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BALANCED HKT METRICS AND STRONG HKT METRICS ON
HYPERCOMPLEX MANIFOLDS

Misha Verbitsky

Abstract. A manifold (M, I, J, K) is called hypercomplex if I, J, K are complex struc-
tures satisfying quaternionic relations. A quaternionic Hermitian hypercomplex manifold

is called HKT (hyperkähler with torsion) if the (2,0)-form Ω associated with the corre-

sponding Sp(n)-structure satisfies ∂Ω = 0. A Hermitian metric ω on a complex manifold
is called balanced if d∗ω = 0. We show that balanced HKT metrics are precisely the

quaternionic Calabi-Yau metrics defined in terms of the quaternionic Monge-Ampère

equation. In particular, a balanced HKT-metric is unique in its cohomology class, and
it always exists if the quaternionic Calabi-Yau theorem is true. We investigate the

cohomological properties of strong HKT metrics (the quaternionic Hermitian metrics,

satisfying, in addition to the HKT condition, the relation ddcω = 0), and show that the
space of strong HKT metrics is finite-dimensional. Using Howe’s duality for representa-

tions of Sp(n), we prove a hyperkähler version of Hodge-Riemann bilinear relations. We

use it to show that a manifold admitting a balanced HKT-metric never admits a strong
HKT-metric, if dimR M > 12.

1. Introduction

The notion of an HKT manifold was introduced by the physicists, but it proved to
be immensely useful in matematics.

A hypercomplex manifold is a manifold equipped with almost complex structure
operators I, J,K : TM −→ TM , integrable and satisfying the standard quaternionic
relations I2 = J2 = K2 = IJK = − IdTM .

This gives a quaternionic algebra action on TM ; the group Sp(1) ∼= SU(2) of
unitary quaternions acts on all tensor powers of TM by multiplicativity.

A quaternionic Hermitian structure on a hypercomplex manifold is an SU(2)-
invariant Riemannian metric. Such a metric gives a reduction of the structure group
of M to Sp(n) = U(n,H).

With any quaternionic Hermitian structure on M one associates a non-degenerate
(2, 0)-form Ω ∈ Λ2,0

I (M), as follows.1 Consider the differential forms

(1.1) ωI(·, ·) := g(·, I·), ωJ(·, ·) := g(·, J ·), ωK(·, ·) := g(·,K·).

It is easy to check that the form Ω := ωJ +
√
−1 ΩK is of Hodge type (2, 0) with

respect to I.
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1Λ∗(M) denotes the bundle of differential forms, and Λ∗(M) = ⊕p,qΛp,q

I (M) its Hodge decom-

position, taken with respect to the complex structure I on M .
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If the form Ω is closed, one has dωI = dωJ = dωK = 0, and the manifold
(M, I, J,K, g) is called hyperkähler ([Bes]). The hyperkähler condition is very re-
strictive.

A hypercomplex, quaternionic Hermitian manifold (M, I, J,K, g) is called an
HKT-manifold (hyperkähler with torsion) if ∂Ω = 0, where ∂ denotes the (1, 0)-part
of the differential. In other words, a manifold is HKT if dΩ ∈ Λ2,1

I (M).
The form Ω ∈ Λ2,0

I (M) is called an HKT-form on (M, I, J,K).

Remark 1.1: The quaternionic Hermitian form g can be easily reconstructed from
Ω. Indeed, for any x, y ∈ T 1,0

I (M), one has

2g(x, y) = Ω(x, J(y)),

as a trivial calculation implies.

HKT-manifolds were first introduced by the physicists ([HP]; see also [GP]) in
a completely different context. Given a complex Hermitian manifold (M, I, g), one
defines a Bismut connection ∇ : TM −→ TM⊗Λ1M , determined by the following
properties

(i): ∇I = ∇g = 0
(ii): The torsion form T∇ ∈ TM⊗Λ2M is totally antisymmetric, if one identifies
TM ⊗ Λ2M with Λ1M ⊗ Λ2M .

This connection has its origins also in physics, due to A. Strominger ([SSTV]), who
defined it earlier than Bismut’s paper appeared. It is well known such ∇ exists, and
it is unique (see e.g. [G]). The torsion 3-form T of Bismut connection can be written
down explicitly in terms of its Hermitian form ω:

T = −Idω.
Now, suppose that (M, I, J,K, g) is a hypercomplex, quaternionic Hermitian man-

ifold. The metric g can be used to define the Bismut connections ∇I ,∇J ,∇K asso-
ciated with I, J,K. It is known (see e.g. [GP]) that ∇I = ∇J = ∇K if and only if
(M, I, J,K, g) is HKT. This was the original definition of HKT structures ([HP]).

Remark 1.2: Let (M, g) be a Riemannian manifold, and ∇ a connection on M which
satisfies ∇g = 0. Such a connection is uniquely determined by its torsion form; this is
proven by the same argument as used to show existence and uniqueness of the Levi-
Civita connection. However, the torsion term of the Bismut connection is written as
T = −Idω. Therefore, ∇I = ∇J = ∇K is equivalent to the following relation:

−IdωI = −JdωJ = −KdωK

This relation can be used as one more definition of HKT structures.

2. Quaternionic Dolbeault complex on a hypercomplex manifold

2.1. Quaternionic Dolbeault complex: a definition. It is well-known that any
irreducible representation of SU(2) over C can be obtained as a symmetric power
Si(V1), where V1 is a fundamental 2-dimensional representation. We say that a rep-
resentation W has weight i if it is isomorphic to Si(V1). A representation is said to
be pure of weight i if all its irreducible components have weight i.
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Remark 2.1: The Clebsch-Gordan formula (see [Hu]) claims that the weight is mul-
tiplicative, in the following sense: if i 6 j, then

Vi ⊗ Vj =
i⊕

k=0

Vi+j−2k,

where Vi = Si(V1) denotes the irreducible representation of weight i.

Let M be a hypercomplex manifold, dimH M = n. There is a natural multiplicative
action of SU(2) ⊂ H∗ on Λ∗(M), associated with the hypercomplex structure.

Let V i ⊂ Λi(M) be a maximal SU(2)-invariant subspace of weight < i. The space
V i is well defined, because it is a sum of all irreducible representations W ⊂ Λi(M) of
weight < i. Since the weight is multiplicative (Remark 2.1), V ∗ =

⊕
i V

i is an ideal
in Λ∗(M).

It is easy to see that the de Rham differential d increases the weight by 1 at most.
Therefore, dV i ⊂ V i+1, and V ∗ ⊂ Λ∗(M) is a differential ideal in the de Rham
DG-algebra (Λ∗(M), d).

Definition 2.2: Denote by (Λ∗+(M), d+) the quotient algebra Λ∗(M)/V ∗ It is called
the quaternionic Dolbeault algebra of M , or the quaternionic Dolbeault
complex (qD-algebra or qD-complex for short).

Remark 2.3: The complex (Λ∗+(M), d+) was constructed much earlier by Capria and
Salamon, ([CS]) in a different (and much more general) situation, and much studied
since then.

2.2. The Hodge decomposition of the quaternionic Dolbeault complex. .
The Hodge bigrading is compatible with the weight decomposition of Λ∗(M), and

gives a Hodge decomposition of Λ∗+(M) ([V3]):

Λi
+(M) =

⊕
p+q=i

Λp,q
+,I(M).

The spaces Λp,q
+,I(M) are the weight spaces for a particular choice of a Cartan subal-

gebra in su(2). The su(2)-action induces an isomorphism of the weight spaces within
an irreducible representation. This gives the following result.

Proposition 2.4: Let (M, I, J,K) be a hypercomplex manifold and

Λi
+(M) =

⊕
p+q=i

Λp,q
+,I(M)

the Hodge decomposition of qD-complex defined above. Then there is a natural
isomorphism

(2.1) Λp,q
+,I(M) ∼= Λp+q,0(M, I).

Proof: See [V3].
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This isomorphism is compatible with a natural algebraic structure on⊕
p+q=i

Λp+q,0(M, I),

and with the Dolbeault differentials, in the following way.

Let (M, I, J,K) be a hypercomplex manifold. We extend

J : Λ1(M)−→ Λ1(M)

to Λ∗(M) by multiplicativity. Recall that

J(Λp,q(M, I)) = Λq,p(M, I),

because I and J anticommute on Λ1(M). Denote by

∂J : Λp,q(M, I)−→ Λp+1,q(M, I)

the operator J◦∂◦J , where ∂ : Λp,q(M, I)−→ Λp,q+1(M, I) is the standard Dolbeault
operator on (M, I), that is, the (0.1)-part of the de Rham differential. Since ∂

2
= 0,

we have ∂2
J = 0. In [V3] it was shown that ∂ and ∂J anticommute:

(2.2) {∂J , ∂} = 0.

Consider the quaternionic Dolbeault complex (Λ∗+(M), d+) constructed in Subsec-
tion 2.1. Using the Hodge bigrading, we can decompose this complex, obtaining a
bicomplex

Λ∗,∗+,I(M)
d1,0
+,I ,d0,1

+,I−−−−−−→ Λ∗,∗+,I(M)

where d1,0
+,I , d

0,1
+,I are the Hodge components of the quaternionic Dolbeault differential

d+, taken with respect to I.

Theorem 2.5: Under the multiplicative isomorphism

Λp,q
+,I(M) ∼= Λp+q,0(M, I)

constructed in Proposition 2.4, d1,0
+ corresponds to ∂ and d0,1

+ to ∂J :

(2.3)

Λ0
+(M)

d
0,1
+

����
��
��
��
�

d
1,0
+

��/
//

//
//

//
Λ

0,0
I

(M)

∂

����
��
��
��
�

∂J

��/
//

//
//

//

Λ
1,0
+ (M)

d
0,1
+

����
��
��
��
�

d
1,0
+

��/
//

//
//

//
Λ

0,1
+ (M)

d
0,1
+

����
��
��
��
�

d
1,0
+

��/
//

//
//

//
∼= Λ

1,0
I

(M)

∂

����
��
��
��
�

∂J

��/
//

//
//

//
Λ

1,0
I

(M)

∂

����
��
��
��
�

∂J

��/
//

//
//

//

Λ
2,0
+ (M) Λ

1,1
+ (M) Λ

0,2
+ (M) Λ

2,0
I

(M) Λ
2,0
I

(M) Λ
2,0
I

(M)

Moreover, under this isomorphism, ωI ∈ Λ1,1
+,I(M) corresponds to Ω ∈ Λ2,0

I (M).
Proof: See [V3] or [V7].
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2.3. Positive (2, 0)-forms on hypercomplex manifolds. The notion of positive
(2p, 0)-forms on hypercomplex manifolds (sometimes called q-positive, or H-positive)
was developed in [V4] and [AV1] (see also [AV2] and [V8]). For our present purposes,
only (2, 0)-forms are interesting, but everything can be immediately generalized to a
general situation

Let η ∈ Λp,q
I (M) be a differential form. Since I and J anticommute, J(η) lies in

Λq,p
I (M). Clearly, J2

∣∣∣
Λp,q

I
(M)

= (−1)p+q. For p + q even, J
∣∣∣
Λp,q

I
(M)

is an anticomplex

involution, that is, a real structure on Λp,q
I (M). A form η ∈ Λ2p,0

I (M) is called real
if J(η) = η.

For a real (2, 0)-form η,

η (x, J(x))) = η
(
J(x), J2(x)

)
= η (x, J(x)) ,

for any x ∈ T 1,0
I (M). From a definition of a real form, we obtain that the scalar

η (x, J(x)) is always real.

Definition 2.6: A real (2, 0)-form η on a hypercomplex manifold is called positive
if η (x, J(x)) > 0 for any x ∈ T 1,0

I (M), and strictly positive if this inequality is
strict, for all x 6= 0.

An HKT-form Ω ∈ Λ2,0
I (M) of any HKT-structure is strictly positive, as follows

from Remark 1.1. Moreover, HKT-structures on a hypercomplex manifold are in
one-to-one correspondence with closed, strictly positive (2, 0)-forms.

The analogy between Kähler forms and HKT-forms can be pushed further; it turns
out that any HKT-form Ω ∈ Λ2,0

I (M) has a local potential ϕ ∈ C∞(M), in such a
way that ∂∂Jϕ = Ω ([AV1]). Here ∂∂J is a composition of ∂ and ∂J defined on
quaternionic Dolbeault complex as above (these operators anticommute).

3. SL(n,H)-manifolds

3.1. An introduction to SL(n,H)-geometry. As Obata has shown ([Ob]), a hy-
percomplex manifold (M, I, J,K) admits a necessarily unique torsion-free connection,
preserving I, J,K. The converse is also true: if a manifold M equipped with an action
of H admits a torsion-free connection preserving the quaternionic action, it is hyper-
complex. This implies that a hypercomplex structure on a manifold can be defined as
a torsion-free connection with holonomy in GL(n,H). This connection is called the
Obata connection on a hypercomplex manifold.

Connections with restricted holonomy are one of the central notions in Riemann-
ian geometry, due to Berger’s classification of irreducible holonomy of Riemannian
manifolds. However, a similar classification exists for a general torsion-free connec-
tion ([MS]). In the Merkulov-Schwachhöfer list, only three subroups of GL(n,H) oc-
cur. In addition to the compact group Sp(n) (which defines hyperkähler geometry),
also GL(n,H) and its commutator SL(n,H) appear, corresponding to hypercomplex
manifolds and hypercomplex manifolds with trivial determinant bundle, respectively.
Both of these geometries are interesting, rich in structure and examples, and deserve
detailed study.
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It is easy to see that (M, I) has holomorphically trivial canonical bundle, for any
SL(n,H)-manifold (M, I, J,K) ([V6]). For a hypercomplex manifold with trivial
canonical bundle admitting an HKT metric, a version of Hodge theory was constructed
([V3]). Using this result, it was shown that a compact hypercomplex manifold with
trivial canonical bundle has holonomy in SL(n,H), if it admits an HKT-structure
([V6]).

In [BDV], it was shown that holonomy of all hypercomplex nilmanifolds lies in
SL(n,H). Many (probably, most) working examples of hypercomplex manifolds are in
fact nilmanifolds, and by this result they all belong to the class of SL(n,H)-manifolds.

The SL(n,H)-manifolds were studied in [AV2] and [V8], because on such manifolds
the quaternionic Dolbeault complex is identified with a part of de Rham complex
(Proposition 3.1). Under this identification, H-positive forms become positive in the
usual sense, and ∂, ∂J -closed or exact forms become ∂, ∂-closed or exact. This linear-
algebraic identification is especially useful in the study of quaternionic Monge-Ampère
equation (Subsection 4.1).

3.2. The map Vp,q : Λp+q,0
I (M)−→ Λn+p,n+q

I (M)
on SL(n,H)-manifolds. Let (M, I, J,K) be an SL(n,H)-manifold, dimR M = 4n,
and

Rp,q : Λp+q,0
I (M)−→ Λp,q

I,+(M)
the isomorphism induced by su(2)-action as in Theorem 2.5. Consider the projection

(3.1) Λp,q
I (M)−→ Λp,q

I,+(M),

and let R : Λp,q
I (M)−→ Λp+q,0

I (M) denote the composition of (3.1) and R−1
p,q.

Let ΦI be a nowhere degenerate holomorphic section of Λ2n,0
I (M). Assume that

ΦI is real, that is, J(ΦI) = ΦI , and positive. Existence of such a form is equivalent to
Hol(M) ⊂ SL(n,H) (Lemma 4.3). It is often convenient to define SL(n,H)-structure
by fixing the quaternionic action and the holomorphic form ΦI .

Define the map
Vp,q : Λp+q,0

I (M)−→ Λn+p,n+q
I (M)

by the relation

(3.2) Vp,q(η) ∧ α = η ∧R(α) ∧ ΦI ,

for any test form α ∈ Λn−p,n−q
I (M).

The map Vp,p is especially remarkable, because it maps closed, positive (2p, 0)-
forms to closed, positive (n+ p, n+ p)-forms, as the following proposition implies.

Proposition 3.1: Let (M, I, J,K,ΦI) be an SL(n,H)-manifold, and

Vp,q : Λp+q,0
I (M)−→ Λ4n−p,4n−q

I (M)

the map defined above. Then
(i): Vp,q(η) = Rp,q(η) ∧ V0,0(1).
(ii): The map Vp,q is injective, for all p, q.
(iii): (

√
−1 )(n−p)2Vp,p(η) is real if and only η ∈ Λ2p,0

I (M) is real, and weakly
positive if and only if η is weakly positive.
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(iv): Vp,q(∂η) = ∂Vp−1,q(η), and Vp,q(∂Jη) = ∂Vp,q−1(η).
(v): V0,0(1) = λRn,n(ΦI), where λ is a positive rational number, depending

only on the dimension n.
Proof: See [V8], Proposition 4.2, or [AV2], Theorem 3.6.

3.3. Algebra generated by ωI , ωJ , ωK . Let (M, I, J,K, g) be a quaternionic Her-
mitian manifold. Consider the algebra A∗ = ⊕A2i generated by ωI , ωJ , and ωK .
In [V1], this algebra was computed explicitly. It was shown that, up to the middle
degree, A∗ is a symmetric algebra with generators ωI , ωJ , ωK . The algebra A∗ has
Hodge bigrading Ak =

⊕
p+q=k

Ap,q. From the Clebsch-Gordan formula, we obtain that

A2i
+ := Λ2i

+ (M) ∩ A2i, for i 6 n, is an orthogonal complement to Q(A2i−4), where
Q(η) = η∧ (ω2

I +ω2
J +ω2

K). Moreover, A2i
+ is irreducible as a representation of SU(2).

Therefore, the space Ap,p
+ = kerQ∗

∣∣
Ap,p

is 1-dimensional.

Proposition 3.2: Let (M, I, J,K,ΦI) be an SL(n,H)-manifold, equipped with an
HKT-structure Ω. Assume that Ωn = ΦI . Let

Π+ : Λn+q,n+q
I (M)−→ Λn+q,n+q

I,+ (M)

be the projection to the component of maximal weight with respect to the SU(2)-
action. Then Ξq := Π+(ωn+q,n+q

I ) is a closed, weakly positive (n+ q, n+ q)-form.

Proof: Consider the algebra A∗ = ⊕A2i generated by ωI , ωJ , and ωK as above.
The map Rp,q is induced by the SU(2)-action, hence it maps A∗,∗ to itself. Since
Vp,q(η) = Rp,q(η) ∧ V0,0(1), and V0,0(1) is proportional to Rn,n(ΦI) ∈ A∗, we obtain

Vp,q(Ap+q,0) ⊂ An+p,n+q.

Since V(Ωp) ⊂ An+p,n+p
+ , the 1-dimensional space An+p,n+p

+ is generated by V(Ωp).
This form is closed by Proposition 3.1. Therefore, the projection of ωn+p

I to An+p,n+p
+

is closed.

4. Balanced HKT manifolds

4.1. Quaternionic Monge-Ampère equation. Let (M, I, J,K) be a hypercom-
plex manifold, and ϕ−→ ∂∂Jϕ the operator C∞(M) ∂∂J−→ Λ2,0

I (M) defined in Subsec-
tion 2.3. In [AV2], the quaternionic Monge-Ampère operator C∞(M)−→ Λ2n,0

I (M)
was defined, mapping a function ϕ to (∂∂Jϕ)n, where n = dimH M (see also [A]).
This operator is remarkably similar to the usual Monge-Ampère operators (real and
complex) which are well known in geometry. A quaternionic version of Calabi-Yau
theorem was conjectured.

Conjecture 4.1: Let (M, I, J,K,Ω) be a compact HKT manifold with holonomy
SL(b,H), dimH M = n, and Φ ∈ Λ2n,0

I (M) a nowhere degenerate real1, section of the
canonical bundle. Then

(4.1) Φ = A(Ω + ∂∂Jϕ)n

1In the sense of Subsection 2.3
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for some constant A > 0 and a real function ϕ ∈ C∞(M).

It is easy to see that in this case, Ω + ∂∂Jϕ is an HKT-form (see the proof of
Proposition 4.2), hence Conjecture 4.1 implies existence of an HKT-metric Ω′ =
Ω + ∂∂Jϕ such that the corresponding volume form is proportional to Φ.

When Hol(M) ⊂ SL(n,H), this conjecture was partly verified in [AV2]. We have
shown that the solution of (4.1) is unique, and also gave a priori C0-bounds on its
solution. For Yau’s proof of existence of solutions of Monge-Ampère equation to work,
one also needs C2 and C3-bounds.

Conjecture 4.1 immediately implies the following statement.

Proposition 4.2: Let (M, I, J,K,Ω) be a compact HKT-manifold with holonomy
Hol(M) ⊂ SL(n,H), and Φ ∈ Λ2n,0

I (M) a non-zero section of the canonical class
which is parallel with respect to the Obata connection∇. Assume that the Conjecture
4.1 is true for M . Then M admits an HKT-form Ω1 = Ω + ∂∂Jϕ such that Ωn

1 is a
holomorphic volume form. Moreover, in this case, one has ∇(Ωn

1 ) = 0, where ∇ is the
Obata connection.

Proof: Let ϕ be a solution of an equation Φ = A(Ω + ∂∂Jϕ)n. The form Ω1 :=
Ω + ∂∂Jϕ is H-positive. Indeed, since Φ = A(Ω + ∂∂Jϕ)n, this form is nowhere
degenerate. At a point p ∈M where ϕ reaches its minimum, the quaternionic Hessian
form ∂∂Jϕ is positive (Subsection 2.3), hence at p the quaternionic Hermitian form
x, y −→ Ω1(x, Jy) is positive definite. Since Ω1 is nowhere degenerate, this form is
positive definite everywhere on M . Therefore, Ω1 is an HKT-form. To check that
∇(Ωn

1 ) = 0, one uses Lemma 4.3 below. We proved Proposition 4.2.

The following lemma is essentially contained in [BDV] (Theorem 3.2).

Lemma 4.3: Let (M, I, J,K) be a hypercomplex manifold, and η a top degree (2n, 0)-
form, which is H-real and holomorphic. Then η is Obata-parallel.

Proof: Since the Obata connection is torsion-free, dη = Alt(∇η), where Alt =
∧

:
Λ2n(M)⊗Λ1(M)−→ Λ2n+1(M) denotes the exterior product. Since η is holomorphic,
∂η = 0. The map Alt restricted to Λ2n,0(M)⊗Λ0,1(M) is an isomorphism; therefore,
∇0,1η = 0. Since η is real, J(η) = η, and we have

∇0,1J(η) = ∇0,1η = 0.

This gives ∇0,1η = 0, because J is Obata-invariant. However, ∇0,1η = ∇1,0η, and
this gives ∇1,0η = 0. We proved that ∇0,1η +∇1,0η = ∇η = 0.

Remark 4.4: It is quite hard to construct examples of compact HKT-manifolds with
holonomy in SL(n,H). So far, the only one construction is known. In [BDV], it was
shown that all hypercomplex nilmanifolds have holonomy in SL(n,H). However, for
an HKT nilmanifold, one always has a left-invariant HKT-form ([FG]), and such a
form satisfies ∇(Ωn) = 0 ([BDV], Theorem 3.2). Therefore, Proposition 4.2 is true in
this situation, though Conjecture 4.1 is not proven even in the simplest cases.
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Remark 4.5: An HKT-form Ω1 satisfying Ωn
1 = ϕ is unique in its cohomology class

[Ω1] ∈ H2(O(M,I)), where H2(O(M,I)) denotes the holomorphic cohomology of (M, I).
Indeed, as shown in [V3] (see also [AV1]), on any SL(n,H)-manifold two closed, real
(2, 0)-forms Ω and Ω′ which belong to the same cohomology class inH2(O(M,I)) satisfy
Ω−Ω′ = ∂∂Jϕ. However, the equation (4.1) cannot have two different solutuions, as
shown in [AV2], Theorem 4.7.

4.2. Balanced HKT-manifolds. Definition 4.6: Let (M, I, g) be a complex Her-
mitian manifold, dimC M = n, and ω ∈ Λ1,1(M) its Hermitian form. One says that
M is balanced if d(ωn−1) = 0.

Remark 4.7: It is easy to see that d(ωm) = 0 for 1 6 m 6 n − 2 implies that
ω is Kähler; the balancedness makes sense as the only non-trivial condition of form
d(ωm) = 0 which is not equivalent to the Kähler property.

Let (M, I, J,K,Ω) be an HKT-manifold, dimH M = n. The “HKT Calabi-Yau”
condition ∂(Ωn) = 0 has an elegant differential-geometric interpretation.

Theorem 4.8: Let (M, I, J,K,Ω) be an HKT-manifold, dimH M = n. Then the
following conditions are equivalent.

(i): ∂(Ωn) = 0
(ii): ∇(Ωn) = 0, where ∇ is the Obata connection
(iii): The manifold (M, I) with the induced quaternionic Hermitian metric is

balanced as a Hermitian manifold:

d(ω2n−1
I ) = 0.

Remark 4.9: A balanced HKT-manifold has holonomy in SL(n,H). This statement
follows immediately from the implication (iii) ⇒ (ii) of Theorem 4.8.

Remark 4.10: The condition ∇(Ωn) = 0 is independent from the choice of a basis
I, J,K, IJ = −JI = K of H. Indeed, suppose that g ∈ SU(n), and (I1, J1,K1) =
(g(I), g(J), g(K)) is a new basis in H. The corresponding HKT-form Ω1 = ωJ1 +√
−1 ωK1 can be expressed as Ω1 = g(Ω), hence

∇(Ωn
1 ) = ∇(g(Ωn

1 )) = g(∇(Ωn)) = 0.

Therefore, Theorem 4.8 leads to the following corollary.

Corollary 4.11: Let (M, I, J,K,Ω) be an HKT-manifold, such that the correspond-
ing complex Hermitian manifold (M, I) is balanced. Then (M, I1) is balanced for any
complex structrure I1 induced by the quaternions. Moreover, (M, I, J,K,Ω) is an
SL(H, n)-manifold.

Proof of Theorem 4.8: The equivalence (i) ⇔ (ii) is immediate from Lemma
4.3. The implication (ii) ⇒ (iii) easily follows from Proposition 3.1. Indeed, Ωn−1

is ∂- and ∂J -closed, hence V(Ωn−1) is a closed (2n − 1, 2n − 1)-form. This form is
proportional to ω2n−1

I , by Proposition 3.2.
The implication (iii) ⇒ (i) is proven as follows.
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Step 1: The Hermitian manifold (M, I, ωI) is balanced if and only if d∗ωI = 0,
which is equivalent to ∂∗ωI = ∂

∗
ωI = 0. By Theorem 2.5, this is equivalent to ∂∗Ω =

∂∗JΩ = 0. This gives d∗Ω = 0. We obtain that d∗ωI = 0 leads to d∗ωJ = d∗ωK = 0.
This also brings

d
(
Ωn ∧ Ω

n−1
)

= ∗d∗Ω = 0.

Step 2: Let θ be a (0, 1)-form defined by

∂ (Ωn) = Ωn ∧ θ.
Using a (2,0)-version of Lefschetz sl(2)-action ([V3]), it is easy to observe that the
map

(4.2) Λ0,1
I (M) ∧Ω

n−1

−−−−−→ Λ0,n−1
I (M)

is an isomorphism. The HKT-condition gives ∂Ω = 0, hence

0 = ∂
(
Ωn ∧ Ω

n−1
)

= ∂ (Ωn) ∧ Ω
n−1

= Ωn ∧ θ ∧ Ω
n−1

.

Using the isomorphism (4.2), we obtain that Ωn ∧ θ ∧ Ω
n−1

= 0 implies that θ = 0.
Therefore, ∂ (Ωn) = 0. The implication (iii) ⇒ (i) is proven. We have finished the
proof of Theorem 4.8.

Remark 4.12: From Remark 4.5, we obtain that a balanced HKT-metric on an
HKT-manifold is unique in its cohomology class [Ω] ∈ H2

(
O(M,I)

)
. In particular, the

space of balanced HKT-metrics is finite-dimensional.

Proposition 4.13: Let (M, I, J,K,Ω) be a balanced HKT manifold, and Ξk :=
Π+(ωk

I ) the maximal weight component of ωk
I . Then dΞk = 0 for any k > n, where

n = dimH M . Moreover, the (k, k)-form Ξk is weakly positive.

Proof: On a balanced HKT-manifold (M, I, J,K,Ω), the top exterior power Ωn

is Obata parallel and holomorphic (Theorem 4.8). Now, Proposition 4.13 is directly
implied by Proposition 3.2.

5. Strong HKT manifolds

5.1. Strong HKT metrics and HKT-potential. There is another important
class of HKT metrics, called strong HKT metrics. For physicists, such metrics are
of special interest ([GHR], [HP]). The original definition of HKT metrics ([HP]) as-
sumed the strong HKT condition; in mathematical literature it was dropped, because
of relative lack of examples.

Definition 5.1: Let (M, I, J,K) be a hypercomplex manifold, and g a quaternionic
Hermitian metric on M . The metric g is called strong HKT (abbreviated for sHKT)
if it is HKT and, moreover,

(5.1) ddcωI = 0,

where dc := −IdI is the usual twisted differential.
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Remark 5.2: Let (M, I, J,K, g) be an HKT-manifold. The torsion of the Bismut
connection on M can be written as

T = −IdωI = −JdωJ = −KdωK

(Remark 1.2). Clearly, the sHKT condition is equivalent to dT = 0.

Remark 5.3: Let (M, I, J,K) be a hypercomplex manifold equipped with a quater-
nionic Hermitian structure. Denote by H the SU(2)-representation generated by the
3-forms dωI , dωJ , dωK . The HKT condition is equivalent to dimH 6 4 (Remark
1.2). On top of it, the strong HKT condition means that for any v ∈ H, one has
dv = 0. Indeed, g is HKT if and only if

IdωI = JdωJ = KdωK .

Therefore, H is generated by four 3-forms

(5.2) H = 〈dωI , IdωI , JdωI , KdωI〉.

Writing dωI = −KdωJ = JdωK , we obtain JdωI = −dωK , KdωI = dωJ . This allows
us to rewrite the basis (5.2), for any HKT-manifold:

H = 〈dωI , IdωI , JdωI = −dωK , KdωI = dωJ〉.

Of those 4 3-forms, 3 are manifestly exact, and IdωI is closed if and only if M is
sHKT, as follows from Remark 5.2.

Proposition 5.4: Let (M, I, J,K) be an HKT-manifold, and Ω ∈ Λ2,0
I (M) its HKT

form. Then the strong HKT condition is equivalent to ∂∂JΩ = 0.

Proof: Clearly, ∂JΩ is an element in H, and for all v ∈ H, and all differentials δ
of form d, IdI, JdJ,KdK, we have δ(v) = 0 per Remark 5.3. Therefore, strong HKT
implies ∂∂JΩ = 0.

To prove the converse implication, consider a local potential ϕ for Ω, Ω = ∂∂Jϕ,
where ϕ ∈ C∞(M) is a smooth function, defined locally on M . Such a potential exists
as shown in [BS] (see also [AV1]). Then ∂∂JΩ = 0 is equivalent to

(5.3) ∂∂J∂∂Jϕ = 0.

The operators ∂, ∂J , ∂, ∂J can be written down as linear combinations of twisted
differentials d, dI := −IdI, dJ := −JdJ, dK := −KdK. These differentials pairwise
anticommute ([V3]), hence the only non-zero homogeneous fourth order monomial
expressed through d, dI , dJ , dK is the operator Λ∗(M) ddIdJdK−−−−−−→ Λ∗+4(M). This gives

(5.4) ∂∂J∂∂J = const ·ddIdJdK ,

where const is a non-zero constant which can be found by an explicit calculation. The
Hermitian form ωI can be expressed through ϕ as

(5.5) ωI = ddIϕ+ dJdKϕ

([BS]). Therefore, the strong HKT condition is equivalent to

0 = ddIω = ddIdJdKϕ = 0
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This is equivalent to ∂∂J∂∂Jϕ = 0 as follows from (5.4). We proved Proposition 5.4.

Remark 5.5: The strong HKT condition can be expressed through the potential, as
indicated above. An HKT metric with potential ϕ is strong HKT if and only if ϕ
satisfies ddIdJdKϕ = 0.

5.2. HKT classes and strong HKT metrics. LetM be a hypercomplex manifold.
Consider the complex

(5.6) C∞(M) ∂∂J−→ Λ2,0
I (M) ∂⊕∂J−→ Λ3,0

I (M)⊕ Λ3,0
I (M).

It is easy to see that this complex is elliptic ([AV1]).
Denote the cohomology of the complex (5.6) by H2,0

∂∂J
(M). From Theorem 2.5 it

follows immediately that the group H2,0
∂∂J

(M) is independent from the choice of a
quaternionic triple I, J,K.

This group is similar to the Bott-Chern cohomology group in complex geometry
([Te], [OV]). The Bott-Chern cohomology encodes the cohomological information
about holomorphic line bundles, and the group H2,0

∂∂J
(M) encodes the cohomological

information about the HKT-forms.

Definition 5.6: Let (M, I, J,K,Ω) be an HKT manifold, and [Ω] ∈ H2,0
∂∂J

(M) the
cohomology class of the HKT form Ω. Then [Ω] is called the HKT class of M .

Clearly, HKT forms Ω,Ω1 have the same HKT class if and only if Ω−Ω1 = ∂∂Jϕ,
for a smooth function ϕ, globally defined on M .

Remark 5.7: Using Hodge theory (in particular, the ∂∂-lemma) one can prove that
the Bott-Chern cohomology of a compact Kähler manifold X is equal to the usual
Hodge cohomology group H1,1(X). For compact HKT-manifolds with holonomy in
SL(n,H) a version of Hodge theory was proven in [V3]. In particular, it was shown
that for any compact HKT-manifold with Hol(M) ⊂ SL(n,H), the natural map
H2,0

∂∂J
(M)−→H2

∂(Λ∗,0(M)) ∼= H2
∂(O(M,I)) to the complex conjugate to the corre-

sponding holomorphic cohomology is an isomorphism.

Remark 5.8: Let (M, I, J,K) be a hypercomplex manifold, dimH M = n, and g
a quaternionic Hermitian form (such a form always exists). Denote by ωI , ωJ and
ωK the corresponding Hermitian forms (1.1). Consider the 4-th order operator from
C∞(M) to C∞(M),

ϕ
�−→ (ddIdJdKϕ, ω

2
I + ω2

J + ω2
K),

where (·, ·) denotes the Hermitian product on differential forms induced from g. Us-
ing the usual Kähler identities, one immediately obtains that on a hyperkähler man-
ifold, � = ∆2, where ∆ is the Laplacian. Therefore, � is elliptic, and the equation
ddIdJdKϕ = 0, ϕ ∈ C∞(M) is overdetermined.

This leads to the following conjecture.

Conjecture 5.9: Let (M, I, J,K) be a compact HKT manifold, and [Ω] ∈ H2,0
∂∂J

(M)
its HKT class. Then there exists at most one strong HKT form Ω′ with [Ω′] = [Ω].
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Remark 5.10: For M hyperkähler, Conjecture 5.9 is clear. Indeed, if strong HKT
forms Ω,Ω′ have the same cohomology class, one has Ω− Ω′ = ∂∂Jϕ, and (as shown
in the proof of Proposition 5.4), this brings ddIdJdKϕ = 0. Using Remark 5.8, one
obtains that ∆2ϕ = 0, hence ϕ is constant. In particular, any strong HKT metric on
a compact hyperkähler manifold is automatically hyperkähler.

5.3. Strong HKT metrics on balanced HKT manifolds. A complex Hermitian
manifold (M, I, ω) is called strong KT if it satisfies ddcω = 0. It is balanced if
d∗ω = 0. In [AI], Section 2, Remark 1, and independently in [FPS], Proposition
1.4, it was shown that a compact Hermitian manifold which is balanced can never be
strong KT, unless it is Kähler. A stronger result can be proven for balanced HKT-
manifolds, following the same lines, if one uses the Sp(1, 1)-representation theory as
indicated below.

Theorem 5.11: Let (M, I, J,K,Ω) be a balanced HKT-manifold. Assume that n =
dimH M > 3. If M admits a strong HKT-form in the same cohomology class [Ω] ∈
H2(O(M,I)), then dΩ = 0, and M is hyperkähler.

Proof: The balanced HKT condition is equivalent to ΛωI
dωI = 0, where ΛωI

is
the Hermitian adjoint to η −→ η ∧ ωI . Indeed,

ΛωI
dωI =

∗d(ω2n−1
I )

2n− 1
.

Forms satisfying ΛωI
η = 0 are called primitive.

Denote by Ξ3 ∈ Λ2n−3,2n−3
I (M) the maximum weight component of ω2n−3

I . By
Proposition 4.13, Ξ3 is a closed, positive (2n− 3, 2n− 3)-form.

The (2, 1)-Hodge component (dωI)2,1 ∈ Λ2,1
I (M) is closed by Remark 5.3, primitive

as seen above, and has weight 1 with respect to SU(2) as follows from Theorem 2.5.
Therefore, (dωI)2,1 is a highest weight vector with respect to so(1, 4)-action associated
with the quaternionic Hermitian structure ([V0]; see Subsection 6.1 for details). By
Theorem 6.2, the Hermitian form

η1, η2 −→
√
−1

∫
M

η1 ∧ η2 ∧ Ξ3

is sign-definite on the space of primitive (2, 1)-forms of weight 1. Therefore,∫
M

(dωI)2,1 ∧ (dωI)1,2 ∧ Ξ3 6= 0

unless (dωI)2,1 = 0. A trivial calculation gives

(dωI)2,1 ∧ (dωI)1,2 =
√
−1 dωI ∧ dIωI .

Since

0 =
∫

M

ddI(ωI ∧ ωI ∧ Ξ3) =
∫

M

dωI ∧ dIωI ∧ Ξ3 +
∫

M

ddIωI ∧ ωI ∧ Ξ3

we conclude that

(5.7)
∫

M

ddIωI ∧ ωI ∧ Ξ3 6= 0,
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unless (M, I, J,K,Ω is hyperkähler.
Now assume that (M, I, J,K) admits an sHKT-form Ω′ in the same cohomology

class. Then Ω − Ω′ = ∂∂Jϕ for some globally defined function ϕ on M . Since
∂∂JΩ′ = 0,

∂∂J∂∂Jϕ = ∂∂J(Ω− Ω′) = ∂∂JΩ.

From (5.4), we obtain that

ddIdJdKϕ = const ∂∂J∂∂Jϕ = const ∂∂JΩ = ddIωI ,

where const is a non-zero rational number. Then (5.7) gives

0 6=
∫

M

ddIωI ∧ ωI ∧ Ξ3 =
∫

M

ddIdJdKϕ ∧ ωI ∧ Ξ3.

Since Ξ3 is d, dI , dJ , dK-closed, the last integral can be rewritten as∫
M

ddIdJdKϕ ∧ ωI ∧ Ξ3 =
∫

M

ϕddIdJdKωI ∧ Ξ3.

However, locally ωI is written as and ωI = ddIψ + dJdKψ by Banos-Swann (5.5),
hence the form ddIdJdKωI is identically zero. Therefore, the integral (5.7) must
vanish as well, and (M, I, J,K,Ω) must be hyperkähler.

Remark 5.12: If Conjecture 4.1 is true, then every SL(n,H)-manifold contains a
balanced HKT-metric in each HKT-class, necessarily unique. Then Theorem 5.11
implies that an SL(n,H)-manifold admits no sHKT-metrics, for n > 3.

5.4. Strong HKT metrics on nilmanifolds. The only examples (so far) of com-
pact SL(n,H)-manifolds are hypercomplex nilmanifolds. A hypercomplex nilmanifold
is a quotient of a nilpotent Lie group equipped with a left-invariant hypercomplex
structure, by a co-compact, discrete subgroup, acting from the left. In [FG] it was
shown that any HKT-metric on a hypercomplex nilmanifold can be averaged with
the Lie group action, giving rise to a left-invariant HKT-metric. The left-invariant
HKT-structures can be considered as metrics on the corresponding Lie algebra, and
studied algebraically.

The HKT-metrics on hypercomplex nilmanifolds are studied in [BDV]. It was
shown that a hypercomplex nilmanifold which admits an HKT metric is necessarily
abelian, that is, the corresponding Lie subalgebra g1,0 of left-invariant (1,0)-vector
fields is abelian. In [DF], Proposition 2.1 it was shown that any abelian hypercomplex
nilmanifold admitting a strong HKT metric is necessarily a torus. Therefore, for
nilmanifolds Theorem 5.11 is known from conjunction of [BDV] and [DF].

The problem of constructing strong HKT-manifolds seems to be difficult. All com-
pact non-hyperkähler examples of sHKT-manifolds known so far are homogeneous.
The hypercomplex structures on semisimple Lie groups obtained by physicists Ph.
Spindel et al ([SSTV]) and independently by D. Joyce ([J]) are strong HKT ([GP]).
A powerful new method of “doubling” a strong HKT 4n-dimensional Lie algebra to
obtain a strong HKT Lie algebra of dimension 8n is proposed in [BF].
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6. Appendix: Hyperkähler Hodge-Riemann relations

6.1. so(4, 1)-action and the Schur’s lemma. Let V be a quaternionic Hermitian
vector space, and Λ∗V its exterior algebra. Consider the 2-forms ωI , ωJ , ωK , defined
on V as in (1.1). Let a be the Lie algebra generated by the operators

LωI
(η) = η ∧ ωI , LωJ

(η) = η ∧ ωJ , LωK
(η) = η ∧ ωK ,

and their Hermitian adjoints. In [V0], it was shown that a ∼= so(4, 1) = sp(1, 1) (in
[V2], the corresponding Lie group was found; it is isomorphic to Sp(1, 1) ∼= Spin(4, 1)).

The Lie algebra sp(1, 1) has rank 2. As shown in [V0], one could choose a Cartan
subalgebra of a in such a way that the corresponding weight decomposition of Λ∗V
coincides with the Hodge decomposition Λ∗V =

⊕
p,q Λp,q(V ).

Definition 6.1: Let A be a vector space, and g a Lie algebra acting on A. Assume
that A is a semisimple representation, that is, A is a direct sum of irreducible
g-representations. Consider a decomposition A =

⊕
Aα of A into a direct sum of rep-

resentations of g, with each Aα being a sum of isomorphic irreducible representations,
non-isomorphic between different Aα. Such a decomposition is called the isotypic
decomposition; it is obviously unique and well-defined.

Let Λ∗V = ⊕αIα be the isotypic decomposition of Λ∗V with respect to the action
of a. Since the Hodge decomposition on Λ∗V is induced by the sp(1, 1)-action, the
Hodge decomposition of Λ∗V is compatible with the isotypic decomposition. Let
Iα = ⊕p,qI

p,q
α be the Hodge decomposition of Iα, taken with respect to the complex

structure I on V .
The main result of this Appendix is the following quaternionic Hermitian version

of Hodge-Riemann relations.

Theorem 6.2: Let V = Hn be a quaternionic Hermitian space, and Λ∗V = ⊕Ip,q
α the

Hodge decomposition of its isotypic decomposition defined above. Consider a form
P ∈ Λ2n−k,2n−kV , P = P (ωI , ωJ , ωK) obtained as an order (2n − k) homogeneous
polynomial of ωI , ωJ , ωK , and let (·, ·)P be a semi-linear pairing on Ip,q

α , defined as

(η, η′)P :=
η ∧ η′ ∧ P

VolV
,

where p + q = k and VolV is the Riemannian volume form on V . Then (·, ·)P is
sign-definite or identically zero.

Theorem 6.2 is an immediate consequence of Schur’s lemma together with the
following theorem, proven in Subsection 6.2.

Theorem 6.3: Let V = Hn be a quaternionic Hermitian space, and Λ∗V = ⊕Ip,q
α the

Hodge decomposition of its isotypic decomposition defined above. Denote by Sp(V )
the group Sp(n) of quaternionic unitary matrices acting on V ; this group obviously
commutes with Sp(1, 1)-action, hence preserves the spaces Ip,q

α . Then the spaces Ip,q
α

are irreducible as representations of Sp(V ), for all p, q, α.
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Remark 6.4: Let W = Cn be a Hermitian vector space, Λ∗V its (real) exterior
algebra, equipped with a usual Lefschetz-type sl(2)-action, Λ∗V = ⊕Iα its isotypic
decomposition, and Λ∗V = ⊕Ip,q

α the Hodge decomposition of ⊕Iα. The Hodge-
Riemann relations state that the form

(η, η′) :=
η ∧ η′ ∧ ωk

VolV
,

is sign-definite on the space Ip,q
α , where p + q + 2k = n. It is deduced directly from

Schur’s lemma, because, as follows from Howe’s duality, the spaces Ip,q
α are irreducible

as representations of U(n) ([Ho]), and the form (·, ·) is U(n)-invariant.
The hyperkähler Hodge-Riemann relations are proven using the same argument,

with Sp(n) instead of U(n).

Remark 6.5: On a compact hyperkähler manifold M , the Sp(1, 1)-action preserves
the harmonic forms. Therefore, the decomposition Λ∗M = ⊕Ip,q

α is well defined on
harmonic forms. The forms P = P (ωI , ωJ , ωK) which can be expressed polynomially
through ωI , ωJ , ωK are closed, hence the pairing (·, ·) is well defined in cohomology. In
this situation, the Hodge-Riemann relations have topological interpretation, similar
to the Hodge index theorem in the Kähler case.

6.2. Howe’s duality and sp(1, 1)-action. Howe’s duality can be stated as in R.
Howe’s paper [Ho] in a very general fashion involving graded Clifford algebras asso-
ciated with graded vector spaces. This version of Howe’s duality includes both the
usual Clifford algebra and usual spinors and its odd counterpart, the Weil algebra
(the algebra of differential operators) and the Weil representation, also known as the
space of symplectic spinors.

To obtain the hyperkähler Hodge-Riemann relations, the symplectic spinorial part
of this picture is not needed.

To simplify the exposition, we omit the odd Clifford part of the statement, and
state the Howe’s duality for usual Clifford algebras and the usual spinors.

Let V be a vector space, W = V ⊕V ⊕V ⊕... a sum of several copies of V , and Λ∗W
the corresponding Grassmann algebra. Denote by W̃ the sum W ⊕W ∗ equipped with
a natural symmetric pairing. The corresponding Clifford algebra Cl(W̃ ) is naturaly
identified with End(Λ∗(W )), and Λ∗(W ) is identified with the associated spinor space
of W̃ .

Definition 6.6: In these assumptions, let Γ,Γ′ ⊂ o(W̃ ) be Lie subalgebras of the
orthogonal Lie algebra o(W̃ ). The pair (Γ,Γ′) is called a dual pair (a Howe’s dual
pair) if Γ is a centralizer of Γ′ and Γ′ is a centralizer of Γ. If Γ and Γ′ are reductive
Lie algebras, (Γ,Γ′) is called a reductive dual pair.

The most important example of a dual pair is provided by the following general
construction.

Proposition 6.7: ([Ho]) Let G be a classical Lie group, V its fundamental represen-
tation, W = V ⊕V ⊕V ⊕ ..., and W̃ = W ⊕W ∗. Denote by Γ ⊂ o(W̃ ) the Lie algebra
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of G acting on W̃ , and let Γ′ ⊂ o(W̃ ) be its centralizer. Then (Γ,Γ′) is a reductive
dual pair.

Such a dual pair is called a classical dual pair.
The Lie algebra o(W̃ ) acts on the corresponding spinor space, hence we can consider

o(W̃ ) as a Lie subalgebra in Cl(W̃ ).
The main result of Howe’s duality is the following useful theorem.

Theorem 6.8: (Howe’s duality) Let G be a classical Lie group, V its fundamental
representation, andW = V ⊕V ⊕V ⊕.... Consider the corresponding classical dual pair
(Γ,Γ′) ⊂ o(W̃ ) ⊂ Cl(W̃ ). Then the associative subalgebra of Cl(W̃ ) = End(Λ∗(W ))
generated by Γ′ is the full algebra of invariants of G in Cl(W̃ ).

Proof: This is [Ho], Theorem 7.

To prove Theorem 6.3, let’s apply Howe’s duality to G = Sp(V ), W = V . The cen-
tralizer of G in o(W̃ ) is naturally identified with u(1, 1,H) = sp(1, 1), hence sp(1, 1)
generates the full algebra of invariants of Sp(V ) acting on Λ∗(V ). Since the Cartan
algebra action of sp(1, 1) coincides with the Hodge decomposition of Λ∗(V ), the cor-
responding eigenspaces Ip,q

α have no endoporphisms generated by sp(1, 1). By Howe’s
duality, this implies that all Ip,q

α are irreducible representations of Sp(V ). We proved
Theorem 6.3.
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[GHR] Gates, S. J., Jr.; Hull, C. M.; Roček, M., Twisted multiplets and new supersymmetric non-

linear σ-models, Nuclear Phys. B 248 (1984), no. 1, 157–186.
[G] P. Gauduchon, Hermitian connections and Dirac operators, Bollettino U. M. I. B 11 (1997)

257-288.
[GP] Grantcharov, G., Poon, Y. S., Geometry of hyper-Kähler connections with torsion,

math.DG/9908015, Comm. Math. Phys. 213 (2000), no. 1, 19–37.

[J] D. Joyce, Compact hypercomplex and quaternionic manifolds, J. Differential Geom. 35 (1992)
no. 3, 743-761

[HP] P.S. Howe, G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion Phys.

Lett. B 379 (1996), no. 1-4, 80–86.
[Ho] Howe, Roger, Remarks on classical invariant theory Trans. Amer. Math. Soc. 313 (1989), no.

2, 539–570.

[Hu] Humphreys, J., Introduction to Lie Algebras and Representation Theory, Graduate Texts in
Mathematics, Springer-Verlag, no. 9, 1972.
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