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CONGRUENCES FOR LEVEL FOUR CUSP FORMS

Scott Ahlgren, Dohoon Choi, and Jeremy Rouse

Abstract. In this paper, we study congruences for modular forms of half-integral weight

on Γ0(4). Suppose that ` ≥ 5 is prime, that K is a number field, and that v is a prime
of K above `. Let Ov denote the ring of v-integral elements of K, and suppose that

f(z) =
P∞

n=1 a(n)qn ∈ Ov [[q]] is a cusp form of weight λ + 1/2 on Γ0(4) in Kohnen’s

plus space. We prove that if the coefficients of f are supported on finitely many square
classes modulo v and λ + 1/2 < `(` + 1 + 1/2), then λ is even and

f(z) ≡ a(1)

∞X
n=1

nλqn2
(mod v).

This result is a precise analogue of a characteristic zero theorem of Vignéras [22]. As an
application, we study divisibility properties of the algebraic parts of the central critical

values of modular L-functions.

1. Introduction

Recent works of Bruinier [5], Bruinier and Ono [6], Ono and Skinner [16] and
Ahlgren and Boylan [1], [2] have considered the distribution of the coefficients of half-
integral weight modular forms modulo primes and prime powers. There are many
applications, for example to the study of divisibility properties of the algebraic parts
of the central critical values of modular L-functions and orders of Tate-Shafarevich
groups of elliptic curves, and to the study of congruences for combinatorial generating
functions which can be expressed in terms of these forms.

Many of these results can be viewed as modulo ` versions of a characteristic zero
theorem of Vignéras [22], which states that a half-integral weight modular form whose
coefficients are supported on finitely many square classes of integers must in fact be a
linear combination of single-variable theta series. To be precise, we have the following
(a different proof of this result was given by Bruinier [4]).

Theorem 1.1 ([22], Théorème 3). Suppose that λ ≥ 0 is an integer, that N is a
positive integer with 4 | N , and that F (z) ∈ Mλ+ 1

2
(Γ1(N)). If there are finitely many

square-free integers t1, t2, . . . , tm for which

F (z) =
m∑

i=1

∞∑
n=0

a(tin2)qtin
2
, q = e2πiz

then λ = 0 or 1 and F (z) is a linear combination of theta series.
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Let ` ≥ 5 be prime and let v be a place of Q over `; then we consider modular
forms f(z) ∈ Sλ+ 1

2
(Γ0(N), χ) for which we have a congruence of the form

(1.1) f(z) ≡
m∑

i=1

∞∑
n=1

a(tin2)qtin
2
6≡ 0 (mod v).

The results of [5], [6], and [16] imply that for a fixed f which is not a linear combination
of theta series, there are only finitely many ` for which such a congruence can occur.
Moreover, if there is such a congruence, then detailed information about the action
of the Hecke algebra on the form f and the distribution of the coefficients of f in
residue classes modulo v is obtained.

In [2], given the additional assumption that f is a Hecke eigenform modulo v, it
is shown that such a form must be congruent to some iterated derivative of a single-
variable theta series of weight 1/2 or 3/2; this yields a precise description of those
coefficients of f outside of certain arithmetic progressions (in which information is
lost due to the incomplete theory of newforms in the general case).

In this paper, we will obtain a precise analog of the theorem of Vignéras in the most
basic setting; namely we will study forms f(z) which lie in the Kohnen plus-space
S+

λ+ 1
2
(Γ0(4)). We prove, with a suitable assumption on the size of `, that if such a

form f satisfies (1.1), then it must be the case that f is congruent to the image of
the single variable theta series

(1.2) θ0(z) :=
∑
n∈Z

qn2

under some number of iterations of the differential operator

(1.3) Θ
(∑

a(n)qn
)

:=
∑

na(n)qn.

Although this is the simplest case which one could consider, it will be seen that the
methods which we require are still quite involved. Our main result is the following.

Theorem 1.2. Suppose that ` ≥ 5 is prime, that K is a number field, and that v is
a prime of K above `. Let Ov denote the ring of v-integral elements of K. Suppose
that f(z) ∈ S+

λ+ 1
2
(Γ0(4)) ∩ Ov[[q]] satisfies

f(z) ≡
m∑

i=1

∞∑
n=1

a(tin2)qtin
2
6≡ 0 (mod v),

where each ti is a square-free positive integer. If λ + 1/2 < `(` + 1 + 1/2), then λ is
even and

f(z) ≡ a(1)
∞∑

n=1

nλqn2
(mod v).

Example. If ` = 5 and λ = 6, there is a form g(z) ∈ S+
13/2(Γ0(4)) given by

g(z) = θ0F (θ4
0 − 2F )(θ4

0 − 16F )

= q − 56q4 + 120q5 − 240q8 + 9q9 + 1440q12 − 1320q13 + · · · ,
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where F (z) :=
∑∞

n=0 σ1(2n + 1)qn ∈ M2(Γ0(4)). We have

g(z) ≡
∞∑

n=1

n2qn2
(mod 5).

Remark. The bound on the weight in Theorem 1.2 is sharp. In particular, for any
prime ` ≥ 5 there is a form

f ≡ 1
2
Θ(θ0)` ≡

∞∑
n=1

n2q`n2
(mod `)

of weight `(` + 1 + 1/2), in the plus-space, for which the conclusion of Theorem 1.2 is
false.

The results of [14], [13], and [23] connect the coefficients of modular forms of
half-integral weight to the central L-values of twists of integral weight forms. More
precisely, suppose that f ∈ S2k(Γ0(1)) is a normalized Hecke eigenform, with f(z) =∑∞

n=1 a(n)qn. Suppose that g(z) =
∑∞

n=1 c(n)qn ∈ S+
k+1/2(Γ0(4)) is a Hecke eigen-

form with the same Hecke eigenvalues as f . Theorem 1 of [14] states the following.

Theorem 1.3. Suppose that f and g are as above, D is a fundamental discriminant
with (−1)kD > 0, and L(f,D, s) is the twisted L-series

L(f,D, s) =
∞∑

n=1

(
D
n

)
a(n)n−s.

Then
c(|D|)2

〈g, g〉
=

(k − 1)!
πk

|D|k− 1
2
L(f,D, k)
〈f, f〉

.

Here, 〈g, g〉 and 〈f, f〉 are the normalized Petersson scalar products

〈g, g〉 =
1
6

∫
H/Γ0(4)

|g(z)|2yk−3/2 dx dy

〈f, f〉 =
∫

H/Γ0(1)

|f(z)|2y2k−2 dx dy.

Note that g(z) is only defined up to a scalar multiple. We will choose the scalar mul-
tiple so that g(z) has Fourier coefficients which are algebraic integers, and relatively
prime. With this notation, let

Lalg(f,D, k) =
〈g, g〉(k − 1)!|D|k−1/2L(f,D, k)

〈f, f〉πk
= c(|D|)2.

Next, we state some corollaries of Theorem 1.2 pertaining to central L-values.

Corollary 1.4. Suppose that k is odd, that ` ≥ 5 is a prime with k + 1/2 < `(` + 1 +
1/2), that f ∈ S2k(Γ0(1)) is a normalized Hecke eigenform, and that v is a prime of
Q above `. Then there are infinitely many fundamental discriminants D < 0 so that

Lalg(f,D, k) 6≡ 0 (mod v).
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Corollary 1.5. Suppose that k is even, that ` ≥ 5 is a prime with k+1/2 < `(`+1+
1/2), that f ∈ S2k(Γ0(1)) is a normalized Hecke eigenform, and that v is a prime of
Q above `. If there are only finitely many fundamental discriminants D > 0 so that

Lalg(f,D, k) 6≡ 0 (mod v),

then
Lalg(f, 1, k) 6≡ 0 (mod v),

and
Lalg(f,D, k) ≡ 0 (mod v) for D > 1.

Remark. If f(z) = ∆(z) := q
∏∞

n=1(1 − qn)24 is the normalized Hecke eigenform of
weight 12, then the corresponding form

g(z) = θ0F (θ4
0 − 2F )(θ4

0 − 16F )

was given above. In this case, Lalg(f, 1, k) ≡ 1 (mod 5), but Lalg(f,D, k) ≡ 0
(mod 5) for all other fundamental discriminants D > 0.

2. Preliminaries

Suppose that λ is a non-negative integer, that N is a positive integer with 4|N , and
that χ is a Dirichlet character defined modulo N . Then we denote by Sλ+ 1

2
(Γ0(N), χ)

the usual complex vector space of cusp forms of weight λ+ 1
2 on Γ0(N) with character

χ. For definitions and basic facts about the theory of modular forms of integer weight,
see [9]. For facts about the theory of modular forms of half-integer weight, see [11],
Chapter IV.

If k is an integer and N is a positive integer, then we denote by Mk(Γ1(N)) the
space of weight k modular forms on Γ1(N) and by Sk(Γ1(N)) the subspace of cusp
forms; we have the decomposition

Mk(Γ1(N)) =
⊕

χ

Mk(Γ0(N), χ),

where the sum runs over all Dirichlet characters modulo N . Let χD denote the
Kronecker character associated to the extension Q(

√
D)/Q (or the trivial character if

D = 1). Then we have

(2.1) Mk(Γ1(4)) =

{
Mk(Γ0(4)) if k is even,

Mk(Γ0(4), χ−1) if k is odd.

In [12], Kohnen introduces the plus space S+
λ+ 1

2
(Γ0(4)) of cusp forms g(z) of weight

λ + 1
2 on Γ0(4) with a Fourier expansion of the form

g(z) =
∑

(−1)λn≡0,1 (mod 4)

b(n)qn.

We recall Kohnen’s refinement of the Shimura lifting (see [12], Theorem 1). For
each non-negative integer λ and each fundamental discriminant D with (−1)λD > 0,
we have a map

Sh+
D,λ : S+

λ+ 1
2
(Γ0(4)) → S2λ(Γ0(1))
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defined in the following way. If F (z) =
∑∞

n=1 a(n)qn ∈ S+
λ+ 1

2
(Γ0(4)), then

Sh+
D,λ(F ) =

∞∑
n=1

∑
d|n

χD(d)dk−1a

(
n2

d2
|D|

) qn.

The Shimura correspondence commutes with the action of the Hecke operators. In
particular, if p is an odd prime, then

Sh+
D,λ(F |T (p2, λ + 1

2 , 1)) = Sh+
D,λ(F )|T (p, 2λ, 1),

where the Hecke operators are the usual operators of half-integral and integral weights,
respectively.

Using an argument of Bruinier [5], the next result was proved by Bruinier and Ono
([6], Theorem 3.1) in the case when χ is a real character and K = Q (the version
which we state here follows in exactly the same way).

Theorem 2.1. Suppose that ` ≥ 5 is prime, that K is a number field, and that v is
a prime of K above `. Suppose that

f(z) =
∞∑

n=1

a(n)qn ∈ Sλ+ 1
2
(Γ0(N), χ) ∩ Ov[[q]],

that ` - N , and that p - N` is prime. If there exists εp ∈ {±1} such that

f(z) ≡
∑

“
n
p

”
∈{0,εp}

a(n)qn (mod v),

then we have

(p− 1)f(z) | T (p2, λ + 1
2 , χ) ≡ εpχ(p)

(
(−1)λ

p

)
(pλ + pλ−1)(p− 1)f(z) (mod v).

Finally, we recall some facts about the algebra of modular forms mod `, where
` ≥ 5 is prime. Suppose that K is a number field and that v is a prime ideal of K
above `. Let Ov be the ring of v-integral elements of K, and set Fv := Ov/v. If
f =

∑
a(n)qn ∈ Ov[[q]], then we define f :=

∑
a(n)qn ∈ Fv[[q]], and we define

(2.2) Mk(Γ1(N)) := {f : f ∈ Mk(Γ1(N)) ∩ Ov[[q]]}
and

M(N) =
∞⊕

k=0

Mk(Γ1(N))

(we will require only the cases N = 1 and N = 4 here). If f ∈ Mk(Γ1(N)) then we
define

(2.3) ω(f) = ω(f) := inf{k′ : there exists g ∈ Mk′(Γ1(N)) with f = g}

Recall the definition (1.3) of the theta operator; it is well-known that Θ maps
modular forms mod ` to modular forms mod `. With this notation we summarize
some important properties of the filtration.

Proposition 2.2. Suppose that N = 1 or N = 4, that ` ≥ 5 is prime, and that
f ∈ Mk(Γ1(N)). Then we have the following.
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(1) If g ∈ Mk′(Γ1(N)) has f = g 6= 0, then k ≡ k′ (mod `− 1).
(2) ω(Θ(f)) ≡ ω(f) + 2 (mod `− 1).
(3) ω(Θ(f)) ≤ ω(f) + ` + 1, with equality if and only if ` - ω(f).
(4) ω(f i) = iω(f) for all i ≥ 1.

Proof. In the case when N = 1 these facts follow from the work of Serre and
Swinnerton-Dyer [20], [18] (a good account is in Chapter X of [15]). When N = 4, one
can appeal to the general results of Gross [10] or one can argue directly using work of
Tupan [21]. Recall the definition (1.2) of θ0(z), and set F :=

∑∞
n=0 σ1(2n + 1)q2n+1.

Let A(X, Y ) ∈ Z(`)[X, Y ] be the polynomial satisfying A(θ4
0, F ) = Ep−1(z). Then

Theorem A of [21] implies that there is an isomorphism

Fv[X, Y ]/(A(X2, Y )− 1) →
∞⊕

k=0

Mk(Γ1(4)),

which is realized by mapping X to θ2
0 and Y to F . Using this fact, one can argue

exactly as in Sections 7 and 8 of Chapter X of [15] to obtain the desired results. �

3. Modular forms of integral weight

In this section we prove two results on modular forms of integral weight modulo
`. For any function f(z) on H = {z ∈ C : Im(z) > 0} and any positive integer d we
define the operators

f(z)
∣∣Vd := f(dz),(3.1)

f(z)
∣∣Ud :=

1
d

d−1∑
j=0

f

(
z + j

d

)
.(3.2)

If f has a Fourier expansion f(z) =
∑

a(n)qn, then f
∣∣Ud =

∑
a(nd)qn.

Theorem 3.1. Suppose that K is a number field and that v is a prime ideal of K
above the rational prime `. Suppose that f =

∑
a(n)qn ∈ S2k(Γ0(N)) ∩ Ov[[q]]. If

t > 1 and

f ≡
∞∑

n=1

a(tn)qtn (mod v)

where gcd(t, `N) = 1, then f ≡ 0 (mod v).

Proof. We may assume without loss of generality that t is prime. We have the de-
composition

S2k(Γ0(N)) =
⊕
d|N

⊕
e|d

Snew
2k (Γ0(N/d))|V (e).

Each of the spaces Snew
2k (Γ0(N/d)) is spanned by newforms with coefficients which are

algebraic integers, and the extension L of K generated by all of these coefficients is a
finite extension. Letting νd denote the dimension of Snew

2k (Γ0(N/d)), we may write

f =
∑
d|N

νd∑
i=1

∑
e|d

cd,i,efd,i|V (e),

where the fd,i run over newforms in Snew
2k (Γ0(N/d)) and each cd,i,e ∈ L. Let OL

denote the ring of integers of L and let l be a prime ideal above v in OL. Let n =
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max(1, 1−min(ordl(cd,i,e))). For each form fd,i, it follows from the work of Deligne
that there is a Galois representation ρd,i : Gal(Q/Q) → GL2(OL/ln), unramified
outside of `N , such that if

fd,i =
∞∑

n=1

ad,i(n)qn,

then for all primes p - `N , we have

Tr(ρd,i(Frobp)) ≡ ad,i(p) (mod ln),

Det(ρd,i(Frobp)) ≡ p2k−1 (mod ln).

To prove the theorem, suppose that m is a positive integer; we will show that
a(m) ≡ 0 (mod v). Write m = tam1 where t - m1 (we may assume that a ≥ 1). From
the properties of the Hecke algebra it follows that there is a polynomial Pa(x, y) ∈
Z[x, y] such that for each prime p - N and each i, we have

ad,i(pa) = Pa(ad,i(p), p2k−1).

Then,

a(m) =
∑
d|N

νd∑
i=1

∑
e| gcd(d,m1)

cd,i,ead,i(m1/e)ad,i(ta)

=
∑
d|N

νd∑
i=1

∑
e| gcd(d,m1)

cd,i,ead,i(m1/e)Pa(ad,i(t), t2k−1).

The compositum of the fixed fields of all of the ρd,i is a finite extension. By the
Chebotarev density theorem we conclude that there is a prime p > N`t such that
ρd,i(p) = ρd,i(t) for all d and i; it follows that

ad,i(p) ≡ ad,i(t) (mod ln),

p2k−1 ≡ t2k−1 (mod ln).

Then we have

a(pam1) ≡
∑
d|N

νd∑
i=1

∑
e| gcd(d,m1)

cd,i,ead,i(m1/e)Pa(ad,i(p), p2k−1)

≡
∑
d|N

νd∑
i=1

∑
e| gcd(d,m1)

cd,i,ead,i(m1/e)Pa(ad,i(t), t2k−1)

≡ a(m) (mod l).

Since a(pam1) ≡ 0 (mod v) by assumption, we conclude that a(m) ≡ 0 (mod l).
Since a(m) ∈ Ov we have a(m) ≡ 0 (mod v), as desired. �

The next result is a mod ` analog of a well-known result in characteristic zero (see
Lemma 16 of [3]).

Theorem 3.2. Suppose that N is an odd integer and that ` ≥ 5 is a prime with ` - N .
Suppose that K is a number field and that v is a prime ideal of K above `. Suppose



690 SCOTT AHLGREN, DOHOON CHOI, AND JEREMY ROUSE

that f(z) ∈ Sk(Γ0(2N)) ∩ Ov[[q]] has the property that

f(z) ≡
∞∑

n=1

a(n)q4n (mod v)

for some a(n) ∈ Ov. Then f ≡ 0 (mod v).

Before starting the proof, we recall that if M and Q are integers with Q | M ,
gcd(Q,M/Q) = 1, then the Atkin-Lehner operator on Sk(Γ0(M)) is given by any
matrix

(3.3) WM
Q :=

(
Qx y
Mz Qw

)
, det(WQ) = Q.

For convenience we record a short lemma.

Lemma 3.3. Suppose that ` ≥ 5 is prime with ` - N , that K is a number field, and
that v is a prime ideal of K above `. Suppose that F ∈ Sk(Γ0(8N)) ∩ Ov[[q]] has
F ≡ 0 (mod v). Then the Fourier expansion of F at each cusp is congruent to zero
modulo v in the ring Ov[ζ8N ][[q1/8N ]] (where ζ8N denotes a primitive 8N th root of
unity).

Proof. This follows from the q-expansion principle (see, for example, Remark 12.3.5
of [8]), which implies that if F ∈ Sk(Γ0(8N)) ∩ Ov[[q]], then the q-expansion of F at
each cusp has coefficients in Ov[ζ8N ]. Suppose that F ≡ 0 (mod v). Then, letting λ
be a uniformizer for Ov, we have F = λF ′, where F ′ ∈ Ov[[q]]. The desired result
follows. �

For any positive integer d we define the matrices

(3.4) wd :=
(

0 −1
d 0

)
,

(3.5) Ad :=
(

d 0
0 1

)
.

If Q | 2N and gcd(Q, 2N/Q) = 1 then we have W 2N
Q = γAQ for some γ ∈ SL2(Z); it

follows from Lemma 3.3 that for ` - 2N and for forms f , g ∈ Sk(Γ0(8N))∩Ov[[q]] we
have

(3.6) f ≡ g (mod v) =⇒ f
∣∣
k
W 2N

Q ≡ g
∣∣
k
W 2N

Q (mod v).

Similarly, since wd =
(

0 −1
1 0

)
Ad we have

(3.7) f ≡ g (mod v) =⇒ f
∣∣
k
wd ≡ g

∣∣
k
wd (mod v).

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. Set

g := f
∣∣U4, h := f − f

∣∣U4

∣∣V4 ≡ 0 (mod v).

By Lemma 17 of [3] we have g ∈ Sk(Γ0(2N)) and h ∈ Sk(Γ0(8N)). Moreover, we
have

(3.8) f = g
∣∣V4 + h.
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For any F and any d we have the identities

F
∣∣
k
Ad = dk/2F

∣∣Vd,(3.9)

F
∣∣
k
Adw2N = F

∣∣
k
w2NA−1

d .(3.10)

By (3.7)–(3.10) we conclude that

f
∣∣
k
w2N ≡ g

∣∣V4

∣∣
k
w2N ≡ 2−kg

∣∣
k
w2N

∣∣
k
A−1

4 (mod v).

From this and (3.9) it follows that

(3.11) g
∣∣
k
w2N ≡ 4kf

∣∣
k
w2N

∣∣V4 (mod v).

We define the usual trace map Tr2N
N : Sk(Γ0(2N)) → Sk(Γ0(N)) by

(3.12) Tr2N
N (F ) := F + 21−k/2F

∣∣
k
W 2N

2

∣∣U2.

We have g
∣∣
k
W 2N

N ∈ Sk(Γ0(2N)), and therefore

A := Tr2N
N (g

∣∣
k
W 2N

N ) = g
∣∣
k
W 2N

N + 21−k/2g
∣∣
k
W 2N

N W 2N
2

∣∣U2 ∈ Sk(Γ0(N)).

Since W 2N
N W 2N

2 is Γ0(2N)-equivalent to w2N (see Lemma 9 of [3]) we see from (3.11)
that

g
∣∣
k
W 2N

N W 2N
2

∣∣U2 ≡ 4kf
∣∣
k
w2N |V4|U2 ≡ 4kf

∣∣
k
w2N

∣∣V2 (mod v).

Therefore A ∈ Sk(Γ0(N)) has the property that

(3.13) A ≡ g
∣∣
k
W 2N

N + 23k/2+1f
∣∣
k
w2N

∣∣V2 (mod v).

We now note that f
∣∣U2, f

∣∣U2

∣∣
k
W 2N

2 ∈ Sk(Γ0(2N)), and we define

B := Tr2N
N (f

∣∣U2

∣∣
k
W 2N

2 ) ∈ Sk(Γ0(N)).

We have
B = f

∣∣U2

∣∣
k
W 2N

2 + 21−k/2f
∣∣U4;

it follows after applying W 2N
N (which is the same as wN for forms on Γ0(N)) that

B
∣∣
k
wN = B

∣∣
k
W 2N

N = f
∣∣U2

∣∣
k
w2N + 21−k/2f

∣∣U4

∣∣
k
W 2N

N .

Since f ≡ g
∣∣V4 (mod v), it follows from (3.6) and (3.7) that

B
∣∣
k
wN ≡ g

∣∣V2

∣∣
k
w2N + 21−k/2g

∣∣
k
W 2N

N (mod v).

Using f
∣∣
k
w2N ≡

(
g
∣∣V2

) ∣∣V2

∣∣
k
w2N (mod v) and arguing as in (3.11) we find that

g
∣∣V2

∣∣
k
w2N ≡ 2kf

∣∣
k
w2N

∣∣V2 (mod v),

so that finally we obtain

(3.14) B
∣∣
k
wN ≡ 2kf

∣∣
k
w2N

∣∣V2 + 21−k/2g
∣∣
k
W 2N

N (mod v).

Combining (3.13) and (3.14) we find that

(3.15) A− 2k/2−1B
∣∣
k
wN ≡ 3 · 23k/2−1f

∣∣
k
w2N

∣∣V2 (mod v).

Since the left side of (3.15) is a modular form of level N which is supported (mod v)
on even exponents, we conclude from Theorem 3.1 that f

∣∣
k
w2N ≡ 0 (mod v). It

follows from (3.6) that f ≡ 0 (mod v), as desired. �
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4. Modular forms of half-integral weight

In this section we record two short lemmas which are needed in the proof of the
main theorem.

Lemma 4.1. Suppose that ` ≥ 5 is prime, that K is a number field, that v is a prime
ideal of K above `, and that f =

∑
a(n)qn ∈ S+

λ+ 1
2
(Γ0(4)) ∩ Ov[[q]]. Then there is a

form g(z) ∈ S+
λ+`+1+ 1

2
(Γ0(4)) ∩ Ov[[q]] such that

g(z) ≡ Θf(z) (mod v).

Proof. If γ =
(

a b
c d

)
∈ SL2(Z), then we have (see page 68 of [17]) the transformation

formula

E2(γz) = (cz + d)2E2(z) +
6c

iπ
(cz + d).

If γ =
(

a b
c d

)
∈ Γ0(4), then 4γz = γ′(4z), where γ′ =

(
a 4b

c/4 d

)
. It follows that

E2(4γz) = (cz + d)2E2(4z) +
6c

4iπ
(cz + d).

Since f is a modular form of half-integral weight, we have

f(γz) =
(

c

d

)
ε−1
d (cz + d)λ+ 1

2 f(z),

where
(

c
d

)
denotes the usual Jacobi symbol when d > 0 and(

c

d

)
:=

{(
c
|d|

)
d < 0 and c > 0,

−
(

c
|d|

)
d < 0 and c < 0,

εd :=

{
1 if d ≡ 1 (mod 4)
i if d ≡ 3 (mod 4).

We compute that

(Θf)(γz) =
( c

d

)
ε−1
d

[
(cz + d)λ+2+ 1

2 ·Θf(z) +
(λ + 1

2 )c
2πi

(cz + d)λ+1+ 1
2 f(z)

]
.

Setting F (z) := Θf(z)− λ+ 1
2

3 f(z)E2(4z), a computation shows that for γ ∈ Γ0(4) we
have

F (γz) =
( c

d

)
ε−1
d (cz + d)λ+2+ 1

2 F (z).

We then have

Θf(z) ≡ F (z)E`−1(4z) +
λ + 1

2

3
f(z)E`+1(4z) (mod v),

where the form on the right side belongs to Sλ+`+1+ 1
2
(Γ0(4)). The lemma follows

since the plus space condition clearly holds. �
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Lemma 4.2. Suppose that ` ≥ 5 is prime, that K is a number field which is Galois
over Q, and that v is a prime ideal of K above `. Suppose that g ∈ S+

λ+1/2(Γ0(4)) ∩
Ov[[q]] has the property that

g ≡
∞∑

n=1

a(n)q`n (mod v).

Then there exists λ′ with

(1) λ′ + 1
2 ≤

1
` (λ + 1

2 ),
(2) (−1)λ′

= (−1)λ
(−1

`

)
,

and there exists a cusp form f ∈ S+
λ′+ 1

2
(Γ0(4)) ∩ Ov[[q] such that

f ≡
∞∑

n=1

a(n)qn (mod v).

Proof. Let g be as in the hypotheses, and recall the definition (1.2) of θ0(z). Set

h := θ`
0g ∈ Sλ+ `+1

2
(Γ1(4)).

Let σ ∈ Gal(K/Q) be a Frobenius automorphism for the prime v; then for a ∈ Ov

we have aσ ∈ Ov and
aσ ≡ a` (mod v).

Since σ preserves the space Sλ+ `+1
2

(Γ1(4))∩Ov[[q]], and U` acts as T (`, λ+(`+1)/2, 1)

modulo v, we find that hσ, h
∣∣U` ∈ Sλ+ `+1

2
(Γ1(4)) satisfy

hσ = (h
∣∣U`)`.

From Proposition 2.2, there is some α ≥ 0 so that

(4.1) ω(h
∣∣U`) =

1
`
ω(hσ) =

2[λ− α(`− 1)] + ` + 1
2`

.

Denoting the right side of (4.1) by λ′ + 1, we conclude that there exists H ∈
Sλ′+1(Γ1(4)) such that H = h

∣∣U`.
The algebra of modular forms on Γ1(4) is generated by θ0 and F , where F =∑∞
n=0 σ1(2n + 1)qn (see Proposition 4 on pg. 184 of [11]). The cusp forms are those

forms divisible by θ0F (θ4
0 − 16F ); it follows that every integer weight cusp form on

Γ1(4) is a multiple of θ2
0F (θ4

0 − 16F ). Set f := H/θ0 ∈ Sλ′+ 1
2
(4). Then f = g

∣∣U`, as
desired.

The first assertion about λ′ follows immediately from (4.1). Multiplying (4.1) by
` gives the congruence

λ′ ≡ λ +
`− 1

2
(mod 2),

from which the second assertion follows. The plus space condition is checked using
this assertion, since (−1)λ` ≡ (−1)λ′

(mod 4). �
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5. Proof of main theorem

The proof of Theorem 1.2 proceeds in a number of steps. We begin with the
following consequence of the results of the third section.

Proposition 5.1. Suppose that ` ≥ 5 is prime, that K is a number field, and that
v is a prime ideal of K above `. Suppose that λ is a non-negative integer and that
f(z) ∈ S+

λ+ 1
2
(Γ0(4)) ∩ Ov[[q]]. Further, suppose that

f(z) ≡
m∑

i=1

∞∑
n=1

a(tin2)qtin
2
6≡ 0 (mod v),

where each ti is a square-free positive integer. Then

(5.1) f(z) ≡
∞∑

n=1

a(n2)qn2
+

∞∑
n=1

a(`n2)q`n2
(mod v).

Proof. For each i ∈ {1, . . . , t}, we may assume that there exists an index ni for which
a(tin2

i ) 6≡ 0 (mod v). Following the argument of Lemma 4.1 of [1], we can find odd
primes p1, . . . , ps, each relatively prime to niti`, and a modular form

Gi(z) ∈ Sλ+ 1
2
(Γ0(4p2

1 · · · p2
s)) ∩ Ov[[q]]

with

(5.2) Gi(z) ≡
∑

gcd(n,
Q

pi)=1

a(tin2)qtin
2
6≡ 0 (mod v).

Thus, we have

(5.3) Gi(z)4 ≡
∞∑

n=1

b(tin)qtin (mod v)

and
Gi(z)4 ∈ S4λ+2(Γ0(4p2

1 · · · p2
s)) ∩ Ov[[q]].

Theorem 3.1 implies that
ti = 1, `, 2, or 2`.

It remains to rule out the last two possibilities. If ti = 2`, then we find from the
plus-space condition that the form Gi has the property that

Gi ≡
∑

a(8`n2)q8`n2
(mod v).

Next, we use the fact (see Lemma 7 of [3]) that if F ∈ Sk(Γ0(M)) and p2|M , then
F

∣∣Up ∈ Sk(Γ0(M/p)). Setting N = p2
1 · · · p2

s, we conclude that G4
i

∣∣U2 ≡
∑

b(8`n)q4`n

(mod v) is a form of level 2N , and so is identically zero modulo v by Theorem 3.2. It
follows that Gi ≡ 0 (mod v). If ti = 2, then the proof is the same. �

After this result we are reduced to the consideration of forms f as in (5.1). The
situation splits depending on the parity of λ as indicated by the next two results.
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Theorem 5.2. Suppose that ` ≥ 5 is prime, that K is a number field, and that v is
a prime ideal of K above `. Suppose that f(z) ∈ S+

λ+ 1
2
(Γ0(4)) ∩ Ov[[q]] has the form

f(z) ≡
∞∑

n=1

a(n2)qn2
+

∞∑
n=1

a(`n2)q`n2
(mod v).

If λ is even, and
` >

√
λ/2,

then ∑
`-n

a(n2)qn2
≡ a(1)

∑
`-n

nλ̄qn2
(mod v),

where

λ̄ :=

{
λ mod (`− 1) if `− 1 - λ

`− 1 if `− 1 | λ.

Proof of Theorem 5.2. Let f be as in the hypotheses, and recall the definition (1.2)
of θ0(z). From Lemma 4.1, there is a modular form g(z) ∈ S+

(`+1) λ̄+2
2 + 1

2

(Γ0(4)) such

that

(5.4) g(z) =
∞∑

n=1

c(n)qn ≡ 1
2a(1)Θ

λ̄+2
2 θ0(z) ≡ a(1)

∞∑
n=1

nλ̄+2qn2
(mod v).

Again by Lemma 4.1 there is a modular form h(z) ∈ S+
λ+`+1+ 1

2
(Γ0(4)) such that

(5.5) h(z) =
∞∑

n=1

b(n)qn ≡ Θf(z) ≡
∞∑

n=1

a(n2)n2qn2
(mod v).

It suffices to prove that g ≡ h (mod v).
Theorem 2.1 implies that for each odd prime p with p 6≡ 0, 1 (mod `), we have

(5.6) h
∣∣T (p2, λ + ` + 1 + 1

2 , 1) ≡ (pλ̄+2 + pλ̄+1)h (mod v).

For every such prime, and for every natural number n, we find from the definition of
the Hecke operators that

(5.7) b(n2p2) +
(

n2

p

)
pλ̄+1b(n2) + p2λ̄+3b(n2/p2) ≡ (pλ̄+2 + pλ̄+1)b(n2) (mod v).

Suppose that n is an odd integer which is divisible only by primes p 6≡ 0, 1 (mod `).
If pa || n, then writing n = pan0, an induction argument using (5.7) shows that

b(p2an2
0) ≡ pa(λ+2)b(n2

0) (mod v).

It follows that we have

(5.8) b(n2) ≡ nλ̄+2a(1) ≡ c(n2) (mod v).

Now let

(5.9) k := max{λ + ` + 1, (` + 1)(λ̄ + 2)/2}.
Since λ is even, we see that the two quantities in (5.9) are congruent modulo ` − 1.
Therefore, multiplying one of h or g by a power of E`−1(4z) if necessary, we may
assume that each of the forms h, g lies in the space S+

k+ 1
2
(Γ0(4)).
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Recalling that the operator U(4) preserves each space Sλ+ 1
2
(Γ0(4)), we define the

forms

(5.10) G(z) := g(z)− g(z)
∣∣U(4)

∣∣V (4), H(z) := h(z)− h(z)
∣∣U(4)

∣∣V (4).

Each of these lies in the space Sk+ 1
2
(Γ0(16)). From (5.4) and (5.5) we have

(5.11) G(z)−H(z) ≡
∑

n odd

(c(n2)− b(n2))qn2
.

Using (5.4) and (5.8) together with the fact that b(n) ≡ c(n) ≡ 0 (mod v) when ` | n,
we conclude that the form G − H vanishes to order at least (2` + 1)2 modulo v at
infinity. It is straightforward to check that if ` >

√
λ/2, then

(2` + 1)2 > k+1/2
12 [Γ0(1) : Γ0(16)].

By a theorem of Sturm [19] we conclude that G−H is identically zero modulo v.
Recalling (5.11), it remains to prove that the forms g and h agree at even exponents.

To see this define F (z) := g(z) − h(z) ≡
∑

d(4n2)q4n2
(mod v). Then the Shimura

lift Sh+
1,k F (z) ∈ S2k(Γ0(1)) satisfies Sh+

1,k F (z) ≡
∑

A(2n)q2n (mod v) for some
numbers A(2n). By Theorem 3.1, we conclude that Sh+

1,k F (z) ≡ 0 (mod v). From
the definition of the Shimura lift, we conclude that F (z) ≡ 0 (mod v). �

In the next result, we use the theory of Galois representations to treat the case
when λ is odd.

Theorem 5.3. Suppose that ` ≥ 5 is prime, that K is a number field, and that v is
a prime ideal of K above `. Suppose that f(z) ∈ S+

λ+ 1
2
(Γ0(4)) ∩ Ov[[q]] has the form

f(z) ≡
∞∑

n=1

a(n2)qn2
+

∞∑
n=1

a(`n2)q`n2
(mod v).

If λ is odd, then Θ(f) ≡ 0 (mod v).

Proof. Suppose to the contrary that Θ(f) 6≡ 0 (mod v). Then there exists a form
g ∈ S+

λ+`+1+1/2(Γ0(4)) ∩ Ov[[q]] such that

Θ(f) =
∞∑

n=1

n2a(n2)qn2
= g 6= 0.

Define G(z) := Sh+
−4,λ+`+1(g) ∈ S2λ+2`+2(Γ0(1)). Since λ is odd, a(n2) = 0 unless n

is even. From the definition of Sh+
−4,λ+`+1, it follows that G 6≡ 0 (mod v).

From Theorem 2.1, we have

g|T (p2, λ + ` + 1 + 1
2 , 1) ≡

(
−1
p

) (
pλ+2 + pλ+1

)
g (mod v),

for all odd primes p 6≡ 0, 1 (mod `). Since Sh+
−4,λ+`+1 commutes with the action of

the Hecke operators, it follows that

(5.12) G|T (p, 2λ + 2` + 2, 1) ≡
(
−1
p

) (
pλ+2 + pλ+1

)
G (mod v)

for the same set of primes p.
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The Deligne-Serre lifting lemma (see Lemme 6.11 of [7]) implies that there is a
number field L ⊃ K, a prime ideal β above v with valuation ring Oβ and a nonzero
form G̃ with coefficients in Oβ so that

G̃|T (p, 2λ + 2` + 2, 1) = b(p)G̃

for all odd primes p 6≡ 0, 1 (mod `), where

(5.13) b(p) ≡
(
−1
p

) (
pλ+2 + pλ+1

)
(mod β).

Note that b(p) ≡ 0 (mod β) implies that p ≡ −1 (mod `). Now, write

G̃ =
dim S2λ+2l+2∑

i=1

ciGi,

where the Gi ∈ S2λ+2`+2(Γ0(1)) are normalized Hecke eigenforms. Letting λi(p)
denote the pth coefficient of gi, we have

G̃|T (p, 2λ + 2l + 2, 1) =
dim S2λ+2l+2∑

i=1

ciλi(p)Gi = b(p)G̃ =
dim S2λ+2l+2∑

i=1

cib(p)Gi.

Since the Gi are linearly independent, it follows that b(p) = λi(p) for all i with ci 6= 0
(note that there is at least one such ci).

Let ρ : Gal(Q/Q) → GL2(Fβ) be the mod β Galois representation associated to
one of the eigenforms Gi with ci 6= 0. Then, ρ is unramified outside `, and for
p 6= ` prime, we have Det ρ(Frobp) ≡ p2λ+3 (mod β). Also, if p is an odd prime with
p 6≡ 0, 1 (mod `), we have

Tr ρ(Frobp) ≡
(
−1
p

) (
pλ+2 + pλ+1

)
(mod β).

At this point, we argue as in [1]. We will show that ρ is reducible.
Suppose that ρ is not reducible. Then Lemmas 4.3 and 4.4 of [1] show that

` - |im(ρ)|; it follows that the image of ρ in PGL2(Fβ) is dihedral, or the image
is isomorphic to A4, S4 or A5.

If the projective image is dihedral, then
(
p
l

)
= −1 implies that b(p) ≡ 0 (mod β),

which is impossible, since b(p) ≡ 0 (mod β) only when p ≡ −1 (mod `).
Suppose that the projective image is A4, S4 or A5. Setting x = b(p)2/p2λ+3, we

have x ≡ 4, 0, 1, 2 (mod β), or x2 − 3x + 1 ≡ 0 (mod β), depending on whether the
image of ρ(Frobp) in PGL2(Fβ) has order 1, 2, 3, 4, or 5, respectively. However, (5.13)
implies that

x ≡ p + 2 + p−1 (mod β)

for odd p with p 6≡ 0, 1 (mod `). There are `−1
2 elements of F` of the form p+2+p−1

where p 6≡ 0, 1 (mod `). Since p + 2 + p−1 takes on at most six values, it follows that
` ≤ 13. Explicit computations show that ` = 7, 11 and 13 are impossible. Suppose
therefore that ` = 5. Let ρ̃ : Gal(Q/Q) → PGL2(Fβ). For p ≡ 2, 3 (mod 5) we
have x ≡ 2 (mod β). This, together with the Chebotarev density theorem, implies
that the order of at least half of the elements of the projective image is 4. This is a
contradiction, since none of A4, S4 or A5 has this property.
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We conclude in every case that ρ is reducible; since ρ is unramified outside `, it
follows that for some a, b we have

ρ =
[
χa ∗
0 χb

]
,

where χ is the mod ` cyclotomic character. Therefore

Tr ρ(Frobp) ≡ χa(Frobp) + χb(Frobp) ≡ pa + pb (mod β)

for all primes p 6= `. Notice that Tr ρ(Frobp) only depends on p mod `. Now, choose
primes q and r such that q 6≡ 0, 1,−1 (mod `), q ≡ 3 (mod 4), and r ≡ q (mod `),
r ≡ 1 (mod 4). Then Tr ρ(Frobq) = Tr ρ(Frobr), and (5.12) yields the contradiction(

−1
q

)
(qλ+2 + qλ+1) ≡

(−1
r

)
(rλ+2 + rλ+1).

Therefore we must have Θ(f) ≡ 0 (mod v), as desired. �

Before proving the main theorem we require one more result.

Proposition 5.4. Suppose that ` ≥ 5 is prime, that K is a number field which is
Galois over Q, and that v is a prime ideal of K above `. Suppose that r ≤ ` and that
g ∈ S+

r+ 1
2
(Γ0(4)) ∩ Ov[[q]] satisfies

g ≡
∞∑

n=1

a(n2)qn2
+

∞∑
n=1

a(`n2)q`n2
(mod v).

Then g ≡ 0 (mod v).

Proof. Suppose first that r is odd. Then Theorem 5.3 implies that Θ(g) ≡ 0 (mod v).
Therefore g vanishes modulo v to order ≥ `. However, the Sturm bound on the space
S+

r+ 1
2
(Γ0(4)) is r+1/2

12 · 6 < ` since r ≤ `. Therefore g ≡ 0 (mod v) in this case.
Suppose then that r is even. Applying Theorem 5.2 to g, we conclude that

Θ`−1(g) ≡ c

∞∑
`-n

nrqn2
(mod v),

where c := a(1), and hence that a(n2) ≡ cnr (mod v) provided that ` - n. We will
prove that c ≡ 0 (mod `).

Let

G := Sh+
1,r(g) =

∞∑
n=1

∑
d|n

dr−1a((n/d)2)qn ∈ S2r(Γ0(1)).

It follows that if ` - n, then the nth coefficient of G is congruent to

c
∑
d|n

dr−1(n/d)r = c
∑
d|n

(n/d)r−1dr = cnr−1σ1(n).

This is the same as the nth coefficient of

− c
24Θr−1(E`+1) ∈ Sr(`+1)(Γ0(1)).

Note that w(E`+1) = `+1 ≡ 1 (mod `). Hence, applying the Θ-operator r− 1 times,
we get

w(Θr−1E`+1) = r(` + 1).
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Also note that GEr
`−1 ∈ Sr(`+1)(Γ0(1)). Now define

H := GEr
`−1 + c

24Θr−1E`+1 ∈ Sr(`+1)(Γ0(1)).

Let σ ∈ Gal(K/Q) be a Frobenius element for the prime v. Since H has the form∑
a(n)q`n, we have H

σ
= (H

∣∣U`)`, which implies that

w(H) = w(Hσ) = `w(H
∣∣U`).

However, ` - r(`+1) and hence w(H) < r(`+1). It follows that w(H) ≤ r(`+1)−(`−1)
and thus,

H −GEr−1
`−1 = c

24Θr−1E`+1

has filtration at most r(`+1)− (`− 1). This is a contradiction unless c ≡ 0 (mod v).
This implies that Θ(g) ≡ 0 (mod v), which implies that g ≡ 0 (mod v) as in the case
when r is odd. �

We are now in a position to prove the main theorem.

Proof of Theorem 1.2. Assume that f ∈ S+
λ+1/2(Γ0(4)), where λ+1/2 < `(`+1+1/2),

satisfies the hypotheses of Theorem 1.2. We may suppose without loss of generality
that the field K is a Galois extension of Q. By Proposition 5.1, we have

(5.14) f ≡
∞∑

n=1

a(n2)qn2
+

∞∑
n=1

a(`n2)q`n2
(mod v).

Suppose first that λ is even. From Theorem 5.2, we have

Θ`−1(f) ≡
∑
`-n

a(n2)qn2
≡ a(1)

∑
`-n

nλ̄qn2
(mod v).

Lemma 4.1 implies that

Θ`−1(f) =
a(1)
2

Θλ̄/2(θ0) ∈ S+
(λ̄/2)(`+1)+ 1

2
(Γ0(4)).

Since λ̄ ≤ `− 1, we have

(λ̄/2)(` + 1) + 1
2 ≤

`2−1
2 + 1

2 .

Since λ is even, it follows that λ̄
2 (` + 1) is even. We conclude that f −Θ`−1f ∈

S+
λ′+ 1

2
(Γ0(4)) where λ′ + 1/2 < `(` + 1 + 1/2) and λ′ is even.

We have

(5.15) f −Θ`−1f ≡
∞∑

n=1

a(`n2)q`n2
+

∞∑
n=1

a(`2n2)q`2n2
(mod v).

It follows by Lemma 4.2 that there exists a form g ∈ S+
r+ 1

2
(Γ0(4))∩Ov[[q]] for some

r with r ≤ ` such that

g ≡
(
f −Θ`−1f

) ∣∣U` (mod v).

By (5.15) we see that

(5.16) g ≡
∞∑

n=1

a(`n2)qn2
+

∞∑
n=1

a(`2n2)q`n2
(mod v).
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Applying Proposition 5.4, we conclude that g ≡ 0 (mod v), so that f ≡ Θ`−1f
(mod v). This proves the theorem in the case when λ is even.

Suppose finally that λ is odd. In this case we wish to prove that f ≡ 0 (mod v).
Using (5.14) and Theorem 5.3 we conclude that

Θ(f) ≡ 0 (mod v).

It follows by Lemma 4.2 that there exists a form g ∈ S+
r+ 1

2
(Γ0(4))∩Ov[[q]] for some

r with r ≤ ` such that

g ≡ f
∣∣U` ≡

∞∑
n=1

a(`n2)qn2
+

∞∑
n=1

a(`2n2)q`n2
(mod v).

Then Proposition 5.4 implies that g ≡ 0 (mod v). Since g` ≡ fσ (mod v), this
implies that fσ ≡ f ≡ 0 (mod v), which finishes the proof of the theorem.

�

From our main theorem, we obtain the proof of Corollaries 1.4 and 1.5.

Proof of Corollary 1.4 and 1.5. Let g(z) =
∑∞

n=1 c(n)qn ∈ S+
k+1/2(Γ0(4)) be a half-

integral weight Hecke eigenform with the same eigenvalues as f , normalized to have
Fourier coefficients which are relatively prime algebraic integers. Such a g exists from
Theorem 1 of [12], which states that S+

k+1/2(Γ0(4)) and S2k(Γ0(1)) are isomorphic as
Hecke modules. We have g 6≡ 0 (mod v). When (−1)kD > 0, Theorem 1.3 implies
that c(|D|) ≡ 0 (mod v) if and only if Lalg(f,D, k) ≡ 0 (mod v).

If k is odd, then the assumptions of Corollary 1.4 together with Theorem 1.2 imply
that g is not supported on finitely many square classes modulo v. A straightforward
argument using the plus-space condition and the fact that g is a Hecke eigenform
implies that c(|D|) 6≡ 0 (mod v) for infinitely many fundamental discriminants D.

If k is even, the assumption that there are only finitely many D so that
Lalg(f,D, k) ≡ 0 (mod v) implies as above that g is supported on finitely many
square classes modulo v. Then Theorem 1.2 implies that

g(z) ≡ a(1)
∞∑

n=1

nλqn2
(mod v)

with a(1) 6≡ 0 (mod v). Therefore Lalg(f, 1, k) 6≡ 0 (mod v) and Lalg(f,D, k) ≡ 0
(mod v) for D > 1, as desired. �
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