \leq \rangle$ such that $\mathcal{F}, \mathcal{W}, S, T, \lambda \in M$ and

$$
M \cap \lambda \in T.
$$

Let

$$
a := (M \cap \lambda) \cup \omega_1.
$$

Since $CC^*(\lambda)$ holds for θ , there is a countable $M^* \prec H_{\theta}$ and some $W \in [\lambda]^{\omega_1}$ such that $M \sqsubset M^*$, $a \subset W$ and $W \in M^*$. So $f_W \in M^*$. Then by elementarity of M^*

$$
f_W "[W \cap M^*]^{<\omega} \subset W \cap M^*.
$$

By the choice of a and the properties of M^* we have

$$
M\cap \lambda \sqsubset W\cap M^*.
$$

Since we have $M \cap \lambda \in T$ there is some $x \in S$ such that $x \subset M \cap \lambda$. Note that $x \in [W]^\omega$. By the transitivity of \Box ,

$$
x \sqsubset W \cap M^*.
$$

This implies $W \cap M^* \in S_W$. We thus have a contradiction to the choice of f_W . This finishes the proof. \Box

Acknowledgements

Both authors gratefully acknowledge support by DFG grant no. SCHI 484/3-1. This article contains material from the first author's thesis.

References

- [1] D. Asperó and P. D. Welch, Bounded Martin's maximum, weak Erdős cardinals, and ψ_{AC} , J. Symbolic Logic 67 (2002), no. 3, 1141–1152.
- [2] B. Claverie and R. Schindler, Increasing u² by a stationary set preserving forcing, J. Symbolic Logic 74 (2009), no. 1, 187–200.
- [3] M. Foreman, M. Magidor, and S. Shelah, Martin's maximum, saturated ideals, and nonregular ultrafilters. I, Ann. of Math. (2) 127 (1988), no. 1, 1–47.
- [4] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin (2003), ISBN 3-540-44085-2.
- [5] R. Ketchersid, P. Larson, and J. Zapletal, *Increasing* δ_2^1 and *Namba-style forcing*, J. Symbolic Logic 72 (2007), no. 4, 1372–1378.
- [6] R. Schindler, Semi-proper forcing, remarkable cardinals, and bounded Martin's maximum, MLQ Math. Log. Q. 50 (2004), no. 6, 527–532.
- [7] ———, Bounded Martin's maximum and strong cardinals, in Set theory, Trends Math., 401–406, Birkhäuser, Basel (2006).
- [8] S. Shelah, Proper and improper forcing, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, second edition (1998), ISBN 3-540-51700-6.
- [9] S. Todorčević, Conjectures of Rado and Chang and cardinal arithmetic, in Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), Vol. 411 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 385–398, Kluwer Acad. Publ., Dordrecht (1993).
- [10] W. H. Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal, Vol. 1 of de Gruyter Series in Logic and its Applications, Walter de Gruyter & Co., Berlin (1999), ISBN 3-11-015708-X.
- [11] J. Zapletal, *private communication*.

INSTITUT FÜR MATHEMATISCHE LOGIK UND GRUNDLAGENFORSCHUNG, UNIVERSITÄT MÜNSTER, EINSTEINSTR. 62, 48149 MÜNSTER, GERMANY

E-mail address: doebler@uni-muenster.de, rds@uni-muenster.de