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ON THE STRUCTURE OF GOULDEN-JACKSON-VAKIL
FORMULA

S. Shadrin

Abstract. We study the structure of the Goulden-Jackson-Vakil formula that relates
Hurwitz numbers to some conjectural “intersection numbers” on a conjectural family

of varieties Xg,n of dimension 4g − 3 + n. We give explicit formulas for the properly
arranged generating function for these “intersection numbers”, and prove that it satisfies

Hirota equations. This generalizes and substantially simplifies our earlier results with

Zvonkine.

1. Introduction

1.1. Hurwitz numbers. Consider a ramified covering of degree d over the sphere
CP1 by a smooth Riemann surface of genus g. Assume that there is a total ramification
over 0 ∈ CP1 (that is, the monodromy at 0 is a cycle of length d); there are n
preimages of ∞ ∈ CP1 with the multiplicities b1, . . . , bn; and there is exactly one
simple ramification over each of m = 2g−1+n fixed points z1, . . . , zm ∈ CP1 \{0,∞}
(the number m is determined by the Riemann-Hurwitz formula).

There is a finite number of such coverings. The Hurwitz number hg,b1,...,bn
counts

these coverings with weights; the weight of a covering equals to the reciprocal of the
order of its automorphism group.

1.2. GJV-formula. Goulden, Jackson, and Vakil studied the structure of these Hur-
witz numbers in [4]. They observed that these numbers can be represented as

(1)
hg,b1,...,bn

d ·m!
=

∫
Xg,n

1− λ2 + · · · ± λ2g

(1− b1ψ1) · · · (1− bnψn)
.

Here Xg,n is a conjectural complex algebraic variety of complex dimension 4g −
3 + n, and ψ1, . . . , ψn ∈ H2(Xg,n,C) and λ2i ∈ H4i(Xg,n,C), i = 1, . . . , g, are some
conjectural cohomology classes on it. There is a reasonable hope that Xg,n might
be something like a suitable compactification of the universal Picard variety; and ψ-
and λ-classes might play the same significant role as the usual ψ- and λ- classes do
in geometry of the moduli space of curves.

1.3. Relation to Hirota equations. A consequence of the GJV conjecture is that
the “intersection numbers”

(2) 〈λ2iτd1 · · · τdn
〉 :=

∫
Xg,n

λ2iψ
d1
1 · · ·ψdn

n ,
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4g − 3 + n = 2i + d1 + · · · dn, are not only some important combinatorial constants
(defined via Hurwitz numbers and GJV-formula), but they might also be related to
geometry and deserve further study.

The first step in this direction was done by me and Zvonkine in [15]. We proved
that the generating series for the numbers 〈τd1 · · · τdn

〉 is a solution to Hirota hierarchy
and to the linearized KP hierarchy simultaneously. This is a complete analogue of the
Witten-Kontsevich theorem [1, 7, 8, 9, 10, 11, 14, 16, 17] for the intersection numbers
of ψ-classes on the moduli space of curves.

1.4. Kazarian’s study of Hodge integrals. In the case of the usual moduli space,
there is another formula that relates the intersection number with ψ-classes and at
most one λ-class (Hodge integrals) to the combinatorics of ramified coverings. It is
the celebrated ELSV-formula [3, 5]. It was recently used by Kazarian [7] in order to
give a generalization of the Witten-Kontsevich theorem. He rearranges the generating
series for Hodge integrals in such a way that is appears to be a solution of Hirota
hierarchy.

In this note we apply the technique proposed by Kazarian in order to expand the
structure of GJV-formula. It works perfectly; we also relate the generating series
for our “intersection numbers” 〈λ2iτd1 · · · τdn

〉 to Hirota equations. Moreover, all
computations in this case appear to be much more simple. In particular, we manage
to give a very explicit formulas for the generating series of our conjectural “intersection
numbers”. Of course, we hope that this computation will be helpful for the search
of the proper family of varieties Xg,n of dimension 4g − 3 + n, whose existence and
explicit description is demanded as a part of the Goulden-Jackson-Vakil conjecture.

1.5. Hirota equations. In this paper we call by Hirota equation the bilinear Hirota
form of the Kadomtsev-Petviashvili hierarchy. So, a formal power series satisfies
Hirota equations if and only if it is a tau-function of the KP hierarchy. For the
complete definition and discussion of Hirota equations, we refer the reader to [2, 6, 7,
12, 15]. For our purposes in this paper, we use a few properties of Hirota equations.
That is:

(1) For any c ∈ C, the function c+ q1 satisfies Hirota equations.
(2) The operators

Λ1 =
∞∑

i=2

qi
(i− 1)∂
∂qi−1

,

Λa =
∞∑

i=1

qi
(i− a)∂
∂qi−a

+
1
2

−a−1∑
j=1

j(−a− j)∂2

∂qj∂q−a−j
, a ≤ 0

M0 =
1
2

∞∑
i,j=1

qiqj
(i+ j)∂
∂qi+j

+
1
2

∞∑
i,j=1

qi+j
ij∂2

∂qi∂qj

M1 =
1
2

∞∑
i+j≥1

qiqj
(i+ j − 1)∂
∂qi+j−1

+
1
2

∞∑
i,j=1

qi+j+1
ij∂2

∂qi∂qj
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M2 =
1
2

∞∑
i+j≥2

qiqj
(i+ j − 2)∂
∂qi+j−2

+
1
2

∞∑
i,j=1

qi+j+2
ij∂2

∂qi∂qj

are the infinitesimal symmetries of Hirota equations.
(3) Hirota equations are preserved by the rescaling of variables qi ↔ uiqi (simul-

taneously for all i = 1, 2, . . . ; u is a formal parameter).
Let us give an example of the argument that we use below. Since c + q1 satis-

fies Hirota equations, the series exp(Λ1)(c + q1) = c +
∑∞

i=1 qi also satisfies Hirota
equations.

An important point for us is that if both f and 1 + f satisfy Hirota equations,
it means that f also satisfies the linearized KP hierarchy. So, throughout, we watch
for instances where an arbitrary constant may be added to a solution of the Hirota
equations.

2. Rearranged generating series and Hirota equations

In this section, we study the generating series for all integrals involved in Goulden-
Jackson-Vakil formula.

2.1. Hirota equations and an explicit formula. We define a sequence of linear
functions Tk, k = 0, 1, . . . , in formal variables qi, i = 1, 2, . . . . We set T0 = q1, and
Tk+1 = (uΛ0 + Λ1)Tk. We list the first few expressions:

T0 = q1,(3)
T1 = uq1 + q2,

T2 = u2q1 + 3uq2 + 2q3,

T3 = u3q1 + 7u2q2 + 12uq3 + 6q4.

Consider the generating series for the intersection numbers with λ-classes defined
as

(4) G(u, q1, q2, . . . ) =
∑

j,k1,k2,...

(−1)j〈λ2jτ
k0
0 τk1

1 . . . 〉u2j+1T
k0
0

k0!
T k1

1

k1!
. . . .

In particular, we see that the expansion of G in u starts with the terms

(5) G = uF +
u2

2
Λ−1F + . . . ,

where F is the generation function for the intersection numbers without λ-classes:

(6) F (t0, t1, . . . ) =
∑

k0,k1,...

〈τk0
0 τk1

1 . . . 〉 (0!q1)k0

k0!
(1!q2)k1

k1!
. . . .

Theorem 1. For any function c = c(u), the series

(7) τ = c(u) +
q1 + q1q2

u
+ q21 +

(
Λ0 +

1
u

Λ1

)2

G(u, q1, q2, . . . )

is a solution of the Hirota equations in variables qi, i = 1, 2, . . . (u is just a parameter).

In fact, we can give an explicit formula for τ .
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Theorem 2. We have:

(8) τ = exp(M2 + 2uM1 + u2M0)
(
c(u) +

q1
u

)
.

2.2. Generating series for Hurwitz numbers. Consider the generating series for
Hurwitz numbers,

H(β, p1, p2, . . . ) :=
∑
g,n

Hg,n(9)

:=
∑
g,n

1
n!

∑
b1,...,bn

hg,b1,...,bn

b ·m!
pb1 · · · pbnβ

m.

It is proved in [15] (following the observations made before in [13, 8]) that c(β)+Λ2
0H

is a solution of the Hirota equations in variables pi, i = 1, 2, . . . , for any function c(β).
For completeness, we remind the Reader of the proof. Hurwitz numbers satisfy a

so-called cut-and-join equation (see, e. g. [4]). This implies that H = exp(βM0)H0,1.
Since [M0,Λ0] = 0, we have:

(10) Λ2
0H = exp(βM0)Λ2

0H0,1 = exp(βM0)
∞∑

i=1

pi.

Since the series c(β)+
∑∞

i=1 pi satisfies the Hirota equations, andM0 is an infinitesimal
symmetry of the Hirota equations, we conclude that c(β) + Λ2

0H also satisfies the
Hirota equations.

2.3. Rearranging of GJV-formula. The GJV-formula is applied to all compo-
nents of H except for H0,1 and H0,2. Denote by Hn the sum n!

∑n
g=0Hg,n for n ≥ 3

and the sum n!
∑n

g=1Hg,n for n = 1, 2. That is,

(11) H =
∞∑

n=1

Hn

n!
+H0,1 +H0,2.

Using that m = dimXg,n/2 + n/2 + 1/2, we obtain:

Hn =
∑

g,b1,...,bn

∫
Xg,n

1− λ2 + · · · ± λ2g

(1− b1ψ1) · · · (1− bnψn)
pb1 · · · pbn

βm(12)

= β
∑

g,b1,...,bn

∫
Xg,n

(1− βλ2 + · · · ± βgλ2g)
n∏

i=1

β1/2pbi

(1− β1/2biψi)

= β

〈
(1− βλ2 + β2λ4 − . . . )

n∏
i=1

(
∑
d≥0

τdTd)

〉
,

where

(13) Td =
∑
b≥1

β1/2pb · bdβd/2 = β(d+1)/2
∑
b≥1

bdpb.

There is an obvious way to define Td recursively. We just set T0 = β1/2
∑

b≥1 pb, and
Tk+1 = β1/2Λ0Tk.
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2.4. Change of variables. We need the following change of variables. First, we
replace β1/2 by u. Then we rescale the variables by setting pb = qb/u

b. And then we
replace qi with exp(−Λ1/u)qi.

In other words, it is a linear triangular change of variables given by

(14) pb =
∞∑
i=b

1
ui

(−1)i−b

(
i− 1
b− 1

)
qi.

The same change of variables (in slightly different notation) is used in [15]. Under
this change of variable a series f(β1/2, p1, p2, . . . ) transforms into g(u, q1, q2, . . . ) :=
exp(−Λ1/u)f(u, q1/u, q2/u2, . . . ).

Another way to do the same is to replace pb with exp(−Λ1)pb and then to rescale
pb = qb/u

b. Note that Λ1 in an infinitesimal symmetry of Hirota equations. The
rescaling pb = qb/u

b also preserves them. Therefore, this change of variables preserves
the property for being a solution to Hirota equations.

2.5. Proof of Theorems 1 and 2. We have already observed that c(β) + Λ2
0H =

exp(βM0)(c(β) +
∑∞

i=1 pi) is a solution to Hirota equations. Under the change of
variables (14), c(β) +

∑∞
i=1 pi turns into c(u) + q1/u (it is an explicit computation).

Since [M0,Λ1] = 2M1, [M1,Λ1] = M2, and [M2,Λ1] = 0, the operator u2M0 becomes

(15) exp(−Λ1/u)u2M0 exp(Λ1/u) = u2M0 + 2uM1 +M2.

This implies that under the change of variables (14), c(β) + Λ2
0H turns into

(16) τ = exp(M2 + 2uM1 + u2M0)
(
c(u) +

q1
u

)
.

On the other hand, under the change of variables (14), Λ2
0H0,1 turns into q1/u,

Λ2
0H0,2 becomes q1q2/u + q21 , and T0 turns into q1 (all these observations are simple

explicit computations). Also, since [Λ0,Λ1] = Λ1, it follows that β1/2Λ0 turns into
exp(−Λ1/u)uΛ0 exp(Λ1/u) = uΛ0 + Λ1.

Therefore, Hn becomes
∑

j,b1,...,bn
(−1)j〈λ2jτb1 · · · τbn〉u2j+1Tb1 · · ·Tbn , where Tb is

defined in variables q as in equation (3).

So, c(β) + Λ2
0H = c(β) + Λ2

0H0,1 + Λ2
0H0,2 + Λ2

0

(∑
n≥1Hn/n!

)
becomes c(u) +

q1/u + q1q2/u + q21 + (Λ0 + Λ1/u)2G. The last expression must coincide with τ in
equation (16), and this completes the proof of both theorems.

3. Intersections of ψ-classes

In this section, we study the formal power series

(17) F (q1, q2, . . . ) =
∑

k0,k1,...

〈τk0
0 τk1

1 . . . 〉 (0!q1)k0

k0!
(1!q2)k1

k1!
. . . .
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3.1. An explicit formula. Using two different expressions for τ given by formu-
las (7) and (8), we see that

(18) Λ2
1F + q1 + q1q2 = exp(M2)q1.

It was proved in [4] (and we reprove this below) that F satisfies the string equation,
that is,

(19)
∂

∂q1
F = Λ1F +

q21
2
.

It implies that

(20) Λ2
1F + q1 + q1q2 =

∂2F

∂q21
.

Thus we prove the following theorem.

Theorem 3. We have:

(21)
∂2

∂q21
F = exp(M2)q1

In particular, an obvious corollary of this explicit formula is Theorem 2 in [15]:

Theorem 4. For any c ∈ C, the series c+ ∂2F/∂q21 satisfies Hirota equations.

3.2. String equation. Let us prove the string equation (19). Since [∂/∂q1,M2] =
Λ1, and Λ1 commutes with M2, we have:

(22)
∂ exp(M2)q1

∂q1
= Λ1 exp(M2)q1 + 1.

If we substitue in this formula exp(M2)q1 with Λ2
1F + q1 + Λ1(q21/2) (using equa-

tion (18)), and use that ∂/∂q1 commutes with Λ1, we obtain

(23) Λ2
1

(
∂F

∂q1

)
= Λ2

1

(
Λ1F +

q21
2

)
.

This implies the string equation (19).

3.3. Towards Virasoro constraints. Though we already have a nice closed for-
mula for ∂2F/∂q21 , it is still might be interesting to find an analog of Virasoro contrains
for it. Indeed, our goal is to find a family of varieties with the intersection theory
controlled by F . And we know that in the usual case of the moduli space of curves
the geometry of degenerations of curves is intimately related to the existence and the
particular form of Virasoro constraints, see [11]. However, a part of the problem is
that F is not an exponential generating function; and in our case it does not make
any sense to exponentiate it.

We prove a sequence of some strange equations for exp(M2)q1; and the first two of
them are indeed the string equation and the dilaton equation, already proved in [4].

Proposition 5. For any n ≥ 1,

(24)
n∂

∂qn
exp(M2)q1 = Λ2−n exp(M2)q1 + exp(M2)qn−1

1 .
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3.3.1. Proof. The proof is based on several observations. Denote by ad y(x) the
operator [x, y]. Then the operator n∂/∂qn is equal to the sum

(25)
n∂

∂qn
=

∞∑
i=0

exp(−adM2)
(adM2)i

i!

(
n∂

∂qn

)
.

We show below that among all operators

(26) Oi := exp(−adM2)
(adM2)i

i!

(
n∂

∂qn

)
only On−1 and On act nontrivially on exp(M2)q1. Moreover, one can prove that
On−1 exp(M2)q1 = n exp(M2)qn−1

1 .
Observe that nΛ2−n = adM2(n∂/∂qn) is also equal to

∑∞
i=1 iOi. Thus we have:

n∂

∂qn
exp(M2)q1 = n exp(M2)qn−1

1 +On exp(M2)q1(27)

Λ2−n exp(M2)q1 = (n− 1) exp(M2)qn−1
1 +On exp(M2)q1,

and this implies the statement of the theorem.

3.3.2. Action of Oi. It is a simple observation that

(28) i!Oi exp(M2)q1 = exp(M2)
(

(adM2)
i

(
n∂

∂qn

))
q1.

Then,

(29)
(

(adM2)
i

(
n∂

∂qn

))
q1 =

((
adM lin

2

)i
(
n∂

∂qn

))
q1,

where by M lin
2 we denote the linear part of M2. And then it is a straightforward

calculation to show that for i ≥ 1

(30)
(
adM lin

2

)i
(
n∂

∂qn

)
=

i−1∏
j=0

(n− j)
∑

k1,...,ki

qk1 · · · qki

(k1 + · · ·+ ki + n− 2i)∂
∂qk1+···+ki+n−2i

Since kl ≥ 1, l = 1, . . . , i, the terms with ∂/∂q1 appear only for i ≥ n − 1. But
the coefficient

∏i−1
j=0(n − j) vanishes for i ≥ n + 1. So this operator can be applied

non-trivially to q1 only if i = n− 1 or n. Then it is obvious that for i = n− 1 it turns
q1 into n!qn−1

1 .
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