Π_2 CONSEQUENCES OF BMM + NS_{ω_1} IS PRECIPITOUS AND THE SEMIPROPERNESS OF STATIONARY SET PRESERVING FORCINGS

PHILIPP DOEBLER AND RALF SCHINDLER

ABSTRACT. We investigate which Π_2 sentences (over H_{ω_2}) that are consequences of MM also follow from BMM + NS $_{\omega_1}$ is precipitous. It turns out that admissible club guessing (acg), $\underline{\delta}_2^1 = \omega_2$, the club bounding principle (CBP), and ψ_{AC} as well as ϕ_{AC} follow from this weaker theory. This was known for $\underline{\delta}_2^1 = \omega_2$ and ψ_{AC} but not for ϕ_{AC} and acg. Additionally we show that if for all regular $\theta \geq \omega_2$ there is a semiproper partial ordering that adds a generic iteration of length ω_1 with last model H_{θ} , then all stationary set preserving forcings are semiproper.

1. Introduction

By NS_{ω_1} we denote the nonstationary ideal on ω_1 . A V-generic G for the forcing $(\mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1}, \subset)$ is an ultrafilter on V that extends the club filter. Hence we can form the ultrapower $j: V \to \mathsf{Ult}(V,G)$ in V[G]. We will always assume the well-founded part of such an ultrapower to be transitive. Clearly j has critical point ω_1 . If every condition $S \in \mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1}$ forces that $\mathsf{Ult}(V,G)$ is well-founded, then we call NS_{ω_1} precipitous. Since the precipitousness of an ideal can be recast as a first order statment, the model $\mathsf{Ult}(V,G)$ has a precipitous nonstationary ideal if V has one. One can now pick a $\mathsf{Ult}(V,G)$ -generic for $(\mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1}, \subset)^{\mathsf{Ult}(V,G)}$ and form another ultrapower. This leads to the notion of generic iterations.

Definition 1.1 Let M be a transitive model of $\mathsf{ZFC}^* + ``\omega_1 \text{ exists"}$ and let $I \subseteq \mathcal{P}(\omega_1^M)$ be such that $\langle M; \in, I \rangle \models ``I \text{ is a uniform and normal ideal on } \omega_1^M."$ Let $\gamma \leq \omega_1$. Then

$$\langle \langle M_i, \pi_{i,i}, I_i, \kappa_i; i < j < \gamma \rangle, \langle G_i; i < \gamma \rangle \rangle \in V$$

is called a putative generic iteration of $\langle M; \in, I \rangle$ (of length $\gamma + 1$) iff the following hold true

- (1) $M_0 = M$ and $I_0 = I$.
- (2) For all $i \leq j \leq \gamma$, $\pi_{i,j} : \langle M_i; \in, I_i \rangle \to \langle M_j; \in, I_j \rangle$ is elementary, $I_i = \pi_{0,i}(I)$, and $\kappa_i = \pi_{0,i}(\omega_1^M) = \omega_1^{M_i}$.
- (3) For all $i < \gamma$, M_i is transitive and G_i is $(\mathcal{P}(\kappa_i) \setminus I_i, \subset)$ -generic over M_i .
- (4) For all $i + 1 \leq \gamma$, $M_{i+1} = \text{Ult}(M_i; G_i)$ and $\pi_{i,i+1}$ is the associated ultrapower map.
- (5) $\pi_{i,k} \circ \pi_{i,j} = \pi_{i,k}$ for $i \leq j \leq \gamma$.
- (6) If $\lambda \leq \gamma$ is a limit ordinal, then $\langle M_{\lambda}, \pi_{i,\lambda}, i < \lambda \rangle$ is the direct limit of $\langle M_i, \pi_{i,j}, i \leq j < \lambda \rangle$.

Received by the editors February 16, 2009.

We call

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \gamma \rangle, \langle G_i; i < \gamma \rangle \rangle$$

a generic iteration of $\langle M; \in, I \rangle$ (of length $\gamma + 1$) iff it is a putative generic iteration of $\langle M; \in, I \rangle$ of length $\gamma + 1$ and M_{γ} is transitive. $\langle M; \in, I \rangle$ is generically $\gamma + 1$ iterable iff every putative generic iteration of $\langle M; \in, I \rangle$ of length $\gamma + 1$ is an iteration.

The theory ZFC^* is defined in [10, 3.1]. Notice that we want (putative) iterations of a given model $\langle M; \in, I \rangle$ to exist in V, which amounts to requiring that the relevant generics G_i may be found in V.

In [2] the notion of forcing $\mathbb{P}(\theta, \mathsf{NS}_{\omega_1})$ was defined for regular $\theta \geq \omega_2$. Granted the precipitousness of nonstationary ideal NS_{ω_1} the forcing is nonempty and preserves stationary subsets of ω_1 . Forcing with $\mathbb{P}(\theta, \mathsf{NS}_{\omega_1})$ adds a generic iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

such that all M_i with countable index are countable and the last model M_{ω_1} equals H_{θ} of V. Here I_i is M_i 's nonstationary ideal and the $\kappa_i = \omega_1^{M_i}$ are the critical points of the generic ultrapowers $\pi_{i,i+1}: M_i \to M_{i+1} \simeq \mathrm{Ult}(M_i, G_i)$. It is also possible to produce iterations as above with generically iterable M_0 . This fact is used in [2] to show that $\mathrm{BMM} + \mathrm{NS}_{\omega_1}$ is precipitous implies $\underline{\delta}_2^1 = \omega_2$. Note that $\underline{\delta}_2^1 = \omega_2$ is a Π_2 statement in H_{ω_2} . In this paper we use generic iterations as above to analyse which Π_2 sentences in H_{ω_2} that are consequences of $\mathrm{ZFC} + \mathrm{MM}$ are also consequences of the weaker theory $\mathrm{ZFC} + \mathrm{BMM} + \mathrm{NS}_{\omega_1}$ is precipitous. Note that MM implies that NS_{ω_1} is ω_2 -saturated [3] but by [10, 10.103, 10.99] $\mathrm{BMM} + \mathrm{NS}_{\omega_1}$ is precipitous does not 1. We consider two Π_2 statements in H_{ω_2} . Both are known to hold in H_{ω_2} if MM holds.

Definition 1.2

(1) We call the following principle admissible club guessing (acg). For all clubs $C \subseteq \omega_1$ there exists a real x such that

$$A_x := \{ \alpha < \omega_1 ; L_\alpha[x] \text{ is admissible} \} \subset C.$$

(2) Let $S \subset \omega_1$. Then we set

$$\tilde{S} := \{ \alpha < \omega_2 ; \omega_1 \leq \alpha \wedge \mathbf{1}_{\mathbb{R}} \Vdash \check{\alpha} \in j(\check{S}) \},$$

where $\mathbb{B} = \operatorname{ro}(\mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1})$ and j is a name for the corresponding generic elementary embedding $V \to (M, E) \subset V^{\mathbb{B}}$. Note that $\alpha \in \tilde{S}$ if and only if for all (one) canonical function(s) f_{α} for α , there is a club C such that if $\beta \in C$ then $f_{\alpha}(\beta) \in S$.

Let $\vec{S} = \langle S_i; i \in \omega \rangle$, $\vec{T} = \langle T_i; i \in \omega \rangle$ be sequences of pairwise disjoint subsets of ω_1 , such that all S_i are stationary and

$$\omega_1 = \bigcup \{T_i \, ; \, i \in \omega\}.$$

 $\varphi_{AC}(\vec{S},\vec{T})$ is the conjunction of the following two statements:

¹In the situation of [10, 10.103] one considers a ${}^2\mathbb{P}_{\text{max}}$ extension; there NS_{ω_1} is not saturated but one can check that it is precipitous using the ${}^2\mathbb{P}_{\text{max}}$ analysis in [10, 6.14].

- (a) There is an ω_1 sequence of distinct reals.²
- (b) There is $\gamma < \omega_2$ and a continuous increasing function $F : \omega_1 \to \gamma$ with range cofinal in γ such that for all $i \in \omega$

$$F$$
 " $T_i \subset \tilde{S}_i$.

 $\varphi_{AC}(\vec{S}, \vec{T})$ is clearly $\Sigma_1(\{\vec{S}, \vec{T}\})$ in $\langle H_{\omega_2}; \in \rangle$. We set

$$\phi_{AC} :\equiv \forall \vec{S} \forall \vec{T} \varphi_{AC}(\vec{S}, \vec{T}).$$

Note that ϕ_{AC} is equivalent to a Π_2 statement in $\langle H_{\omega_2}; \in \rangle$.

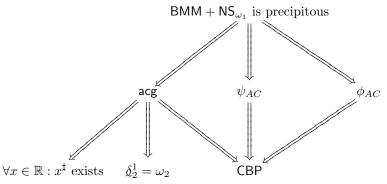
Remark 1.3 The principle acg was isolated by Woodin. If MM holds, then the universe is closed under the sharp operation (this is already a consequence of BMM). So by [10, 3.17] $\delta_2^1 = \omega_2$ and hence by [10, 3.16, 3.19] acg holds.

The axiom ϕ_{AC} is due to Woodin. By [10, 5.9] MM implies ϕ_{AC} . Note that by an observation of Larson MM(c) already suffices, see [10, p.200].

We now state our results.

Theorem 1.4 If BMM holds and additionally NS_{ω_1} is precipitous, then acg and ϕ_{AC} hold.

We will prove the above theorem using (a variant of) $\mathbb{P}(\theta, \mathsf{NS}_{\omega_1})$. The technology developed to show ϕ_{AC} can also be used to yield ψ_{AC} . We sketch such a construction only since Woodin has shown that $\mathsf{BMM} + \mathsf{NS}_{\omega_1}$ is precipitous implies ψ_{AC} using more straightforward methods, see [10, 10.95]. The following diagram illustrates the logical structure of the various statements:



Here CBP is the club bounding principle, i.e. the statement that every function $f: \omega_1 \to \omega_1$ is bounded by a canonical function for some ordinal $< \omega_2$ on a club. The implication from ψ_{AC} to CBP is due to Aspero and Welch, see [1]. The implication from ϕ_{AC} to CBP follows easily from the next lemma. All implications from acg are due to Woodin, see [10, (proof of) 3.19].

Lemma 1.5 (Folklore?) The following are equivalent:

 $^{^2\}mathrm{We}$ are working in models of ZFC so this will trivially hold. It is more interesting if working in models of ZF + DC.

- (1) CBP
- (2) For every club $C \subset \omega_1$ there is some $\alpha \in \tilde{C}$ such that $\omega_1 < \alpha$.

Note that \tilde{C} contains ω_1 if and only if C is club.

Proof. We assume CBP. Let $C \subset \omega_1$ be club. Inductively we construct a sequence $\langle f_i; i < \omega \rangle$ and a sequence $\langle \alpha_i; i < \omega \rangle$ of ordinals $< \omega_2$ such that $\operatorname{ran}(f_i) \subset C$ and such that there is a club D_i such that $f_i(\xi) < f_{\alpha_i}(\xi) < f_{i+1}(\xi)$ for all $\xi \in D_i$ where f_{α_i} is a canonical function for α_i . Set $f_0(\xi) = \min(C \setminus (\xi+1))$ for $\xi < \omega_1$. Then by CBP there is some $\alpha_0 < \omega_2$, a canonical function f_{α_0} for α_0 and a club D_0 such that $f_{\alpha_0}(\xi) > f_0(\xi)$ for $\xi \in D_0$. In the induction step set $f_{i+1}(\xi) = \min(C \setminus (f_{\alpha_i}(\xi) + 1))$ for $\xi < \omega_1$. Note that by the choice of f_0 every g_i is $g_i > g_i$. Set $g_i > g_i$. Then for all $g_i \in D$

$$\sup_{i<\omega} f_i(\xi) = \sup_{i<\omega} f_{\alpha_i}(\xi) \in C,$$

since $\operatorname{ran}(f_i) \subset C$ by construction. It is easy to see that $f: \omega_1 \to \omega_1$; $f(\xi) := \sup_{i < \omega} f_{\alpha_i}(\xi)$ is a canonical function for $\alpha := \sup_{i < \omega} \alpha_i$. Hence $f(\xi) \in C$ for all $\xi \in D$ which instantly yields $\alpha \in \tilde{C}$.

It remains to show the converse; let $f: \omega_1 \to \omega_1$ be a function and let $C:=\{\beta < \omega_1; f^{*}\beta \subset \beta\}$. By the hypothesis there is an $\alpha > \omega_1$ such that $\alpha \in \tilde{C}$. Unraveling the definition of \tilde{C} yields a club D and a canonical function $f_\alpha: \omega_1 \to \omega_1$ for α such that $f_\alpha(\beta) \in C$ for all $\beta \in D$. Since $\alpha > \omega_1$ the set of points where $\beta \geq f_\alpha(\beta)$ is nonstationary. Hence we can assume without loss of generality that $f_\alpha(\beta) > \beta$ for $\beta < \omega_1$. If $\beta \in D$, then $f_\alpha(\beta) \in C$. Hence $f^*f_\alpha(\beta) \subset f_\alpha(\beta) > \beta$ for $\beta \in D$. So especially $f(\beta) < f_\alpha(\beta)$ for all $\beta \in D$.

The second part of this paper deals with the semiproperness of $\mathbb{P}(\theta, \mathsf{NS}_{\omega_1})$ for all regular $\theta \geq \omega_2$ (or more general the semiproperness of any class of forcings that adds generic iterations like above). We will show:

Theorem 1.6 The following are equivalent:

(1) For arbitrarily large $\theta \geq \omega_2$ there is a semiproper partial order \mathbb{P} that adds a generic iteration

$$\langle\langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle\rangle.$$

such that $H_{\theta} \subset M_{\omega_1}$ and all M_i are countable.

(2) All stationary set preserving forcings are semiproper.

2. The principle acg

In this section, we shall clean up [2] by showing the following.

Lemma 2.1 BMM + NS_{ω_1} is precipitous \implies acg.

Proof. Fix some club C. We show that admissible club guessing holds under BMM if the nonstationary ideal is precipitous. The forcing $\mathbb{P}'(\omega_2, \mathsf{NS}_{\omega_1})$ from [2] adds a

countable generically iterable M_0 generically iterating in ω_1^V many steps to $\langle (H_{\omega_2}^V)^{\sharp}, \in$, $\mathsf{NS}_{\omega_1} \rangle^3$, i.e. an iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle.$$

Note that $(H_{\omega_2}^V)^{\sharp}$ exists because BMM holds, see [6] or [7]. For brevity we write π_{α} instead of π_{α,ω_1} . So there is some $\alpha_0 < \omega_1$ such that $C \cap \omega_1^{M_{\alpha_0}} \in M_{\alpha_0}$ and $\pi_{\alpha_0}(C \cap \omega_1^{M_{\alpha_0}}) = C$. We can assume w.l.o.g. by changing some indices that $0 = \alpha_0$. We now show that in the extension by $\mathbb{P}'(\omega_2, \mathsf{NS}_{\omega_1})$ there is a real y such that $A_y \subset C$. Let x be a real that codes M_0 and let y code x^{\sharp} .

Writing $C_{\alpha} = C \cap \omega_1^{M_{\alpha}}$ we have $C_{\alpha} \in M_{\alpha}$ and $\pi_{\alpha}(C_{\alpha}) = C$ for all $\alpha < \omega_1$. By elementarity, C_{α} is unbounded in $\omega_1^{M_{\alpha}}$. So by the closedness of C we have $\omega_1^{M_{\alpha}} \in C$.

Claim 1. If α is an x-indiscernible and

$$\langle \langle M'_i, \pi'_{i,j}, I'_i, \kappa'_i; i \leq j \leq \alpha \rangle, \langle G'_i; i < \alpha \rangle \rangle$$

is an arbitrary generic iteration of $M = M_0'$ then $\alpha = \omega_1^{M_\alpha'}$.

Proof of Claim 1. First note that M is generically $\omega_1 + 1$ iterable, by Theorem 18 of [2]. Fix an x-indiscernible α and an iteration as above. Every x-indiscernible is inacessible in L[x], so for all $\beta < \alpha$

$$L[x]^{\operatorname{Col}(\omega,\beta)} \models \alpha \text{ is inacessible.}$$

Let $g \subset \operatorname{Col}(\omega, \beta)$ be L[x]-generic. Assume w.l.o.g. that g is a real. Then, by [10, 3.15] (compare Lemma 19 in [2]), $M'_{\beta} \cap OR < \omega_1^{L[x,g]}$. Hence $\omega_1^{M'_{\beta}} < \alpha$. This implies $\omega_1^{M'_{\alpha}} \leq \alpha$. So it follows easily that $\omega_1^{M'_{\alpha}} = \alpha$.

If α is x^{\sharp} -admissible, then α is x-indiscernible. Hence by the above claim it follows that each y-admissible $< \omega_1$ is in C. Hence $A_{x^{\sharp}} \subset C$. Since the existence of a real y such that $A_y \subset C$ can be recast as a Σ_1 -statement over H_{ω_2} with C as a parameter, BMM implies that it is already true in V.

3. Obtaining ϕ_{AC}

We modify the forcing $\mathbb{P}'(\omega_2, \mathsf{NS}_{\omega_1})$ from [2] to show an arbitrary instance of ϕ_{AC} in the generic extension. An application of BMM will then give us the desired result.

3.1. Hitting many regular cardinals. The following lemma states that for a generically iterable $\langle M, I \rangle$ there is a generic iteration that realizes many regular cardinals.

³For a set X we denote by X^{\sharp} the least X-mouse. Note that the universe of X^{\sharp} is a model of ZFC^*+ " ω_1 exists." See (the proof of) [2, Theorem 18] for more details on sharps and generic iterability.

Lemma 3.1 (Hitting many regular cardinals lemma) Let $\langle M, I \rangle$ be a countable model of ZFC^*+ " ω_1 exists" and let I be a precipitous ideal on ω_1^M . Assume that $\mathcal{P}(\mathcal{P}(\omega_1))$ exists in M. Let $\theta, \alpha \in M$ be such that

$$M \models (2^{2^{\omega_1}})^+ = \theta = \aleph_{\alpha},$$

furthermore assume that

$$M \models (\aleph_{\alpha+\omega_1})^M \text{ exists.}$$

Let $\theta' := (\aleph_{\alpha + \omega_1})^M$. Then a genericity iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \theta' \rangle, \langle G_i; i < \theta' \rangle \rangle$$

of $M_0 = M$ exists such that for all $\beta < \omega_1^M$

$$\pi_{0,\aleph_{\alpha+\beta+1}^M}(\omega_1^M) = \aleph_{\alpha+\beta+1}^M.$$

Proof. Let $g \subset \operatorname{Col}(\omega, <\theta')$ be generic over M. Since M is countable in V the generic g can be chosen in V. Let $\mathbb{P} := \mathcal{P}(\omega_1^M)^M \setminus I$. For $\beta < \omega_1^M$ we set

$$g_{\alpha+\beta+1} := g \cap \operatorname{Col}(\omega, \langle \aleph_{\alpha+\beta+1}^M).$$

Clearly all the g_i defined in this fashion are generic over M. Recursively we construct a generic iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \theta' \rangle, \langle G_i; i < \theta' \rangle \rangle$$

such that for $\beta < \omega_1^M$ the sequence $\langle G_i; i < \aleph_{\alpha+\beta+1}^M \rangle$ is in $M[g_{\alpha+\beta+1}]$. We inductively maintain the following:

• For $\beta < \omega_1^M$ and $i < \aleph_{\alpha+\beta+1}^M$ the set

$$D_i = \{d \in M_i ; d \subset \pi_{0,i}(\mathbb{P}) \land M_i \models d \text{ is dense in } \pi_{0,i}(\mathbb{P})\}$$

is countable in $M[g_{\alpha+\beta+1}]$.

Set $M_0 = M$, $I_0 = I$ and $\kappa_0 = \omega_1^M$. Assume we are at stage $i < \theta'$ of the construction. Let $\beta < \omega_1^M$ be least such that $i < \aleph_{\alpha+\beta+1}^M$. Inductively we have that D_i is countable in $M[g_{\alpha+\beta+1}]$. Choose a D_i -generic G_i in $M[g_{\alpha+\beta+1}]$. At limit stages form direct limits.

Let us check our inductive hypotheses in the successor case, the limit case being an easy consequence of the fact that the sequence $\langle G_i; i < \aleph_{\alpha+\beta+1}^M \rangle$ is in $M[g_{\alpha+\beta+1}]$. For the successor case note that an appropriate hull of

$$\pi_{0,i+1}$$
 " $(H_{\theta})^{M_0} \cup \{\kappa_j ; j < i+1\}$

is $(H_{\theta_{i+1}})^{M_{i+1}}$ where $\theta_{i+1} = \pi_{0,i+1}(\theta)$. This hull can be calculated in $M[g_{\alpha+\beta+1}]$. Hence $D_{i+1} \subset (H_{\theta_{i+1}})^{M_{i+1}}$ is also countable in $M[g_{\alpha+\beta+1}]$. It is trivial to maintain that the sequence $\langle G_j; j < i+1 \rangle$ is in $M[g_{\alpha+\beta+1}]$. Now we need that $\aleph_{\alpha+\beta+1}^M$ is regular in M. Hence

$$\omega_1^{M[g_{\alpha+\beta+1}]} = \aleph_{\alpha+\beta+1}^M.$$

So an easy calculation shows that for all $\beta < \omega_1^M$

$$\pi_{0,\aleph_{\alpha+\beta+1}^M}(\omega_1^M)=\aleph_{\alpha+\beta+1}^M.$$

Clearly the previous lemma can be generalized further. Since we only need the case above, we refrained to state it in a more general fashion. Note that we have a lot of freedom when choosing the generics of the iteration; the only true restriction is that they come from small generic extensions. We will make use of this later.

We define a set of ordinals relative to a generic iteration. This set will come in handy in the proof of the main result of this section.

Definition 3.2 Let $\langle M, I \rangle$ be a model of $\mathsf{ZFC}^* + "\omega_1 \text{ exists,"}$ such that $M \models I$ is precipitous. Let θ be a cardinal in M. Let

$$\mathcal{J} := \langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \rho \rangle, \langle G_i; i < \rho \rangle \rangle$$

be a generic iteration of $\langle M_0, I_0 \rangle = \langle M, I \rangle$. We inductively define the *important* ordinals of \mathcal{J} relative to θ .

- (1) 0 is an important ordinal.
- (2) If α is an important ordinal then the least ordinal γ such that $\pi_{0,\alpha}(\theta) \leq \gamma = \kappa_{\gamma}$ is the next important ordinal.
- (3) Limits of important ordinals are important.

Remark 3.3 Let $\langle M, I \rangle$ be countable and as in the previous definition and let \mathcal{J} as in the previous defintion and $\rho = \omega_1$. Then clearly the set of important ordinals of \mathcal{J} relative to θ is a club in ω_1 . Also, if α is important, then $\kappa_{\alpha} = \alpha$.

3.2. Forcing ϕ_{AC} . We will show the following theorem:

Theorem 3.4 Let $\aleph_{\alpha} = 2^{2^{\omega_1}}$. Let $\theta := \aleph_{\alpha + \omega_1}$. Let NS_{ω_1} be precipitous and suppose H_{θ}^{\sharp} exists. Let $F : \omega_1 \to \theta$ defined by

$$F(\beta) = \aleph_{\alpha+\beta+1}$$
.

Let $\vec{S} = \langle S_k ; k \in \omega \rangle$, $\vec{T} = \langle T_k ; k \in \omega \rangle$ be sequences of pairwise disjoint subsets of ω_1 , such that all S_k are stationary and $\omega_1 = \bigcup \{T_k ; k \in \omega \}$. There exists a forcing construction $\mathbb{P} = \mathbb{P}'(\theta, \mathsf{NS}_{\omega_1}, \vec{S}, \vec{T})$ that preserves stationary subsets of ω_1 such that if G is \mathbb{P} -generic over V, then in V[G] there is generic iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

such that if $i < \omega_1$, then M_i is countable and $M_{\omega_1} = \langle H_{\theta}^{\sharp}; \in, NS_{\omega_1} \rangle$. In particular, M_0 is generically ω_1 -iterable. Additionally the following holds in V[G] for all $k \in \omega$:

$$F$$
" $T_k \subset \tilde{S}_k$.

We use a similar setup as [2], i.e. we assume:

$$\theta = 2^{<\theta} < 2^{\theta} < \rho = 2^{<\rho}$$

for some cardinal ρ . For reasons of convenience we like to think of $\aleph_{\alpha} = 2^{2^{\omega_1}}$ as \aleph_3 . This eases notation considerably. Note that we can force $\aleph_3 = 2^{2^{\omega_1}}$ with stationary set preserving forcing. If $2^{\omega_1} = \aleph_2$, then the precipitousness of NS_{ω_1} is preserved by forcing with $\mathsf{Col}(\omega_3, 2^{2^{\omega_1}})$, since no new subsets of 2^{ω_1} are added, see [4, 22.19]. Nevertheless the reader will gladly verify that all of the following arguments go through

for an arbitrary \aleph_{α} instead of \aleph_3 . If $\aleph_{\alpha} = \aleph_3$, then clearly $\theta = \aleph_{\omega_1}$.

At this point a remark is in order. In [2] θ is supposed to be regular. Nevertheless it is straightforward to check that if one can add generic iterations like in in [2] with last model H_{η} for arbitrarily large regular η you can also add generic iterations with last model H_{θ} . We can hence work with a singular θ and use the theory of [2].

Fix a well-order \langle of H_{ρ} as in [2]. We now fix $\vec{S} = \langle S_k; k \in \omega \rangle$, $\vec{T} = \langle T_k; k \in \omega \rangle$ sequences of pairwise disjoint subsets of ω_1 , such that all S_k are stationary and $\omega_1 = \bigcup \{T_k ; k \in \omega\}.$ We use

$$\mathcal{H} = \langle H_{\rho}; \in, H_{\theta}^{\sharp}, \mathsf{NS}_{\omega_1}, < \rangle$$

and

$$\mathcal{M} = \langle H_{\theta}^{\sharp}; \in, \mathsf{NS}_{\omega_1}, < \rangle$$

since we are defining a variant of $\mathbb{P}'(\theta, \mathsf{NS}_{\omega_1})$. We will now define our modified forcing construction $\mathbb{P}'(\theta, \mathsf{NS}_{\omega_1}, \vec{S}, \vec{T})$.

Definition 3.5 Conditions p in $\mathbb{P}'(\theta, \mathsf{NS}_{\omega_1}, \vec{S}, \vec{T})$ are triples

$$p = \langle \langle \kappa_i^p; i \in \mathrm{dom}(p) \rangle, \langle \pi_i^p; i \in \mathrm{dom}(p) \rangle, \langle \tau_i^p; i \in \mathrm{dom}_-(p) \rangle \rangle$$

such that the following conditions hold:

- (1) Both dom(p) and $dom_{-}(p)$ are finite, and $dom_{-}(p) \subset dom(p) \subset \omega_{1}$.
- (2) $\langle \kappa_i^p ; i \in \text{dom}(p) \rangle$ is a sequence of countable ordinals.
- (3) $\langle \pi_i^p; i \in \text{dom}(p) \rangle$ is a sequence of finite partial maps from ω_1 to $H_\theta^{\sharp} \cap \mathsf{OR}$.
- (4) $\langle \tau_i^p; i \in \text{dom}_{-}(p) \rangle$ is a sequence of complete \mathcal{H} -types over H_{θ} , i.e., for each $i \in \text{dom}_{-}(p)$ there is some $x \in H_{\rho}$ such that, having φ range over \mathcal{H} -formulae with free variables u, \vec{v} ,

$$\tau_i^p = \{ \langle \ulcorner \varphi \urcorner, \vec{z} \rangle \; ; \; \vec{z} \in H_\theta \land \mathcal{H} \models \varphi[x, \vec{z}] \}.$$

(5) If $i, j \in \text{dom}_{-}(p)$, where i < j, then there is some $n < \omega$ and some $\vec{u} \in \text{ran}(\pi_i^p)$ such that

$$\tau_i^p = \{ (m, \vec{z}) \; ; \; (n, \vec{u} \cap m \cap \vec{z}) \in \tau_j^p \}.$$

(6) In $V^{\text{Col}(\omega,\theta)}$, there is a model which certifies p with respect to \mathcal{M} , i.e. a model \mathfrak{A} such that $H_{\theta}^{\sharp} \in \mathrm{wfp}(\mathfrak{A}), \mathfrak{A} \models \mathsf{ZFC}^{-}$, for all stationary $S \subset \omega_1$ in V we have $\mathfrak{A} \models$ "S is stationary", and inside \mathfrak{A} there is a generic iteration

$$\mathcal{J}^{\mathfrak{A}} := \langle \langle M_i^{\mathfrak{A}}, \pi_{i,j}^{\mathfrak{A}}, I_i^{\mathfrak{A}}, \kappa_i^{\mathfrak{A}}; i \leq j \leq \omega_1 \rangle, \langle G_i^{\mathfrak{A}}; i < \omega_1 \rangle \rangle$$

such that

- (a) if $i < \omega_1$, then $M_i^{\mathfrak{A}}$ is countable,
- (b) if $i < \omega_1$ and if $\xi < \theta$ is definable over \mathcal{M} from parameters in ran $(\pi_{i,\omega_1}^{\mathfrak{A}})$, then $\xi \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$,

- (c) $M_{\omega_1} = \langle H_{\theta}^{\sharp}; \in, \mathsf{NS}_{\omega_1} \rangle$, (d) if $i \in \mathrm{dom}(p)$, then $\kappa_i^p = \kappa_i^{\mathfrak{A}}$ and $\pi_i^p \subset \pi_{i,\omega_1}^{\mathfrak{A}}$, (e) if $i \in \mathrm{dom}_{-}(p)$, then for all $n < \omega$ and for all $\vec{z} \in \mathrm{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$,

$$\exists y \in H_{\theta} \ (n, y \widehat{z}) \in \tau_i^p \Longrightarrow \exists y \in \operatorname{ran}(\pi_{i, \omega_1}^{\mathfrak{A}}) \ (n, y \widehat{z}) \in \tau_i^p.$$

(f) Let $D^{\mathfrak{A}}$ be the set of important ordinals of $\mathcal{J}^{\mathfrak{A}}$ relative to $(\pi_{0,\omega_1}^{\mathfrak{A}})^{-1}(\theta)$. If $\gamma \in D^{\mathfrak{A}}$ then for all $\beta < \gamma = \kappa_{\gamma}^{\mathfrak{A}}$ and all $k \in \omega$.

$$\aleph_{3+\beta+1}^{M_{\gamma}^{\mathfrak{A}}} \in S_k \iff \beta \in T_k.$$

If $p, q \in \mathbb{P}'(\theta, \mathsf{NS}_{\omega_1}, \vec{S}, \vec{T})$, then we write $p \leq q$ iff $\mathrm{dom}(q) \subset \mathrm{dom}(p)$, $\mathrm{dom}_{-}(q) \subset \mathrm{dom}_{-}(p)$, for all $i \in \mathrm{dom}(q)$, $\kappa_i^p = \kappa_i^q$ and $\pi_i^q \subset \pi_i^p$, and for all $i \in \mathrm{dom}_{-}(q)$, $\tau_i^q = \tau_i^p$.

Note that the only difference between the above forcing $\mathbb{P}'(\theta,\mathsf{NS}_{\omega_1})$ in [2] is condition (6)(f) which is not required to hold for elements of $\mathbb{P}'(\theta,\mathsf{NS}_{\omega_1})$. We now show Theorem 3.4. First we show that $\mathbb{P}:=\mathbb{P}'(\theta,\mathsf{NS}_{\omega_1},\vec{S},\vec{T})\neq\emptyset$, i.e. the analog of Lemma 5 in [2]. Then we proceed as in [2] but we will skip all lemmata and theorems that are literally the same and have literally the same proof.

Lemma 3.6 $\mathbb{P} \neq \emptyset$.

Proof. We need to verify, that in $V^{\operatorname{Col}(\omega,\theta)}$ there is a model which certifies the trivial condition with respect to \mathcal{M} . Let g be $\operatorname{Col}(\omega,<\rho)$ -generic over V. We work in V[g] until further notice. So $\langle V;\in,\operatorname{NS}_{\omega_1}\rangle$ is $\rho+1$ iterable, by [10, 3.10, 3.11]. Hence $\langle H_{\theta}^{\sharp};\in,\operatorname{NS}_{\omega_1}\rangle$ is also $\rho+1$ iterable. We prepare a book-keeping device: pick a bijection $g:[\rho]^{<\rho}\to\rho$ and a family $\langle U_{\nu},\nu<\rho\rangle$ of pairwise disjoint stationary subsets of ρ . Now define $f:\rho\to[\rho]^{<\rho}$ by

$$f(i) = u \iff i \in U_{g(u)}.$$

Note that each u is enumerated stationarily often. We recursively construct a generic iteration

$$\mathcal{J} := \langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \rho \rangle, \langle G_i; i < \rho \rangle \rangle$$

of $M_0 = \langle V; \in, \mathsf{NS}_{\omega_1} \rangle$ togethter with a set of local generics g_i . Later the restriction of this iteration to $\langle H_\theta^\sharp; \in, \mathsf{NS}_{\omega_1} \rangle$ will be of interest. For each important ordinal of the iteration a local generic g_i will be picked. Suppose we have already constructed $\mathcal J$ to some $i < \rho$. Note that we can calculate the important ordinals of $\mathcal J$ relative to θ while we construct $\mathcal J$. The following three clauses define the iteration.

- (1) If i is an important ordinal of \mathcal{J} relative to θ , then pick some $g_i \subset \operatorname{Col}(\omega, < \pi_{0,i}(\theta))$ in V[g] that is generic over M_i . Then pick G_i in $M_i[g_i]$ such that if for a (unique) j the set $\pi_{j,i}(f(i))$ is a stationary subset of $\omega_1^{M_i}$ in M_i then $\pi_{j,i}(f(i)) \in G_i$. Note that j is unique because f(i) can only be stationary in M_j if $\sup f(i) = \omega_1^{M_j}$.
- (2) If i is not important and γ is the largest important ordinal below i, then we already have chosen some $g_{\gamma} \subset \operatorname{Col}(\omega, <\pi_{0,\gamma}(\theta))$ in V[g] that is generic over M_{γ} . In the case that $i = \omega_{3+\beta+1}^{M_{\gamma}}$ for some $\beta < \kappa_{\gamma} = \gamma$ we pick some G_i in $M_{\gamma}[g_{\gamma} \cap \operatorname{Col}(\omega, <\omega_{3+\beta+2}^{M_{\gamma}})]$ such that

$$\beta \in \pi_{0,\gamma}(T_k) \iff \pi_{0,i}(S_k) \in G_i.$$

Note that since \vec{T} is a partition of ω_1 , there is a unique k such that $\beta \in \pi_{0,i}(T_k)$.

(3) If the first and second clause do not hold and γ is the largest important ordinal below i, then we already have chosen some $g_{\gamma} \subset \operatorname{Col}(\omega, <\pi_{0,\gamma}(\theta))$ in V[g] that is generic over M_{γ} . In the case that i is not a successor cardinal $<\pi_{0,\gamma}(\theta)$ in M_{γ} there is a least $\beta < \kappa_{\gamma}$ such that $i < \omega_{3+\beta+1}^{M_{\gamma}}$. We pick some arbitrary G_i in $M_{\gamma}[g_{\gamma} \cap \operatorname{Col}(\omega, <\omega_{3+\beta+1}^{M_{\gamma}})]$. Else we pick a completely arbitrary generic.

Fix some important $\gamma > 0$. So \mathcal{J} restricted to $[\gamma, \pi_{0,\gamma}(\theta)]$ is an iteration like in the "Hitting many regular cardinals lemma" 3.1. Hence we know that the iteration is well defined and additionally we have for $\beta < \kappa_{\gamma} = \gamma$ and $i := \aleph_{3+\beta+1}^{M_{\gamma}}$

$$i = \pi_{\gamma,i}(\kappa_{\gamma}) = \kappa_i.$$

By the second clause of the iteration we hence have for i as above and $k \in \omega$:

$$\beta \in \pi_{0,\gamma}(T_k) \iff \pi_{0,i}(S_k) \in G_i \iff \kappa_i \in \pi_{0,i+1}(S_k) \iff i \in \pi_{0,\rho}(S_k).$$

Let D denote the club of important ordinals and let U be a stationary subset of $\omega_1^{M_\rho} = \rho$. Let $j < \rho$ and u be such that $\pi_{j,\rho}(u) = U$. If $i \in D \setminus j$ and f(i) = u, then $\pi_{j,i}(u) \in G_i$. This shows that

$$D \cap U_{g(u)} \setminus j \subset \{i < \rho ; \kappa_i \in U\},\$$

so that in fact U is stationary in V[g].

Hence in $M_{\rho}^{\operatorname{Col}(\omega,\pi_{0,\rho(\theta)})}$ there is a model that certifies the empty condition with respect to $\pi_{0,\rho}(\langle H_{\theta}^{\sharp}; \in, \operatorname{NS}_{\omega_1} \rangle)$. Now we can literally complete our proof by following the last paragraph of the proof Lemma 5 in [2].

We can now literally adopt lemmata 6 through 15 of [2]. So we have, using the notation of [2]:

Lemma 3.7 Let $G \subset \mathbb{P}$ is V-generic. Let $\kappa_i = \kappa_i^p$ for some $p \in G$. Then in V[G]

$$H_{\theta}^{\sharp} \cap \mathsf{OR} = \bigcup \{ \mathrm{ran}(\pi_i) \, ; \, i < \omega_1 \}$$

and

$$\mathcal{J}_G := \langle \langle M_i, \tilde{\pi}_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1^V \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

is a generic iteration of M_0 such that if $i < \omega_1$, then M_i is countable, and $M_{\omega_1} = \langle H_{\theta}^{\sharp}; \in, I \rangle$.

Let D_G denote the important ordinals of \mathcal{J}_G . We can assume without loss of generality that there are $\vec{s}, \vec{t} \in M_0$ such that $\tilde{\pi}_{0,\omega_1}(\langle \vec{s}, \vec{t} \rangle) = \langle \vec{S}, \vec{T} \rangle$.

Lemma 3.8 D_G is club and for all $\gamma \in D_G$ the following holds: if $\beta < \kappa_{\gamma}$ then for all $k \in \omega$

$$\beta \in \pi_{0,\gamma}(t_k) \iff \aleph_{3+\beta+1}^{M_{\gamma}} \in \pi_{0,\omega_1}(s_k),$$

which by the choice of \vec{s} and \vec{t} means

$$\beta \in T_k \iff \aleph_{3+\beta+1}^{M_{\gamma}} \in S_k$$

Proof. That D_G is club is obvious.

Claim 1. $p \Vdash \check{\gamma} \in D_{\dot{G}}$ if and only if for all \mathfrak{A} which certify $p, \gamma \in D^{\mathfrak{A}}$.

Proof of Claim 1. Fix p such that $p \Vdash \check{\gamma} \in D_{\dot{G}}$ and some structure \mathfrak{A} which certifies p. Towards a contradiction suppose $\gamma \notin D^{\mathfrak{A}}$. Then there is some $\gamma' < \gamma, \ \gamma' \in D^{\mathfrak{A}}$ with

$$(\pi^{\mathfrak{A}}_{\gamma',\omega_1})^{-1}(\theta) > \gamma.$$

We can extend p to p' also certified by $\mathfrak A$ such that $\mathrm{dom}(p')$ contains all the relevant points. Then

$$p' \Vdash \check{\gamma} \notin D_{\dot{G}}$$
.

Contradiction! The other direction is easy.

 $\square(\text{Claim }1)$

Now if $\beta \in \pi_{0,\gamma}(t_k)$ and $\gamma \in D_G$ there is some $p \in G$ with $p \Vdash \check{\gamma} \in D_{\dot{G}}$ and $\beta \in (\pi^p_{\gamma})^{-1} \circ \pi^p_0(t_k)$ (Note the following subtlety: π^p_0 is only defined on the ordinals, but using the well ordering < on H^{\sharp}_{θ} we can assume that $\mathrm{dom}(\pi^p_0)$ contains t_k). Let $p' \leq p$ be arbitrary and let \mathfrak{A} certify p'. Then $\aleph^{M^{\mathfrak{A}}}_{3+\beta+1} \in S_k$ by the above claim and the fact that \mathfrak{A} certifies p'. So we may extend p' to p'' making sure

$$p'' \Vdash \aleph_{3+\beta+1}^{M_{\gamma}} \in \tilde{\pi}_{0,\omega_1}(s_k).$$

Hence the set of p'' forcing the desired result is dense below p. The other direction is similar.

We can now literally adopt lemmata 16 and 17 of [2] and their proofs; i.e. it is clear that $\mathbb{P}'(\theta, \mathsf{NS}_{\omega_1}, S, T)$ is stationary set preserving.

To finish the proof of 3.4 we have to show that in V[G] for all $k \in \omega$

$$F$$
" $T_k \subset \tilde{S}_k$.

For this fix $k \in \omega$ and some $\beta \in T_k$. By 3.8 we have for all $\gamma \in D_G \setminus (\beta + 1)$

$$\beta \in T_k \iff \aleph_{3+\beta+1}^{M_\gamma} \in S_k.$$

Lemma 3.9 The function $f: D_G \setminus (\beta + 1) \to \omega_1$

$$\gamma \mapsto \aleph_{3+\beta+1}^{M_{\gamma}}$$

is a canonical function for $\aleph_{3+\beta+1}^V < \omega_2^{V[G]}$ in V[G].

Proof. Let

$$\mathcal{J}_G := \langle \langle M_i, \tilde{\pi}_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1^V \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

denote the iteration that is added by G. Set $\eta:=\aleph_{3+\beta+1}^V$. Fix some bijection $g:\omega_1\to\eta$ in V[G]. Let $\langle X_i\,;\,i\in\omega_1\rangle$ be a continuous elementarty chain of countable submodels of $H^{V[G]}_{\omega_2}$ such that $g,H^V_{\theta}\in X_0$. So clearly $H^V_{\theta}\subset\cup\{X_i\,;\,i\in\omega\}$. So for all $i\in\omega_1$ we have

$$X_i \cap \eta = g$$
" $(X_i \cap \omega_1)$.

Clearly $\langle X_i \cap H_{\theta}^V ; i \in \omega_1 \rangle$ is club in $[H_{\theta}^V]^{\omega}$. Since the set $\{ \operatorname{ran}(\tilde{\pi}_{i,\omega_1}) \cap H_{\theta} ; i \in \omega_1 \}$ is also a club in $[H_{\theta}^V]^{\omega}$ there is a club $C \subset \omega_1$ such that for all $i \in C$

$$X_i \cap \eta = \operatorname{ran}(\tilde{\pi}_{i,\omega_1}) \cap \eta.$$

So for all $i \in C$ we have

$$i = \operatorname{ran}(\tilde{\pi}_{i,\omega_1}) \cap \omega_1 = X_i \cap \omega_1$$

and thus

$$\operatorname{otp}(g``i) = \operatorname{otp}(\operatorname{ran}(\tilde{\pi}_{i,\omega_1}) \cap \eta) = \aleph_{3+\beta+1}^{M_i} = f(i).$$

Hence f is a canonical function.

So the club $D_G \setminus (\beta + 1)$ and f from the previous lemma witness that in V[G]

$$\mathbf{1}_{\mathbb{B}} \Vdash \aleph_{3+\beta+1}^{V} \in j(S_i),$$

where \mathbb{B} is $(\mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1})^{V[G]}$ and j is a name for the generic embedding added by forcing with \mathbb{B} . Hence $\aleph_{3+\beta+1}^V \in \tilde{S}_i$. This finishes the proof of 3.4.

Observe that the single instance of ϕ_{AC} that holds in $V^{\mathbb{P}'(\theta,\mathsf{NS}_{\omega_1},\vec{S},\vec{T})}$ is a Σ_1 statement in H_{ω_2} in the parameters \vec{S} and \vec{T} . Since $\mathbb{P}'(\theta,\mathsf{NS}_{\omega_1},\vec{S},\vec{T})$ preserves stationary subsets an application of BMM yields the following corollary.

Corollary 3.10 If NS_{ω_1} is precipitous+BMM then ϕ_{AC} .

4. Obtaining ψ_{AC}

Definition 4.1 (Woodin) ψ_{AC} : Let $S \subset \omega_1$ and $T \subset \omega_1$ be stationary, costationary sets. Then there exists a canonical function f for some $\eta < \omega_2$ such that for some club $C \subset \omega_1$

$$\{\alpha < \omega_1 ; f(\alpha) \in T\} \cap C = S \cap C.$$

Note the following reformulation of the above definition in terms of generic ultrapowers: let j be a name for the embedding induced by some generic $G \subset \mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1}$, with S, T as above we have

$$\mathbf{1}_{\mathbb{P}(\omega_1)\backslash \mathsf{NS}_{\omega_1}} \Vdash \check{S} \in \dot{G} \iff \eta \in j(T).$$

Woodin has shown:

Theorem 4.2 ([10, 10.95]) If BMM + NS_{ω_1} is precipitous then ψ_{AC} .

With the technology from the previous section on ϕ_{AC} it is possible to give a different proof of 4.2. Since this is very similar to the section on ϕ_{AC} , we shall only state the required results. The proofs are very similar to the ϕ_{AC} case.

Lemma 4.3 (Hitting regular cardinals lemma) Let $\langle M, I \rangle$ be a countable model of ZFC* and let I be a precipitous ideal on ω_1^M . Assume that $\mathcal{P}(\mathcal{P}(\omega_1))$ exists in M. Let $\theta \in M$ be such that

$$M \models \operatorname{Card}(\mathcal{P}(\mathcal{P}(\omega_1)))^+ = \theta,$$

and let $\theta' \geq \theta$ such that θ' is a regular cardinal in M. Then a genericity iteration

$$\langle \langle M_i, \pi_{i,i}, I_i, \kappa_i; i \leq j \leq \theta' \rangle, \langle G_i; i < \theta' \rangle \rangle$$

of
$$M_0 = M$$
 exists in V such that $\pi_{0,\theta'}(\omega_1^M) = \theta'$.

We again modify the forcing $\mathbb{P}'(\omega_2, \mathsf{NS}_{\omega_1})$ to show a weak form of ψ_{AC} in the generic extension. An application of BMM will then give us the desired result.

Theorem 4.4 Let NS_{ω_1} be precipitous and suppose H^\sharp_θ exists, where $\theta=2^{2^{\aleph_1+}}$. For all S,T stationary and costationary there exists a forcing construction $\mathbb{P}=\mathbb{P}'(\theta,\mathsf{NS}_{\omega_1},S,T)$ that preserves stationary subsets, such that if G is \mathbb{P} -generic over V, then in V[G] there is generic iteration

$$\langle\langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle\rangle$$

such that if $i < \omega_1$, then M_i is countable and $M_{\omega_1} = \langle H_{\theta}^{\sharp}; \in, \mathsf{NS}_{\omega_1} \rangle$. In particular, M_0 is generically ω_1 -iterable. Additionally the following holds in V[G]: there is a club $C \subset \omega_1$, such that for all $\alpha \in C$

$$\omega_1^{M_\alpha} \in S \iff \theta_\alpha \in T$$
,

where $\theta_{\alpha} = \pi_{\alpha,\omega_1}^{-1}(\theta)$.

We will now define our modified forcing construction $\mathbb{P} := \mathbb{P}'(\theta, \mathsf{NS}_{\omega_1}, S, T)$.

Definition 4.5 Conditions p in $\mathbb{P}'(\theta, NS_{\omega_1}, S, T)$ are triples

$$p = \langle \langle \kappa_i^p; i \in \text{dom}(p) \rangle, \langle \pi_i^p; i \in \text{dom}(p) \rangle, \langle \tau_i^p; i \in \text{dom}_{-}(p) \rangle \rangle$$

such that the following conditions hold:

- : Conditions i.,ii.,iii.,iv.,v. as in definition 3.5 hold. We replace condition vi. as follows:
- : vi. In $V^{\text{Col}(\omega,\theta)}$, there is a model which certifies p with respect to \mathcal{M} , i.e. a model \mathfrak{A} such that $H_{\theta}^{\sharp} \in \text{wfp}(\mathfrak{A})$, $\mathfrak{A} \models \mathsf{ZFC}^-$, for all stationary S, $\mathfrak{A} \models$ "S is stationary", and inside \mathfrak{A} there is a generic iteration

$$\mathcal{J}^{\mathfrak{A}} := \langle \langle M_i^{\mathfrak{A}}, \pi_{i,j}^{\mathfrak{A}}, I_i^{\mathfrak{A}}, \kappa_i^{\mathfrak{A}}; i \leq j \leq \omega_1 \rangle, \langle G_i^{\mathfrak{A}}; i < \omega_1 \rangle \rangle$$

such that conditions (a),(b),(c),(d) and (e) as in definition 3.5 hold. We replace (f).

: (f) Let $D^{\mathfrak{A}}$ be the club of *limits* of important ordinals of $\mathcal{J}^{\mathfrak{A}}$ relative to $\pi_{0,\omega_1}^{\mathfrak{A}-1}(\theta)$. Let $\alpha \in D^{\mathfrak{A}}$. Let β be the next important ordinal above α . Then

$$\omega_1^{M_{\alpha}^{\mathfrak{A}}} \in S \iff \pi_{\alpha,\omega_1}^{\mathfrak{A}-1}(\theta) = \omega_1^{M_{\beta}^{\mathfrak{A}}} \in T.$$

If p, q are conditions, then we write $p \leq q$ iff $p \leq_{\mathbb{P}'(\theta, \mathsf{NS}_{\omega_1})} q$.

Applying the "Hitting regular cardinals lemma" 4.3 one can show that certifying structures exist. Hence one has:

Lemma 4.6
$$\mathbb{P} \neq \emptyset$$
.

We can now literally adopt lemmata 6 through 15 of [2]. So we have, using the definitions for π_i , M_i , I_i , κ_i , G_i , $\tilde{\pi}_{i,j}$, of [2]:

Lemma 4.7 Let $G \subset \mathbb{P}$ is V-generic. Let $\kappa_i = \kappa_i^p$ for some $p \in G$. Then

$$H_{\theta}^{\sharp} \cap \mathsf{OR} = \bigcup \{ \mathrm{ran}(\pi_i) \; ; \; i < \omega_1 \}$$

and

$$\mathcal{J}_G := \langle \langle M_i, \tilde{\pi}_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1^V \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

is a generic iteration of M_0 such that if $i < \omega_1$, then M_i is countable, and $M_{\omega_1} = \langle H_{\theta}^{\sharp}; \in, I \rangle$.

We set

$$\theta_i := \tilde{\pi}_{i,\omega_1}^{-1}(\theta),$$

an we let D_G denote the club of limits of important ordinal of \mathcal{J} relative to θ_0 . A density argument shows:

Lemma 4.8 D_G is club and for all $i \in D_G$

$$\omega_1^{M_i} \in S \iff \theta_i \in T.$$

Since the sequence $\langle \theta_i ; i \in D_G \rangle$ is a canonical function for θ in the forcing extension, we have

$$\mathbf{1}_{\mathbb{P}(\omega_1)\backslash \mathsf{NS}_{\omega_1}} \Vdash \check{S} \in \dot{G} \iff \theta \in \check{j}(T).$$

We can now literally adopt lemmata 16 and 17 of [2] and their proofs; i.e. it is clear that $\mathbb{P}'(\theta,\mathsf{NS}_{\omega_1},S,T)$ is stationary set preserving. Hence theorem 4.4 follows. The referee observed that it is possible to formulate an ad hoc combinatorial principle that implies ϕ_{AC} as well as ψ_{AC} . Such a principle could then be shown to follow from BMM and the precipitousness of NS_{ω_1} by the methods for ϕ_{AC} and ψ_{AC} .

5. The semiproperness of $\mathbb{P}(\mathsf{NS}_{\omega_1}, \theta)$

In [2] it was shown that $\mathbb{P}(\mathsf{NS}_{\omega_1}, \theta)$ preserves stationary subsets of ω_1 provided that NS_{ω_1} is precipitous. Since it is consistent relative to large cardinals that all stationary set preserving forcings are semiproper, the forcing $\mathbb{P}(\mathsf{NS}_{\omega_1}, \theta)$ can clearly be semiproper. We show that the semiproperness of the forcings $\mathbb{P}(\mathsf{NS}_{\omega_1}, \theta)$ implies a generalization of Chang's Conjecture which in turn implies the semiproperness of all stationary set preserving forcings.

Recall the definition of semiproperness.

Definition 5.1 A notion of forcing \mathbb{P} is semiproper if for every sufficiently large λ , every well-ordering < of H_{λ} and every countable elementary submodel $X \prec \langle H_{\lambda}; \in, < \rangle$ the following holds:

$$\forall p \in X \cap \mathbb{P} \ \exists q$$

where q is (X, \mathbb{P}) -semigeneric if for every name $\dot{\alpha} \in X$ for a countable ordinal

$$q \Vdash \exists \beta \in X : \dot{\alpha} = \check{\beta}.$$

Definition 5.2 ([8, XIII. 1.5])

- Let x, y be countable. We write $x \subseteq y$ if $x \cap \omega_1 = y \cap \omega_1$ and $x \subseteq y$.
- A set $S \subset [W]^{\omega}$ is semistationary in $[W]^{\omega}$ if $\{y \in [W]^{\omega} ; \exists x \in S : x \sqsubset y\}$ is stationary in $[W]^{\omega}$.
- Let $\lambda \geq \omega_2$. We denote by $SSR([\lambda]^{\omega})$ the following principle: For every S semistationary in $[\lambda]^{\omega}$ there is $W \subset \lambda$, $Card(W) = \omega_1 \subset W$ and $S \cap [W]^{\omega}$ is semistationary in $[W]^{\omega}$.
- If $SSR([\lambda]^{\omega})$ holds for all cardinals $\lambda \geq \omega_2$ then we will say that *Semistationary Reflection* (SSR) holds.

Note that [8] has a more general notation for the above reflection principles. In [8] the principle $SSR([\lambda]^{\omega})$ is called $Rss(\aleph_2, \lambda)$ and SSR is called $Rss(\aleph_2)$.

Lemma 5.3 ([8, XIII.1.7(3)]) Semistationary Reflection implies that all stationary set preserving forcings are semiproper.

Definition 5.4 ([3]) (\dagger) is an abbreviation for: every stationary set preserving forcing is semiproper.

Foreman, Magidor and Shelah have shown:

Lemma 5.5 ([3, Theorem 26]) If (†) holds, then NS_{ω_1} is precipitous.

We will consider a generalization of Chang's Conjecture that we call CC**.

Definition 5.6 Let $\lambda \geq \omega_2$. $\operatorname{CC}^*(\lambda)$ is the following axiom: There are arbitrarily large regular cardinals $\theta > \lambda$ such that for all well-orderings < of H_{θ} and for all $a \in [\lambda]^{\omega_1}$ and for all countable $X \prec \langle H_{\theta}; \in, < \rangle$ there is a countable $Y \prec \langle H_{\theta}; \in, < \rangle$ such that $X \sqsubset Y$ and there is some $b \in Y \cap [\lambda]^{\omega_1}$ such that $a \subset b$. CC^{**} is $\operatorname{CC}^*(\lambda)$ for all cardinals $\lambda \geq \omega_2$.

Note that $CC^*(\omega_2)$ implies Todorčević's CC^* ; in the case of CC^* one only requires for an X as above that there is $Y \prec \langle H_\theta; \in, < \rangle$ such that $X \sqsubset Y$ and $X \cap \omega_2 \neq Y \cap \omega_2$, see [9]. Note that $CC^*(\omega_2)$ (and also CC^*) implies the usual Chang Conjecture by building a continuous chain of countable elementary submodels of length ω_1 ; at each successor stage apply CC^{**} . So the countable ordinals of the last model of the chain are the same as the first model's.

The next theorem answers a question of Todorčević who asked the second author under which circumstances $\mathbb{P}(\mathsf{NS}_{\omega_1}, \theta)$ is semiproper.

The authors would like to thank Daisuke Ikegami for communicating valuable results about the relationship of CC**, SSR and (†).

Theorem 5.7 The following are equivalent:

- (1) NS_{ω_1} is precipitous and for all regular $\theta \geq \omega_2$ the partial ordering $\mathbb{P}(\mathsf{NS}_{\omega_1}, \theta)$ is semiproper.
- (2) For arbitrarily large $\theta \geq \omega_2$ there is a semiproper partial order \mathbb{P} that adds a generic iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle.$$

such that $H_{\theta} \subset M_{\omega_1}$ and all M_i are countable.

- (3) CC^{**}
- (4) SSR
- $(5) (\dagger)$

Before we prove the above theorem note that the Namba-like forcing in [5] is stationary set preserving (cf. [11]) and hence $\mathbb{P}(NS_{\omega_1}, \theta)$ is not the only example witnessing the consistency of 2.

Proof. (1) \implies (2) is trivial and (4) \implies (5) is Lemma 5.3.

(5) \Longrightarrow (1) is clear since by 5.5, NS_{ω_1} is precipitous in this case and so by [2] the forcing $\mathbb{P}(NS_{\omega_1}, \theta)$ exists for all regular $\theta \leq \omega_2$ and preserves stationary subsets of ω_1 . It remains to show (2) \Longrightarrow (3) and (3) \Longrightarrow (4) For the first implication we assume that CC^{**} does not hold and work toward a contradiction. So there is a least cardinal $\lambda_0 \geq \aleph_2$ for which CC^{**} fails. Since (2) holds there is a least $\theta_0 > \lambda_0$ such that a semiproper \mathbb{P} exists that adds an iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

such that $H_{\theta_0} \subset M_{\omega_1}$ and all M_i are countable. Let $\theta > \theta_0$ large enough so that a name for an iteration as above and $\mathcal{P}(\mathbb{P})$ are both in H_{θ} . Let < be some well-ordering of H_{θ} . Now fix some arbitrary $X \prec \langle H_{\theta}; \in, < \rangle$ and some $a \in [\lambda_0]^{\omega_1}$. Our aim is now to construct a $Y \prec \langle H_{\theta}; \in, < \rangle$ like in CC**. For this we first show that it suffices to do so in a generic extension:

Claim 1. If there is some generic extension of V that contains some $Y \prec \langle H_{\theta}; \in, < \rangle$ such that $X \sqsubset Y$ and there is some $b \in Y \cap [\lambda_0]^{\omega_1} \cap V$ such that $a \subset b$ then there is already some $Z \in V$ with $Z \prec \langle H_{\theta}; \in, < \rangle$, $X \sqsubset Z$ and $b \in Z$.

Proof of Claim 1. If Y is in some generic extension W of V, then by $b \in V$ there is a tree $T \in V$ searching for a countable $Z \prec \langle H_{\theta}; \in, < \rangle$ such that $b \in Z$ and $X \sqsubset Z$. So T has a branch in W, this is clearly witnessed by Y. By the absoluteness of wellfoundedness we have a branch through T in V and hence there is some countable $Z \prec \langle H_{\theta}; \in, < \rangle$ with $X \sqsubset Z$ and $b \in Z$ in V. \Box (Claim 1)

By the minimality of λ_0 and θ_0 some semiproper forcing and some name for an iteration as above exist in X. Let us call this forcing \mathbb{P} again. Let $G \subset \mathbb{P}$ be generic over V.

Claim 2. $X[G] \prec H_{\theta}[G]$.

This claim is part of the folklore. For the readers convenience we give a *Proof of Claim 2*. An induction along the first order formulae will yield the desired result: let ϕ be a formula and let $\sigma \in X$ denote some name such that

$$H_{\theta}[G] \models \exists y \phi(y, \sigma^G).$$

Then by the fullness of the forcing names we have

$$H_{\theta} \models \exists \tau \forall p \in \mathbb{P}(p \Vdash \exists y \phi(y, \sigma) \implies p \Vdash \phi(\tau, \sigma)).$$

So by elementarity such a τ exists in X. By the inductive hypothesis we have

$$H_{\theta}[G] \models \phi(\tau^G, \sigma^G) \iff X[G] \models \phi(\tau^G, \sigma^G).$$

 $\square(\text{Claim } 2)$

By our hypothesis we can force the existence of a generic iteration

$$\dot{\mathcal{J}}^G = \langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle.$$

with $M_{\omega_1} \supset H_{\theta}$. So by the regularity of θ we have $a \in M_{\omega_1}$. Note that X[G] can calculate M_0 .

Claim 3. Let $\beta < \alpha \leq \omega_1$. All elements of M_{α} are of the form $\pi_{\beta,\alpha}(f)(\vec{\xi})$ for some $f: \kappa_{\beta}^n \to M_{\beta}, f \in M_{\beta}$ and ordinals $\xi_1, ..., \xi_n < \omega_1^{M_{\alpha}}$.

This claim is also part of the folklore. Nevertheless we give a proof for the readers convenience.

Proof of Claim 3. Fix $\beta < \omega_1$. We show this by induction on α . Let $\alpha = \gamma + 1$. Then M_{α} is isomorph to $\mathrm{Ult}(M_{\gamma}, G_{\gamma})$. Hence every element of M_{α} has the form $\pi_{\gamma,\alpha}(f)(\kappa_{\gamma})$ for some $f: \kappa_{\gamma} \to M_{\gamma}, \ f \in M_{\gamma}$. By the inductive hypothesis f is of the form $\pi_{\beta,\gamma}(g)(\vec{\xi})$ for some $g: \kappa_{\beta}^n \to M_{\beta}, g \in M_{\beta}$ and $\vec{\xi} \in \kappa_{\gamma}^n$. Then

$$\pi_{\gamma,\alpha}(f)(\kappa_{\gamma}) = \pi_{\gamma,\alpha}(\pi_{\beta,\gamma}(g)(\vec{\xi}))(\kappa_{\gamma}) = \pi_{\beta,\alpha}(g)(\vec{\xi})(\kappa_{\gamma}),$$

since the critical point of $\pi_{\gamma,\alpha}$ is κ_{γ} .

The case $\operatorname{Lim}(\alpha)$ simply uses the fact that M_{α} is the direct limit of all M_{γ} for $\gamma < \alpha$: if $x \in M_{\alpha}$, then $x = \pi_{\gamma,\alpha}(\bar{x})$ for some $\gamma < \alpha$ and some $\bar{x} \in M_{\gamma}$. Without loss of generality we may assume $\beta < \gamma$. Then \bar{x} is of the form $\pi_{\beta,\gamma}(g)(\vec{\xi})$ for some $g : \kappa_{\beta}^n \to M_{\beta}, g \in M_{\beta}$ and ordinals $\vec{\xi} \in \kappa_{\gamma}^n$. Then

$$x = \pi_{\gamma,\alpha}(\bar{x}) = \pi_{\gamma,\alpha}(\pi_{\beta,\gamma}(g)(\vec{\xi})) = \pi_{\beta,\alpha}(g)(\vec{\xi}).$$

$$\Box(\text{Claim 3})$$

By setting $\beta=0$ and $\alpha=\omega_1$ in the above claim, we have that there is some $f\in M_0, \ f:\kappa_0^n\to M_0$ and $\vec{\xi}=\xi_1,...,\xi_n<\omega_1$ such that

$$a = \pi_{0,\omega_1}(f)(\vec{\xi}).$$

This f is in X[G]. We set

$$b:=\bigcup\{\pi_{0,\omega_1}(f)(\vec{\alpha})\,;\,\vec{\alpha}\in\omega_1^n\wedge\pi_{0,\omega_1}(f)(\vec{\alpha})\in([H_\theta]^{\omega_1})^V\}.$$

Clearly $a \subset b$ and $\operatorname{Card}(b) = \omega_1$. Since the parameters $\pi_{0,\omega_1}(f)$, $[H_{\theta}]^{\omega_1}$ used in the definition of b are in V we have that $b \in V$. Also $b \in X[G]$. By the semiproperness of $\mathbb{P}[X \subset X[G]]$. So X[G] witnesses that in some generic extension of V there is some Y as desired. This suffices to show by claim 1.

We now show that 3. \implies 4. This implication is a slight generalization of [9, Lemma 6]. Fix an ordinal $\lambda \geq \omega_2$ and a semistationary $S \subset [\lambda]^{\omega}$. We set

$$\mathcal{W} := \{ W \subset \lambda \, ; \, \operatorname{Card}(W) = \omega_1 \subset W \}$$

and

$$T := \{ y \in [\lambda]^{\omega} \; ; \; \exists x \in S : x \sqsubset y \}.$$

By the very definition of semistationarity T is stationary. Let us assume that SSR does not hold and work toward a contradiction. For all $W \in \mathcal{W}$

$$S_W := \{ y \in [W]^\omega \; ; \; \exists x \in S \cap [W]^\omega : x \sqsubset y \}$$

is nonstationary. For each $W \in \mathcal{W}$ we may hence pick a function

$$f_W:[W]^{<\omega}\to W$$

such that

$$S_W \cap \{x \in [W]^\omega ; f_W "[x]^{<\omega} \subset x\} = \emptyset.$$

Let \mathcal{F} denote the collection of these f_W . Let $\theta > \lambda$ be regular large enough such that $\mathcal{F}, \mathcal{W}, S, T \in H_{\theta}$ and such that the implications of $\mathrm{CC}^*(\lambda)$ hold for this θ . Let < be a well-ordering of H_{θ} . Pick a countable $M \prec \langle H_{\theta}; \in, < \rangle$ such that $\mathcal{F}, \mathcal{W}, S, T, \lambda \in M$ and

$$M \cap \lambda \in T$$
.

Let

$$a:=(M\cap\lambda)\cup\omega_1.$$

Since $CC^*(\lambda)$ holds for θ , there is a countable $M^* \prec H_{\theta}$ and some $W \in [\lambda]^{\omega_1}$ such that $M \sqsubset M^*$, $a \subset W$ and $W \in M^*$. So $f_W \in M^*$. Then by elementarity of M^*

$$f_W$$
 " $[W \cap M^*]^{<\omega} \subset W \cap M^*$.

By the choice of a and the properties of M^* we have

$$M \cap \lambda \sqsubset W \cap M^*$$
.

Since we have $M \cap \lambda \in T$ there is some $x \in S$ such that $x \subset M \cap \lambda$. Note that $x \in [W]^{\omega}$. By the transitivity of \subset ,

$$x \sqsubset W \cap M^*$$
.

This implies $W \cap M^* \in S_W$. We thus have a contradiction to the choice of f_W . This finishes the proof.

Acknowledgements

Both authors gratefully acknowledge support by DFG grant no. SCHI 484/3-1. This article contains material from the first author's thesis.

References

- [1] D. Asperó and P. D. Welch, Bounded Martin's maximum, weak Erdős cardinals, and ψ_{AC} , J. Symbolic Logic **67** (2002), no. 3, 1141–1152.
- B. Claverie and R. Schindler, Increasing u₂ by a stationary set preserving forcing, J. Symbolic Logic 74 (2009), no. 1, 187–200.
- [3] M. Foreman, M. Magidor, and S. Shelah, Martin's maximum, saturated ideals, and nonregular ultrafilters. I, Ann. of Math. (2) 127 (1988), no. 1, 1–47.
- [4] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin (2003), ISBN 3-540-44085-2.
- [5] R. Ketchersid, P. Larson, and J. Zapletal, Increasing δ_2^1 and Namba-style forcing, J. Symbolic Logic **72** (2007), no. 4, 1372–1378.
- [6] R. Schindler, Semi-proper forcing, remarkable cardinals, and bounded Martin's maximum, MLQ Math. Log. Q. 50 (2004), no. 6, 527–532.
- [7] ———, Bounded Martin's maximum and strong cardinals, in Set theory, Trends Math., 401–406, Birkhäuser, Basel (2006).
- [8] S. Shelah, Proper and improper forcing, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, second edition (1998), ISBN 3-540-51700-6.
- [9] S. Todorčević, Conjectures of Rado and Chang and cardinal arithmetic, in Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), Vol. 411 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 385–398, Kluwer Acad. Publ., Dordrecht (1993).
- [10] W. H. Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal, Vol. 1 of de Gruyter Series in Logic and its Applications, Walter de Gruyter & Co., Berlin (1999), ISBN 3-11-015708-X.
- [11] J. Zapletal, private communication.

INSTITUT FÜR MATHEMATISCHE LOGIK UND GRUNDLAGENFORSCHUNG, UNIVERSITÄT MÜNSTER, EINSTEINSTR. 62, 48149 MÜNSTER, GERMANY

E-mail address: doebler@uni-muenster.de, rds@uni-muenster.de