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MAXIMAL INEQUALITIES FOR DUAL SOBOLEV SPACES W−1,p

AND APPLICATIONS TO INTERPOLATION

Frédéric Bernicot

Abstract. We firstly describe a maximal inequality for dual Sobolev spaces W−1,p.

This one corresponds to a “Sobolev version” of usual properties of the Hardy-Littlewood

maximal operator in Lebesgue spaces. Even in the Euclidean space, this one seems to
be new and we develop arguments in the general framework of Riemannian manifold.

Then we present an application to obtain interpolation results for Sobolev spaces.

The first maximal inequality in Lebesgue spaces, is described by the Lp-boundedness
of the Hardy-Littlewood maximal function. This result holds in a space of homoge-
neous type (X, d, µ): for p ∈ (1,∞], s ∈ [1, p) and f ∈ Lp(X)

‖f‖Lp(X) .

∥∥∥∥∥∥x→ sup
Q ball
Q3x

1
µ(Q)1/s

‖f‖Ls(Q)

∥∥∥∥∥∥
Lp(X)

. ‖f‖Lp(X).

Here the left inequality is due to the following “regularity property”: for almost every
x ∈ X

(1) lim
r→0

1
µ(B(x, r))

∫
B(x,r)

|f |dµ = |f(x)|.

The right one corresponds to the Lp boundedness of the maximal operator.

Applying this result to a function and its gradient, we obtain the same result for the
Sobolev spaces on a doubling Riemannian manifold M : for p ∈ (1,∞], s ∈ [1, p) and
f ∈W 1,p

‖f‖W 1,p .

∥∥∥∥∥∥x→ sup
Q ball
Q3x

1
µ(Q)1/s

‖f‖W 1,s(Q)

∥∥∥∥∥∥
Lp

. ‖f‖W 1,p .

Therefore the Sobolev norm can easily be described by the corresponding Lebesgue
norm of a maximal operator (which is a “Sobolev version” of the Hardy-Littlewood
maximal function). Such a property is important because the norms in Lebesgue
spaces are specific and satisfy for example the “lattice property” which is not the case
of the norms in Sobolev spaces. Then a natural question arises: do we have similar
results for the dual Sobolev spaces W−1,p ?

Recently in [12, 13] the authors have used maximal operators (and duality) to de-
scribe interpolation results between Hardy spaces and Lebesgue spaces. To extend
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this theory for Sobolev spaces, we need such maximal inequalities for negative Sobolev
spaces. That is why, we study this problem. Despite this objective, the above in-
equality studied in the current paper may be of independent interest.

We define maximal operators and then prove the following result: under classical
assumptions on the Riemannian manifold M , there are implicit constants such that
for all functions f ∈W−1,p

(2) ‖f‖W−1,p .
(a)

∥∥∥∥∥∥ sup
Q ball
x∈Q

1
µ(Q)1/s

‖f‖W−1,s(Q)

∥∥∥∥∥∥
Lp

.
(b)

‖f‖W−1,p

under some restrictions on p. The second inequality (b) is quite easy to obtain and
corresponds to a boundedness of the maximal operator. The first one (a) is more
difficult to prove. Such property as (1) is not sufficient to conclude.
For example in the Euclidean space, we get:

Theorem 0.1. On Rn equipped with the Euclidean structure, (2) holds for every
exponents p, r ∈ (1,∞).

We emphasize that even in the Euclidean space Rn, such inequalities are not obvious.
In this particular case, we know that the operator (I+∆)−1/2 defines an isomorphism
from Lp(Rn) to W−1,p(Rn). However such a description is not sufficiently precise to
obtain the inequality (a).
This result seems to be new and does not exist in the litterature. We think that it
will permit to better understand the structure of dual Sobolev spaces and above all
the interactions with restriction and localization operators. Indeed, we point out that
the quantity ‖f‖W−1,s(Q) is far more localized than

∥∥(I + ∆)−1/2f
∥∥
Ls(Q)

, as it takes
information only from f1Q.
We believe in the interest of such inequalities and we give a first application about
interpolation of Sobolev spaces (Section 3). For example we will prove the following
result.

Theorem 0.2. Let M be a doubling Riemannian manifold satisfying a Reverse Riesz
inequality: ∥∥∥(1 + ∆)1/2(f)

∥∥∥
Lr

. ‖f‖W 1,r ,

for an exponent r ∈ (1, 2). Then for all p0 ∈ (1, 2) and θ ∈ (0, 1) such that

1
pθ

:=
1− θ

p0
+
θ

2
<

1
r
,

we have (
W 1,p0 ,W 1,2

)
θ,pθ

= W 1,pθ .

This result is interesting as we do not require Poincaré inequality as in the work of N.
Badr (see [10, 9]). This is the first result of interpolation for Sobolev spaces, which
permits to get around the use of Poincaré inequalities. Due to the work of P. Auscher
and T. Coulhon (see [5]), our assumed Reverse Riesz inequality is weaker than the
Poincaré inequality (Pr).
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We refer the reader to a forthcoming work (joined with N. Badr, see [11]), where we
use these maximal inequalities for Sobolev spaces in order to describe an interpolation
theory for abstract Hardy-Sobolev spaces. In this case, they will play a crucial role.

1. Preliminaries

Throughout this paper we will denote by 1E the characteristic function of a set
E and Ec the complement of E. If X is a metric space, Lip will be the set of real
Lipschitz functions on X and Lip0 the set of real, compactly supported Lipschitz
functions on X. For a ball Q in a metric space, λQ denotes the ball co-centered with
Q and with radius λ times that of B. Finally, C will be a constant that may change
from an inequality to another and we will use u . v to say that there exists two
constants C such that u ≤ Cv and u ' v to say that u . v and v . u.

In all this paper M denotes a Riemannian manifold. We write µ for the Riemannian
measure on M , ∇ for the Riemannian gradient, | · | for the length on the tangent space
(forgetting the subscript x for simplicity) and ‖ · ‖Lp for the norm on Lp := Lp(M,µ),
1 ≤ p ≤ +∞. We denote by Q(x, r) the open ball of center x ∈M and radius r > 0.
We will use the positive Laplace-Beltrami operator ∆ defined by

∀f, g ∈ C∞0 (M), 〈∆f, g〉 = 〈∇f,∇g〉.

1.1. The doubling property.

Definition 1.1. Let M be a Riemannian manifold. One says that M is doubling or
satisfies the (global) doubling property (D) if there exists a constant C > 0, such that
for all x ∈M, r > 0 we have

(D) µ(Q(x, 2r)) ≤ Cµ(Q(x, r)).

Observe that if M satisfies (D) then

diam(M) <∞⇔ µ(M) <∞ (see [1]).

Therefore if M is a complete Riemannian manifold satisfying (D) then µ(M) = ∞.

Theorem 1.2 (Maximal theorem). ([14]) Let M be a Riemannian manifold satisfying
(D). Denote by M the uncentered Hardy-Littlewood maximal function over open balls
of M defined by

Mf(x) := sup
Q ball
x∈Q

1
µ(Q)

∫
Q

|f |dµ.

Then for every p ∈ (1,∞], M is Lp bounded and moreover of weak type (1, 1).
Consequently for s ∈ (0,∞), the operator Ms defined by

Msf(x) := [M(|f |s)(x)]1/s

is of weak type (s, s) and Lp bounded for all p ∈ (s,∞].
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1.2. Poincaré inequality.

Definition 1.3 (Poincaré inequality on M). We say that a Riemannian manifold M
admits a Poincaré inequality (Pq) for some q ∈ [1,∞) if there exists a constant
C > 0 such that, for every function f ∈ Lip0(M) and every ball Q of M of radius
r > 0, we have

(Pq)
(
−
∫
Q

∣∣∣∣f −−∫
Q

f

∣∣∣∣q dµ)1/q

≤ Cr

(
−
∫
Q

|∇f |qdµ
)1/q

.

Remark 1.4. By density of C∞0 (M) in Lip0(M), we can replace Lip0(M) by C∞0 (M).

Let us recall some known facts about Poincaré inequalities with varying q.
It is known that (Pq) implies (Pp) for p ≥ q (see [17]). Thus if the set of q such that
(Pq) holds is not empty, then it is an interval unbounded on the right. A recent result
of S. Keith and X. Zhong (see [19]) asserts that this interval is open in [1,+∞):

Theorem 1.5. Let M be a complete doubling Riemannian manifold admitting a
Poincaré inequality (Pq), for some 1 < q < ∞. Then there exists ε > 0 such that M
admits (Pp) for every p > q − ε.

2. Maximal characterization of dual Sobolev spaces

From now on, we always assume that the Riemannian manifold satisfies the dou-
bling property (D).

2.1. New maximal operators. First, we recall the “duality-properties” of the
Sobolev spaces.

Definition 2.1. For p ∈ [1,∞] and O an open set of M , we define W 1,p(O) as
following

W 1,p(O) := C∞0 (O)
‖ ‖W1,p(O) with ‖f‖W 1,p(O) := ‖|f |+ |∇f |‖Lp(O) .

Then we denote W−1,p′(O) the dual space of W 1,p(O) defined as the set of distribu-
tions f ∈ D′(M) such that

‖f‖W−1,p′ (O) = sup
g∈C∞0 (M)

|〈f, g〉|
‖g‖W 1,p(O)

.

Proposition 2.2. Let p ∈ [1,∞). Then for all open set O of M , we have

‖f‖W−1,p′ (O) = inf
f=φ−div(ψ)

‖φ‖Lp′ (O) + ‖ψ‖Lp′ (O)

' inf
f=φ−div(ψ)

‖|φ|+ |ψ|‖Lp′ (O) .

Here we take the infimum over all the decompositions f = φ − div(ψ) on M with
φ ∈ Lp′(O) and ψ ∈ D′(O,Rn) such that div(ψ) ∈ Lp′(O).

The proof is left to the reader (it is essentially written in [8], Proposition 33).

We introduce the following maximal operators:
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Definition 2.3. Let s ≥ 1. According to the standard maximal “Hardy-Littlewood”
operator Ms, we define two “Sobolev versions”:

MS,s(f)(x) := sup
Qball
Q3x

1
µ(Q)1/s

‖f‖W−1,s(Q)

and
MS,∗,s(f)(x) := inf

f=φ−div(ψ)
Ms (|φ|+ |ψ|) (x).

Remark 2.4. Thanks to Proposition 2.2, it is easy to check that we can compare
them pointwisely:

MS,s(f) ≤MS,∗,s(f).

We dedicate the next subsection to the study of these maximal operators. Mainly
we want to describe the dual Sobolev norms by the corresponding Lebesgue norms of
these operators.

2.2. First properties of the maximal operators. We begin proving some useful
and general properties for the new maximal operators MS,s and MS,∗,s. These opera-
tors can be thought as being equivalent to Ms((I + ∆)−1/2), where ∆ is the positive
Laplace-Beltrami operator on the manifold M .

Proposition 2.5. For p ∈ [1,∞), MS,p and MS,∗,p are of “weak type (p, p)”: there
exists an implicit constant such that for all f ∈W−1,p

(3) ‖MS,p(f)‖Lp,∞ ≤ ‖MS,∗,p(f)‖Lp,∞ . ‖f‖W−1,p .

Moreover, they are of “strong type (q, q)” for every q > p: there exists an implicit
constant such that for all f ∈W−1,q

(4) ‖MS,p(f)‖Lq ≤ ‖MS,∗,p(f)‖Lq . ‖f‖W−1,q .

Proof. The first inequalities in (3) and (4) are due to Remark 2.4. We only check the
second one for (3). Using Fatou’s lemma in weak Lebesgue spaces, it yields

‖MS,∗,p(f)‖Lp,∞ ≤ inf
f=φ−div(ψ)

‖Mp(|φ|+ |ψ|)‖Lp,∞ .

Then using the weak type (p, p) of the Hardy-Littlewood maximal operator it comes

‖MS,∗,p(f)‖Lp,∞ . inf
f=φ−div(ψ)

‖|φ|+ |ψ|‖Lp .

Finally Proposition 2.2 finishes the proof of (3) and we similarly prove (4). �

Now we look for reverse inequalities. First we describe an easy fact:

Remark 2.6. Let r1, r2 ∈ [1,∞) with r1 ≤ r2. Then

MS,∗,r1 ≤MS,∗,r2 and MS,r1 ≤MS,r2 .

Proposition 2.7. Let p ∈ [1,∞). The two maximal operators MS,∗,p and MS,p

“control the Sobolev norm in W−1,p”. That is

(5) ∀f ∈W−1,p, ‖f‖W−1,p . ‖MS,p(f)‖Lp ≤ ‖MS,∗,p(f)‖Lp .
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Proof. Thanks to Remark 2.4, we just have to prove the first inequality. In order to
show this one, we choose a collection of balls (Bi)i of radius 1, which corresponds to a
bounded covering of M . Let (φi)i be a partition of unity associated to this covering.
Then we know that there exists a function g ∈ C∞0 such that

‖f‖W−1,p ≤ 2〈f, g〉 = 2
∑
i

〈f, gφi〉

and ‖g‖W 1,p′ = 1. We use the fact that

〈f, gφi〉 ≤ ‖f‖W−1,p(Qi)‖gφi‖W 1,p′ (Qi)
.

Since the balls Bi are of radius 1, the functions φi can be chosen as uniformly bounded
in the Sobolev space W 1,p′ and so we have

〈f, gφi〉 . ‖f‖W−1,p(Qi)‖g‖W 1,p′ (Qi)
. µ(Qi)1/p inf

Qi

MS,p(f)‖g‖W 1,p′ (Qi)
.

Using Hölder inequality we obtain

‖f‖W−1,p .

(∑
i

µ(Qi) inf
Qi

MS,p(f)p
)1/p(∑

i

‖g‖p
′

W 1,p′ (Qi)

)1/p′

.

The first term is bounded by ‖MS,p(f)‖Lp . The second term is bounded by ‖g‖W 1,p′ =
1 since the collection (Qi)i forms a bounded covering. Therefore the proposition
follows. �

We also would like to prove a similar result as in Proposition 2.7 with a maximal
operator MS,r, given by another exponent r ≤ p. Such a result for r ≥ p holds
combining Remark 2.6 and Proposition 2.7. For r < p this fact does not seem to be
obvious and we do not know if it is true in a general case. That is why, we define the
following assumption:

Assumption 2.8. Take two exponents s0, s1 with 1 ≤ s0 < s1 < ∞. Then we call
(Hs0,s1) the following assumption: there exists an implicit constant such that for all
functions f ∈W−1,s1

(Hs0,s1) ‖f‖W−1,s1 . ‖MS,∗,s0(f)‖Ls1 .

Remark 2.9. If s0 ≥ s1, we have seen that (Hs0,s1) is always satisfied.

We finish this subsection, by comparing the two maximal operators MS,p and MS,∗,p.
We have already seen in Remark 2.4 that we have a pointwise inequality. We describe
here a global reverse inequality.

Proposition 2.10. Let p ∈ (1,∞) and r ∈ [1,∞). Assume that the Riemannian
manifold M satisfies µ(M) = ∞1. Then we have

(6) ‖MS,∗,r(f)‖Lp ' ‖MS,r(f)‖Lp .

The implicit constants can be chosen independently with respect to any function f ∈
W−1,p.

1which is true if we assume M complete since here the Riemannian measure is doubling.
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Proof. Using Remark 2.4, we just have to prove that

(7) ‖MS,∗,r(f)‖Lp . ‖MS,r(f)‖Lp .

The proof is based on a “good lambdas” inequality. By classical arguments (see [7]),
we just need to show the following inequality for any small enough γ and a large
enough numerical constant K > 1:

µ ({x,MS,∗,r(f)(x) > Kλ, MS,r(f)(x) ≤ γλ}) .

γµ ({x,MS,∗,r(f)(x) > λ}) .(8)

We consider the sets

Bλ := {MS,∗,r(f) > Kλ, MS,r(f) ≤ γλ}

and
Eλ := {MS,∗,r(f) > λ} .

First we remark that Bλ ⊂ Eλ. We choose (Qj)j a Whitney decomposition of Eλ
and write xj for a point in 4Qj ∩ Ecλ. Let x be a point in Bλ ∩Qj . We have

(9) inf
f=φ−div(ψ)

sup
Qball
Q3x

1
µ(Q)1/r

‖|φ|+ |ψ|‖Lr(Q) ≥ Kλ.

However for all ball Q containing x and satisfying Q∩(8Qj)c 6= ∅, the point xj belongs
to 4Q. Hence

inf
f=φ−div(ψ)

sup
Q3x

Q∩(8Qj)c 6=∅

1
µ(4Q)1/r

‖|φ|+ |ψ|‖Lr(4Q) ≤MS,∗,r(f)(xj) ≤ λ.

Therefore using (D), we obtain

inf
f=φ−div(ψ)

sup
x3Q

Q∩(8Qj)c 6=∅

1
µ(Q)1/r

‖|φ|+ |ψ|‖Lr(Q) . λ.

Taking K large enough (larger than the implicit constant in the previous inequality),
it comes

inf
f=φ−div(ψ)

sup
Qball

x∈Q⊂8Qj

1
µ(Q)1/r

‖(|φ|+ |ψ|)18Q‖Lr(Q) ≥ Kλ.

Now we choose φj and ψj such that

(10) ‖|φj |+ |ψj |‖Lr(8Qj)
' ‖f‖W−1,r(8Qj).

This is possible due to Proposition 2.2. We thus obtain

Mr

(
(|φj |+ |ψj |)18Qj

)
(x) ≥ Kλ.

So we have proved that

Bλ ∩Qj ⊂
{
x, Mr

(
(|φj |+ |ψj |)18Qj

)
(x) ≥ Kλ

}
.

Using the weak type (r, r) of the Hardy-Littlewood maximal operator, we deduce that

µ (Bλ ∩Qj) .
1
λr
‖|φj |+ |ψj |‖rLr(8Qj)

.
1
λr
‖f‖rW−1,r(8Qj)

.
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The last inequality is due to (10). Then by definition of MS,r, we have

‖f‖W−1,r(8Qj) . µ(Qj)1/r inf
8Qj

MS,r(f) . γµ(Qj)1/rλ.

We conclude that
µ (Bλ ∩Qj) . γrµ(Qj).

Therefore summing over j, the proof of (8) is completed. �

Corollary 2.11. Let 1 ≤ s0, s1 < ∞ . Then under the assumptions (Hs0,s1) and
µ(M) = ∞, the maximal operator MS,s0 “controls the Sobolev norm in W−1,s1”: that
is

(11) ‖f‖W−1,s1 . ‖MS,s0(f)‖s1 .

It is difficult to check the assumption (Hs0,s1), some technical details create problems.
We are going to check that the assumption (Hs0,s1) has really a sense and is satisfied
under more classical assumptions. The next subsection is devoted to prove that
(Hs0,s1) holds under usual assumptions on the manifold M . This is the main result
of this section.

2.3. Some hypotheses insuring (Hs0,s1). We first define some properties to de-
scribe our main result.

Definition 2.12. We use the second order operator L := (I + ∆) defined with the
positive Laplace-Beltrami operator. We recall that the two operators ∆ and L are
self-adjoint.
According to [5], we say that for p ∈ (1,∞) we have the non-homogeneous property
(nhRp) if

(nhRp) ‖f‖W 1,p .
∥∥∥L1/2(f)

∥∥∥
Lp

for all f ∈ C∞0 (M). This is equivalent to the Lp boundedness of the local Riesz
transform ∇L−1/2. And we have the non-homogeneous reverse property (nhRRp) if

(nhRRp)
∥∥∥L1/2(f)

∥∥∥
Lp

. ‖f‖W 1,p

for all f ∈ C∞0 (M).

Definition 2.13. Let p, q ∈ [1,∞). We say that the collection (Tt)t>0 = (e−t∆)t>0

or (Tt)t>0 = (
√
t∇e−t∆)t>0 satisfy “(Lp −Lq)-off-diagonal estimates”, if there exists

γ such that for all ball Q of radius rQ, every function f supported on Q and all index
j ≥ 0 (

1
µ(2jQ)

∫
Sj(Q)

∣∣∣Tr2Q(f)
∣∣∣q dµ)1/q

. e−γ4
j

(
1

µ(Q)

∫
Q

|f |p dµ
)1/p

.

We used Sj(Q) for the dyadic corona around the ball

Sj(Q) :=
{
y, 2j ≤ 1 +

d(y,Q)
rQ

< 2j+1

}
.
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Note that S0(Q) = 2Q. These “off-diagonal estimates” are closely related to “Gaffney
estimates” of the semigroup.

We now come to our main result:

Theorem 2.14. Let 1 < s < r′ < σ. Assume that the Riemannian manifold M sat-
isfies (nhRRr) and (nhRs′). Moreover assume that the semigroup (e−t∆)t>0 satisfies
“(Lσ

′ − Ls
′
)-off-diagonal estimates” and that the collection (

√
t∇e−t∆)t>0 satisfies

“(Ls
′ − Ls

′
)-off-diagonal estimates”.

Then there is a constant c = c(s, r, σ) such that

(12) ∀f ∈W−1,r′ , ‖f‖W−1,r′ ≤ c ‖MS,∗,s(f)‖Lr′ .

Therefore (Hs0,s1) is satisfied for all exponents s0, s1 satisfying s0 ≥ s and s1 = r′.

Proof. Thanks to Proposition 2.7, this result is interesting only for s < r′, which will
be assumed.
The proof is quite technical, we deal with the case where the manifold is of infinite
measure µ(M) = ∞. We explain in Remark 2.15, the modifications one has to do in
the other case.
Let us take a function f ∈W−1,r′ . By definition, (nhRRr) implies that

‖f‖W−1,r′ := sup
g∈C∞0

‖g‖
W1,r≤1

|〈f, g〉|

= sup
g∈C∞0

‖g‖
W1,r≤1

〈L−1/2f, L1/2g〉

. sup
‖h‖Lr .1

〈L−1/2f, h〉

' ‖L−1/2f‖Lr′ .(13)

Now we have to use a “Fefferman-Stein” inequality adapted to our operator L−1/2.
We use the results of [13]. Let us first recall some notations.
We set

Mσ(f)(x) := sup
Q3x

1
µ(Q)1/σ

∥∥∥e−r2Q∆(f)
∥∥∥
Lσ(Q)

and

M ]
s(f)(x) := sup

Q3x

1
µ(Q)1/s

∥∥∥f − e−r
2
Q∆(f)

∥∥∥
Ls(Q)

.

The assumed “(Lσ
′ − Ls

′
)-off-diagonal estimates” for (e−t∆)t>0 gives (see [13], The-

orem 5.11)
Mσ(f) . Ms(f).

Moreover from [13], Proposition 7.1 (which proves that the associated atomic Hardy
space is included in L1) and Corollary 5.8, it comes that for all q ∈ (s, σ)

(14) ‖.‖Lq '
∥∥∥Ms

](.)
∥∥∥
Lq
.
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We have used here that µ(M) = ∞ (see Remark 2.15).
Thus applying (13) and (14) with q = r′, we obtain

‖f‖W−1,r′ .
∥∥∥M ]

s(L
−1/2f)

∥∥∥
Lr′

.

It remains to prove the following pointwise inequality:

(15) M ]
s(L

−1/2f) . MS,∗,s(f).

Fix an x0 ∈M . It is first possible to chose a ball Q 3 x0 such that

M ]
s(L

−1/2f)(x0) ≤ 2
1

µ(Q)1/s

∥∥∥(1− e−r
2
Q∆)L−1/2f

∥∥∥
Ls(Q)

.

Then, we can find a function g ∈ C∞0 (Q) with ‖g‖Ls′ ≤ 1 such that

M ]
s(L

−1/2f)(x0) ≤
4

µ(Q)1/s
〈(1− e−r

2
Q∆)L−1/2f, g〉

≤ 4
µ(Q)1/s

〈f, L−1/2(1− e−r
2
Q∆)g〉.

Using a decomposition f = φ− div(ψ), with φ ∈ Lp and ψ ∈ D′(M), we finally get:

M ]
s(L

−1/2f)(x0) ≤
4

µ(Q)1/s

[
〈φ,L−1/2(1− er

2
Q∆)g〉+ 〈ψ,∇L−1/2(1− e−r

2
Q∆)g〉

]
.

Let us study the first term 〈φ,L−1/2(1− e−r
2
Q∆)g〉. We follow ideas of [3] (section 4,

Lemma 4.4), using the following representation of the square root:

L−1/2(h) =
∫ ∞

0

e−te−t∆(h)
dt√
t
.

Now using the (Ls
′ −Ls′)-“off-diagonal” decays (implied by the (Lσ

′ −Ls′)- ones) of
the semigroup (e−t∆)t>0, we claim that for all j ≥ 0:

(16)
1

µ(2jQ)1/s′
‖L−1/2(1− e−r

2
Q∆)g‖Ls′ (Sj(Q)) . 2−j

1
µ(Q)1/s′

‖g‖Ls′ (Q).

For j ∈ {0, 1}, we only use the uniform Ls
′
-boundedness of the semigroup (let us

recall that g is supported on Q):
1

µ(2jQ)1/s′
‖L−1/2(1− e−r

2
Q∆)g‖Ls′ (4Q)

.
1

µ(Q)1/s′

∫ ∞

0

e−t‖e−t∆(1− e−r
2
Q∆)g‖Ls′ (4Q)

dt√
t

.
1

µ(Q)1/s′
‖g‖Ls′ (Q)

∫ ∞

0

e−t
dt√
t

.
1

µ(Q)1/s′
‖g‖Ls′ (Q).

For j ≥ 2, we do not detail the proof and refer the reader to [3], Lemma 4.4 in the
Euclidean case.
Then with the normalization of g, from (16) we finally get

1
µ(Q)1/s

∣∣∣〈φ,L−1/2(1− e−r
2
Q∆)g〉

∣∣∣ . Ms(φ)(x0).
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Similarly by the “off-diagonal” decays of (
√
t∇e−t∆)t>0, we obtain for j ≥ 2:

1
µ(2jQ)1/s′

‖∇L−1/2(1− e−r
2
Q∆)g‖Ls′ (Sj(Q)) . 2−j

1
µ(Q)1/s′

‖g‖Ls′ (Q).

When j ∈ {0, 1}, we use the (nhRs′) inequality (which is equivalent to the Ls
′
-

boundedness of the Riesz transform) and the Ls
′
-boundedness of the semigroup as

follows:
1

µ(2jQ)1/s′
‖∇L−1/2(1− e−r

2
Q∆)g‖Ls′ (4Q) .

1
µ(2jQ)1/s′

‖(1− e−r
2
Q∆)g‖Ls′

.
1

µ(Q)1/s′
‖g‖Ls′ (Q).

As previously, we deduce the following estimate
1

µ(Q)1/s

∣∣∣〈ψ,∇L−1/2(1− e−r
2
Q∆)g〉

∣∣∣ . Ms(ψ)(x0),

and so we conclude that

M ]
s(L

−1/2f)(x0) . Ms(φ)(x0) +Ms(ψ)(x0).

By taking the infimum over all the decompositions of f , we get (15) and the proof is
therefore complete. �

Remark 2.15. In the case where the manifold is of finite measure, the “Fefferman-
Stein” inequality (14) has to be replaced by the following one:

(17) ‖.‖Lq '
∥∥M ]

s(.)
∥∥
Lq + ‖.‖L1 .

However when M is of finite measure, we have: ‖L−1/2(f)‖L1 . ‖L−1/2(f)‖Ls . Then
using the (nhRs′) property, we deduce that

‖L−1/2(f)‖L1 . ‖f‖W−1,s .

The reverse inequality of Proposition 2.7 gives us

‖L−1/2(f)‖L1 . ‖f‖W−1,s . ‖MS,∗,s(f)‖Ls

which implies the desired inequality

‖L−1/2(f)‖L1 . ‖MS,∗,s(f)‖Lr′

when s ≤ r′.

We recall criterions that insure our previous assumptions. We refer the reader to
the work of P. Auscher, T. Coulhon, X. Duong and S. Hofmann [6] and [5] for more
details about all these notions and how they are related.

Theorem 2.16. Let M be a complete doubling Riemannian manifold.
• The inequalities (nhR2) and (nhRR2) are always satisfied.
• ([15]) Assume that the heat kernel pt of the semigroup e−t∆ satisfies the fol-

lowing pointwise estimate:

(DUE) pt(x, x) .
1

µ(B(x, t1/2))
.

Then for all p ∈ (1, 2], (nhRp) and (nhRRp′) hold.
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• ([16]) Under (D), (DUE) self-improves into the following Gaussian upper-
bound estimate of pt

(UE) pt(x, y) .
1

µ(B(y, t1/2))
e−c

d2(x,y)
t .

That implies (L1 − L∞) “off-diagonal” decays for (e−t∆)t>0.
• Under (UE), the collection (

√
t∇e−t∆)t>0 satisfy “(L2−L2) off-diagonal de-

cays”.

Theorem 2.17 ([20, 21]). The conjunction of (D) and Poincaré inequality (P2) on
M is equivalent to the following Li-Yau inequality

(LY )
1

µ(B(y, t1/2))
e−c1

d2(x,y)
t . pt(x, y) .

1
µ(B(y, t1/2))

e−c2
d2(x,y)

t ,

with some constants c1, c2 > 0.

Theorem 2.18 ([6]). Under (D) and Poincaré inequality (P2), the property (nhRp)
for all p ∈ (2, p0) is equivalent to the boundedness

(Gp0)
∥∥∇e−t∆∥∥

Lp0→Lp0
.

1√
t
.

Moreover under (Gp0), the collection (
√
t∇e−t∆)t>0 satisfies some (Lp − Lp) “off-

diagonal” decays for every p ∈ [2, p0).

Theorem 2.19 ([5]). Under Poincaré inequality (Pp0) for p0 ∈ (1, 2], (nhRRp) holds
for all p ∈ (p0, 2].

Remark 2.20. All these results are proved in their homogeneous version, with ho-
mogeneous properties (Rp) and (RRp). It is essentially based on the well-known
Calderón-Zygmund decomposition for Sobolev functions. This tool was extended for
non-homogeneous Sobolev spaces (see [10]). Thus by exactly the same proof, we can
obtain an analogous non-homogeneous version and then prove all these results.

From Theorems 2.14, 2.16 and 2.19, Remark 2.6 and the self-improvement of Poincaré
inequality (proved in [19]) we get:

Corollary 2.21. Let M be a non-compact Riemannian manifold satisfying the dou-
bling property. If Poincaré inequality (Pp0) holds for some p0 ∈ (1, 2), then (Hs0,s1)
is verified for all s0, s1 satisfying

s0 ≥ 2 and s1 ≤ p′0.

Corollary 2.22. In the Euclidean case M = Rn, for all s0, s1 ∈ (1,∞), the assump-
tion (Hs0,s1) holds. More generally, on any Riemannian manifold satisfying (D) and
(P1), (Hs0,s1) holds for all s0, s1 ∈ (1,∞).

We begin to understand the link between Sobolev norms and the Lebesgue norms of
our maximal operators. This technical result will be useful in Section 3 to develop
new results for the interpolation of Sobolev spaces.
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3. Interpolation of Sobolev spaces.

In this section, we look for a real interpolation result for the scale of Sobolev spaces
(W 1,p)p∈(1,∞). We refer the reader to the work of N. Badr (see [10, 9]) for first results.
This work is based on a well-known Calderón-Zygmund decomposition for Sobolev
functions, initialy explained by P. Auscher in [2]. We refer the reader to [2] for the
first use of this one. Many applications follow from this decomposition and there are
many versions (for example there are several improvements with weights in [7] and
[9]). This very useful tool works under the assumption of Poincaré inequality.

This section is devoted to the description of interpolation results for Sobolev spaces
using the results of Section 2.

We recall the important assumption:

Assumption 3.1. Take two exponents 1 ≤ s0 ≤ s1 < ∞. We call (Hs0,s1) the
following assumption:

(Hs0,s1) ‖f‖W−1,s1 . ‖MS,∗,s0(f)‖Ls1 .

Definition 3.2. For M a Riemannian manifold, we denote by IM the following set:

IM :=
{
(s0, s1) ∈ (1,∞)2, s0 ≤ s1, (Hs0,s1) holds

}
.

Here is the main result of this subsection:

Theorem 3.3. Let M be a Riemannian manifold satisfying the doubling property
(D). Then the scale (W 1,p)p∈(1,∞] is an interpolation scale for the real interpolation
related to IM . That is for all p0, p1 ∈ (1,∞] (with p0 ≤ p1) and θ ∈ (0, 1) such that

1
pθ

:=
1− θ

p0
+

θ

p1

and satisfying (p′1, p
′
θ) ∈ IM , we have(

W 1,p0 ,W 1,p1
)
θ,pθ

= W 1,pθ .

Proof. We set E :=
(
W 1,p0 ,W 1,p1

)
θ,pθ

. We have to prove the equivalence of norms:

(18) ‖ ‖E ' ‖ ‖W 1,pθ .

From the interpolation theory on Lebesgue spaces, it is obvious that

E ↪→W 1,pθ .

We just have to prove the reverse embedding. We will use the maximal operator
MS,∗,p′1 . Let q ∈ [1, p1]. We claim that there is a constant c = cq such that

(19)
∥∥MS,∗,p′1(h)

∥∥
Lq′,∞ ≤ cq‖h‖(W 1,q)∗ .

This fact comes from several properties: (W 1,q)∗ = W−1,q′ by definition, from (3)
and finally from MS,∗,p′1 ≤MS,∗,q′ .
We refer the reader to [18] for the proof of

E∗ =
[
(W 1,p0 ,W 1,p1)θ,pθ

]∗
= (W−1,p′0 ,W−1,p′1)θ,p′θ
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with the concept of “doolittle couple”.
Then by real interpolation on the weak Lebesgue spaces (applied to the sublinear
operator MS,∗,p′1), we obtain:∥∥MS,∗,p′1(h)

∥∥
Lp′

θ
. ‖h‖E∗ ,

which according to the assumption (Hs0,s1) (for s0 = p′1 and s1 = p′θ) yields

‖h‖
W−1,p′

θ
. ‖h‖E∗ .

Thus E ↪→ W 1,pθ and E∗ ↪→ W−1,p′θ = (W 1,pθ )∗. Using Hahn-Banach Theorem, we
deduce that E = W 1,pθ with equivalent norms. �

To regain results of the same kind as in [10], where the author assumes Poincaré
inequality, we describe the following corollary:

Corollary 3.4 (Theorem 0.2). Assume that M satisfies (D) and admits a Poincaré
inequality (Pr) (or the weaker assumption (nhRRr)) for an r ∈ (1, 2). Then for all
p0 ∈ (1, 2) and θ ∈ (0, 1) such that

1
pθ

:=
1− θ

p0
+
θ

2
<

1
r
,

we have (
W 1,p0 ,W 1,2

)
θ,pθ

= W 1,pθ .

Proof. We set s1 = p′θ and s0 = 2. Thanks to Theorem 3.3, we just have to check
that (s0, s1) ∈ IM . This is a direct consequence of Corollary 2.21. �

Remark 3.5. In the previous corollary, Poincaré inequality (Pr) could be replaced by
the weaker non-homogeneous variant

(P̃r)
(
−
∫
Q

∣∣∣∣f −−∫
Q

f

∣∣∣∣r dµ)1/r

≤ CrQ

(
−
∫
Q

(|f |r + |∇f |rdµ
)1/r

.

As (P̃r) is sufficient to obtain the (nhRRr) property. Moreover Assumption (nhRRr)
is sufficient for the previous corollary, which corresponds to the statement of Theorem
0.2.

Remark 3.6. In Corollary 3.4, we can chose p1 ≤ 2 (and not necessary equal to 2).
Then under (DUE) and (nhRRr), we get the corresponding interpolation result.

Let us compare these results with [10]. Note first that the results – even the proofs –
of [10] in the non-homogeneous case still hold with this variant of Poincaré inequality
P̃r. In [10], the author just requires the condition pθ > r to obtain the interpolation
result under local doubling property and local Poincaré inequalities. The main tool
(the “well-known” Calderón-Zygmund decomposition for Sobolev functions) of [10]
permits to interpolate any Sobolev spaces (not only with W 1,2 or W 1,p1 with p1 ≤ 2)
under Poincaré inequality (Pr).
The use of the exponent 2 is the most important in the litterature and that is why
we mainly deal with it. In the case p1 ≤ 2, our assumption (nhRRr) is weaker than
the corresponding Poincaré inequality (Pr). Consequently we regain the results of N.
Badr ([10]).
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However in the case where p1 > 2, we can not recover her results as we require an
extra assumption: the Riesz inequality (nhRp1). Our assumptions and the ones of
[10] are not comparable when p1 > 2. Which is interesting is that even in this case,
we success to interpolate Sobolev spaces without assuming Poincaré inequalities.
An interesting question still stays open: we have weakened the assumption of Poincaré
inequality, however we do not know which assumptions should be sufficient and neces-
sary to prove an interpolation result. In the case p0, p1 ≤ 2 our assumption (nhRRr)
seems to be the well-adapted assumption ... We emphasize that an assumption has
to be done since a recent counterexample of P. Auscher and N. Badr [4].

To finish, we refer the reader to an other work (joined with N. Badr, see [11]), where
we develop a new theory for abstract Hardy-Sobolev spaces. Using these maximal
inequalities, we prove some results for interpolation between Hardy-Sobolev spaces
and Sobolev spaces. In this application, the arguments based on the well-known
Calderòn-Zygmund decomposition do not work and these new maximal inequalities
play a crucial role.
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