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ON THE UNIFORMITY OF THE IITAKA FIBRATION

GIANLUCA PACIENZA

ABSTRACT. We study pluricanonical systems on smooth projective varieties of positive
Kodaira dimension, following the approach of Hacon-McKernan, Takayama and Tsuji
succesfully used in the case of varieties of general type. We prove a uniformity result for
the Titaka fibration X --+ Iitaka(X) of smooth projective varieties of positive Kodaira
dimension, provided that litaka(X) is not uniruled, the variation of the fibration is
maximal, and the general fiber has a good minimal model.

1. Introduction

Following Tsuji [Ts1] and [Ts2], Hacon and McKernan [HM]|, and Takayama [T]
have independently given an algebro-geometric proof of the following beautiful result:

Theorem 1.1 (Hacon-McKernan, Takayama, Tsuji). For any positive integer n, there
exists an integer my, such that for any smooth complex projective variety X of general
type of dimension n, the pluricanonical map

Omiy : X - PHY(X, Ox(mKx))*
is birational onto its image, for all m > m,,.

The purpose of this paper is to show that the methods used to prove Theorem
allow to obtain a similar uniformity result concerning the pluricanonical maps of
algebraic varieties of arbitrary (positive) Kodaira dimension.

Before stating the result we need to recall some facts. Thanks to the work of Titaka,
it is well-known that, if x(X) > 0, for large m such that h%(X, mKx) # 0 the images
of the rational maps ¢.,k, stabilize i.e. they become birationally equivalent to a
fiber space

Voo : Xoo — litaka(X),

such that the restriction of Kx to a very general fiber F of ¢, has Kodaira dimension
0 and dim(Titaka(X)) = x(X). This fibration is called the litaka fibration of X (see
for more details). It is natural to ask (cf. [HM| Conjecture 1.7]) whether the
Titaka fibration of X enjoys a uniformity property as in the case of varieties of general
type. When k(X) = 1 such a result has been proved in [FM| Theorem 6.1] with a
dependence on the smallest integer b such that h°(F,bKr) = 1, and on the Betti
number Bgim(g/) of a non-singular model E” of the cover £ — I of the general fiber
F associated to the unique element of |bK | (when X is a 3-fold with x(X) = 1 this
extra dependence may be dropped, see [FM|, Corollary 6.2]). Here we generalize the
Fujino-Mori result to arbitrary Kodaira dimension, under extra hypotheses.
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Theorem 1.2. For any positive integers n, b, k, there exists an integer m(n,b, k) > 0
such that, for any algebraic fiber space f: X — Y, with X and Y smooth projective
varieties, dim(X) = n, dim(Y) = &(X), with general fiber F' of f of zero Kodaira
dimension, and such that:
(i) Y is not uniruled;
(ii) f has mazimal variation;
(iii) the general fiber F' of f has a good minimal model;
(iv) b is the smallest integer such that h°(F,bKr) # 0, and Bettigim(z)(E") <k,
where E' is a non-singular model of the cover E — I of the general fiber F
associated to the unique element of |bKp|;

then the pluricanonical map
Omix i X - PHY(X,Ox(mKx))*
is birationally equivalent to f, for any m > m(n, b, k) such that h®(X,mKx) # 0.

Recall that when F is a surface, up to a birational transformation, we may assume
that the 12th plurigenus is non-zero and the 2nd Betti number is bounded by 22.
Therefore, when x(X) = n — 2, the integer m(n, b, k) only depends on n (notice that,
because of the hypothesis on the maximality of the variation, if x(X) = dim(X) — 1
Theorem 1.2 does not apply as soon as dim(X) > 3). The existence of good minimal
models is known up to dimension 3 (cf. [Ko+]). On the other hand, condition (iii) is
automatically satisfied for interesting classes of fibrations, e.g. those for which ¢;(F)
is zero (or torsion).

The idea to prove Theorem is quite natural. By the important result proved in
[BDPP], the hypothesis (i) in Theorem is equivalent to the pseudo-effectivity of
the canonical divisor of Y. Then, thanks to the canonical bundle formula established
in [FM], a positivity result due to Kawamata (cf. [Ka2l Theorem 1.1], where the
hypotheses (ii) and (iii) of Theorem appear), for the (semistable part of the)
direct image of the relative pluricanonical sheaf allows to reduce the problem to the
study of effective birationality for multiples of adjoint big divisors Ky + M, where M
is a big and nef Q-Cartier divisor such that vM is integral. The hypothesis (iv) of
Theorem [1.2)is needed to have an effective bound on the denominator of the Q-divisor
M. Then Theorem [I.2]is a consequence of the following result, which we prove using
the techniques of [HM], [T], and [Ts1], [Ts2].

Theorem 1.3. For any positive integers n and v, there exists an integer my, , such
that for any smooth complex projective variety Y of dimension n with pseudo-effective
canonical divisor, and any big and nef Q-Cartier divisor M on Y such that vM is
integral, the pluriadjoint map

Con(icy+ar) 1 Y = PHY, Oy (m(Ky + M)))*
1s birational onto its image, for all m > m,, ,, divisible by v.

As for Theorem the methods do not lead to an effective constant m,, , .

During the preparation of this article E. Viehweg kindly informed me that he and
D.-Q. Zhang were also working on a generalization of the Fujino-Mori result. In their
interesting preprint [VZ] they study the Iitaka fibration for varieties of Kodaira di-
mension 2, and obtain in this case the same uniformity result without the hypotheses
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(1),(ii) and (iii) appearing in Theorem (and with an effectively computable con-
stant). Their same result, in the case of three-folds, has been obtained independently
by Ringler [R].

2. Preliminaries

We recall a number of basic definitions and results that will be freely used in the
paper.

2.1. Notation and conventions. We work over the field of complex numbers. Un-
less otherwise specified, a divisor will be integral and Cartier. If D and D’ are
Q-divisors on a smooth variety X we write D ~q D’, and say that D and D’ are
Q-linearly equivalent, if an integral multiple of D — D’ is linearly equivalent to zero.
We write D = D’ when they are numerically equivalent, that is when they have the
same degree on every curve. The notation D < D’ means that D' — D is effective. If
D =3 a;D;, we denote by [D] the integral divisor » [a;]D;, where, as usual, [a;] is
the largest integer which is less than or equal to a;. We denote by {D} the difference
D — [D]. A log-resolution of a divisor D C X is a proper birational morphism of
smooth varieties p : X’ — X, such that the support of Exc(u) + p*D has simple
normal crossings. The existence of log-resolutions is insured by Hironaka’s theorem.
Given a surjective morphism f : X — Y of smooth algebraic varieties the relative
dualizing sheaf is the invertible sheaf associated to the divisor Ky y := Kx — f*Ky.
An algebraic fiber space is a surjective morphism f : X — Y between smooth pro-
jective varieties with connected fibers.

2.2. Volumes, big divisors and base loci. Recall that the volume of a line bundle
(see [L1, §2.2.C] for a detailed account on the properties of this invariant) is the
number o
volx (D) := limsup WX, mD)
m—too  M7/N!

It is actually a limit, and we have vol(mD) = m™(X) yol(D). Therefore one can
define the volume of a Q-divisor D as vol(D) := m~4™(X) yol(mD), where m is
an integer such that mD is integral. The volume is invariant by pull-back via a
birational morphism. Moreover we have that vol(D) > 0 if and only if D is big, and
vol(D) = DIm™(X) for nef divisors. For a singular variety Y, we denote by vol(Ky)
the volume of the canonical divisor of a desingularization Y’ — Y (which does not
depend on the choice of Y7).

If V is a subvariety of X, following [ELMNP2| one defines the restricted volume
as :

0
where
RO(X|V,mA) = dimIm(H*(X, mA) — H°(V,mAy)).

Again, it is a limit, and we have that volyjy(mD) = md™(V)voly, (D) (see
[ELMNP2| Cor. 2.15 and Lemma 2.2] ).

We will constantly use Kodaira’s lemma : a Q-divisor D is big if and only if
D ~q A+ E, where A is a Q-ample divisor and E a Q-effective one.
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If |T| is a linear system on X, its base locus is given by the set-theoretic intersection

Base(|T|) := ﬂ L.

Le|T)|

Recall that given a Cartier divisor L on a variety X, its stable base locus (see [LIl,
pp. 127-128)) is

B(L) := ﬂ Base(|mL|)

m>1

and its augmented base locus, which has been defined in [ELMNPI], is
B.(L):=B(mL — H)

for m > 0 and H ample on X (the latter definition is independent of the choice of m
and H). One checks that L is ample if, and only if, B (L) = (), and L is big if, and
only if, B4 (L) # X. In the latter case, X \ B (L) is the largest open set on which L
is ample. Equivalently one can define B, (L) = NSupp(E), where the intersection is
taken over all possible decompositions L ~q A+ E, where A is ample and E effective.

2.3. Iitaka fibration. We follow [L1l 2.1.A and 2.1.C]. Let L be a line bundle on a
projective variety X. The semigroup N(L) of L is

N(L) := {m > 0: h°(X,mL) # 0}.

If N(L) is not zero, then there exists a natural number e(L), called the exponent of
L, such that all sufficiently large elements in N(L) are multiples of e(L). If (X, L) =
k >0, then dim(¢p, (X)) = & for all sufficiently large m € N(L). Iitaka’s result is
the following.

Theorem 2.1 (Iitaka fibrations, see [L1], Theorem 2.1.33, or [Mo]). Let X be a
normal projective variety and L a line bundle on X such that k(X,L) > 0. Then for
all sufficiently large k € N(L) there exists a commutative diagram

(2.1) X<~ X

|

| Yk, L J/QOOO,L
\i

Im(epy,z) < ;- - litaka(X, L)

where the horizontal maps are birational. One has dim(Iitaka(X, L)) = k(X,L).
Moreover if we set Loo = ul L and F is the very general fiber of ¢oo 1, we have
I{(F, Loo‘F) = 0

We will deal only with the case L = Ky, and simply write litaka(X) :=
Titaka(X, Kx). Since the Iitaka fibration is determined only up to birational equiv-
alence, and the questions we are interested in are of birational nature, we will often
tacitly assume that Iitaka(X) is smooth, and that we have an algebraic fiber space
X — Iitaka(X). Notice that as a consequence of the finite generation of the canoni-
cal ring proved in [BCHM] we have that, for large m, the images of the pluricanonical
maps @miy are all isomorphic to Proj(€,,-, H* (X, mKx)).
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2.4. Multiplier ideals. If D is an effective Q-divisor on X one defines the multiplier
ideal as follows :
j(X, D) = .U*ﬁX/(KX’/X - [ﬂ*DD
where p: X’ — X is a log-resolution of (X, D), and the definition is independent of
the choice of the log-resolution.
Notice that if D is a Q-divisor with simple normal crossings, then .#(X,D) =
Ox(—[D)). If D is integral we simply have

(2.2) #(X,D) = Ox(-D).

Again, we refer the reader to Lazarsfeld’s book [L2] for a complete treatment of the
topic. We now recall Nadel’s vanishing theorem.

Theorem 2.2 (see [L2, Theorem 9.4.8]). Let X be a smooth projective variety. Let
D be an effective Q-divisor on X, and L a divisor on X such that L — D is big and
nef. Then, for all i > 0, we have

H (X, #(X,D)® Ox(Kx + L)) =0.

2.5. Singularities of pairs and Non-klt loci. Recall that, in the literature, a
pair (X, D) is a normal variety together with a Q-Weil divisor such that Kx + D is
Q-Cartier. In this paper the situation is much simpler : the variety will always be
smooth and the divisor will be an effective Cartier divisor. A pair (X, D) is Kawamata
log-terminal, kit for short, (respectively non-klt) at a point x, if

F(X,D), = Ox 5 (respectively F (X, D)y # Ox ).

A pair is klt if it is klt at each point € X. A pair (X, D) is log-canonical, lc for
short, at a point z, if

JI(X,(1—¢€)D), = Ox, for all rational number 0 < e < 1.

A pair is lc if it is lc at each point € X (for a survey on singularities of pairs and
many related results, see [Ko2]). We set

Non-klt(X, D) := Supp(@x /-7 (X, D))

with the reduced structure and call it the Non-klt locus of the pair (X, D).

A simple though extremely useful way of producing example of non-klt pairs is
to consider divisors having high multiplicity at a given point, since we have [L2]
Proposition 9.3.2]

(2.3) mult, (D) > dim(X) = #(X, D), # Ox.0.

Notice that if D = a;D; is an effective Q-divisor with simple normal crossings, the
pair (X, D) is klt (respectively lc) if, and only if, a; < 1 (resp. a; < 1). We recall two
fundamental results describing the effect of small perturbations of D on its Non-klt
locus.

Lemma 2.3. Let X be a smooth projective variety, x1 and xo two distinct points on
X, and D an effective Q-divisor such that (X, D) is lc at x1 and non-klt at xo. Let V
be an irreducible component of Non-klt(X, D) passing through x1. Let B ~q A+ E be
a big divisor on X, with A Q-ample and E Q-effective such that x1,xs ¢ Supp(E).
Then there exists an effective divisor F' ~q B and, for any arbitrarily small rational
0 > 0, there exists a unique rational number bs > 0 such that:
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(1) (X,(1=9)D +bsF) is lc at x1;

(2) (X,(1 —=9)D +bsF) is non-klt at xo;

(3) All the irreducible components of Non-klt(X,(1 — §)D + bsF') containing 1
are contained in V.

Moreover liminfs__,qbs = 0.

Proof. See e.g. [Pa, Lemma A.3]. The reader may also look at [L2, Lemma 10.4.8]
and [Ko2| Th. 6.9.1]. O

Lemma 2.4. Let X be a smooth projective variety and D an effective Q-divisor. Let
V' be an irreducible component of Non-klt(X, D) of dimension d. There exists a dense
subset U in the smooth locus of V' and a rational number g5 : 0 < g9 < 1 such that,
for any y € U, any effective Q-divisor B whose support does not contain V and such
that

mult, Bly > d
and any rational number e : 0 < £ < gg, the locus Non-klt(X, (1—e)D+ B) contains y.
If moreover (X, D) is lc at the general poit of V and #(X,D + B) = #(X, D) away
from V, then Non-kit(X, (1 —e)D + B) is properly contained in V in a neighborhood
of anyy € U.

Proof. See e.g. |Pal Lemma A.4]. Again, for similar statements, see [L2, Lemma
10.4.10] and [Ko2, Th. 6.8.1]. O

3. Positivity results for direct images

In this section we collect results concerning some positivity properties of the direct
image of the relative dualizing sheaf that we will use.

3.1. The semistable part and a canonical bundle formula. We recall results
contained in [FM] §2 and 4]. Let f : X — Y an algebraic fiber space, whose general
fiber F' has Kodaira dimension zero. Let b be the smallest integer such that the b-
th plurigenus h°(F,bKFr) of F is non-zero. Then there exists a divisor L x/y onY
(which is unique modulo linear equivalence, and which depends only on the birational
equivalence class of X over Y') such that, up to birationally modify X, we have

(3.1) H°(Y,ibKy +iLx/y) = H°(X,ibKx)

for all i > 0 (the divisor Lx/y is defined by the double dual f.O0x (ibKx/y)™).
Moreover the divisor Lx,/y may be written as

(3.2) Lx;y =LYy +A

where L§§/Y is a Q-Cartier divisor, called the semistable part or the moduli part
(which is compatible with base change), and A is an effective Q-divisor called the
boundary part. The divisor Lx/y coincides with its moduli part when f is semistable
in codimension 1, and

(3.3) LY,y is nef.

The previous results (3.1)), (3.2) and (3.3) are contained in Proposition 2.2, Corollary
2.5 and Theorem 4.5 (iii) of [FM]. The reader may also look at [Ko3| and [Mol, §4-5].
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For our application it is important to bound the denominators of L% RE Let B
denote the Betti number Bgip,(g/) of a non-singular model E’ of the cover £ — F' of
the general fiber F' associated to the unique element of |bKr|. By [FM| Theorem 3.1]

there exists a positive integer r = r(B) such that

(3.4) r- LY,y is an integral divisor.

3.2. Maximal variation and bigness of the semistable part. Let f: X — Y
be an algebraic fiber space. Recall that the variation of f is an integer Var(f) such
that there exists a fiber space f’ : X’ — Y’ with dim(Y’) = Var(f), a variety Y,
a generically surjective morphism o : ¥ — Y and a generically finite morphism
7 :Y — Y such that the two fiber spaces induced by ¢ and by 7 respectively are
birationally equivalent. The fibration f has mazimal variation if Var(f) = dim(Y).
Equivalently, f : X — Y has maximal variation if there exists a non-empty open
subset U C Y such that for any yo € U the set {y € U : f~1(y) ~birational £~ (yo)} is
finite. As proved by Fujino ([Fuj, Theorem 3.8]), we always have

(3.5) R(Y,L%)y) < Var(f).

On the other hand, by a result due to Kawamata [Ka2, Theorem 1.1], if the general
fiber of f : X — Y possesses a good minimal model (i.e. a minimal model whose
canonical divisor is semiample), then

(3.6) k(Y,L¥)y) = Var(f).
In particular, we have

Corollary 3.1 (Kawamata). Let f : X — Y be an algebraic fiber space that has
mazimal variation and such that the general fiber has a good minimal model. Then
L§§/Y 18 big.

Fujino’s inequality (3.5]) implies that the maximality of the variation is a necessary
condition for the bigness of L v

3.3. Weak positivity. Viehweg introduced the notion of weak positivity for torsion-
free coherent sheaf & on a projective variety V : if V{ is the largest open subset on
which & is locally free, the sheaf & is weakly positive if there exists a open dense
subset U of Vj such that for any ample divisor H on V and any positive integer a,
there exists a positive integer b such that the sheaf (Sym® &|v,)® (bH|y, ) is generated
on U by its global sections on Vj (see [Vie2] for a detailed discussion of this notion).
We will make use of the following positivity result for direct images, due to Campana
[Cal Theorem 4.13], which improves on previous results obtained by Kawamata [Kall,
Kollér [Kol] and Viehweg [Viel] (see also [Lul Proposition 9.8]).

Theorem 3.2 (Campana). Let f : V! — V be a morphism with connected fibres
between smooth projective varieties. Let A be an effective Q-divisor on V' whose
restriction to the general fibre is lc and has simple normal crossings. Then, the sheaf

foOvi (m(Kyi v + A))

is weakly positive for all positive integer m such that mA is integral.
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4. Extension of log-pluricanonical forms

In the course of the proof of Theorem|1.3|we will need to lift (twisted) pluricanonical
forms on a smooth hypersurface to the ambient variety.

First, we recall Takayama’s extension result [T, Theorem 4.1] (cf. [HM| Corollary
3.17] for the corresponding result, which is a generalization of a former result of
Kawamata’s [Kad]).

Theorem 4.1 (Takayama). Let Y be a smooth projective variety. Let H CY be a
smooth irreducible hypersurface. Let L' ~q A"+ E’ a big divisor on'Y with

o A’ a nef and big Q-divisor such that H ¢ B (A’);
e E’ an effective Q-divisor whose support does not contain H and such that the
pair (H, E'|p) is klt.

Then the restriction
HO(Y,m(Ky + H + L)) — H(H,m(Ky1 + L'|x))
is surjective for all integer m > 0.

The precise statement we need is the following.

Corollary 4.2. Let Y be a smooth projective variety, M an effective and nef integral
Cartier divisor on Y. Let H C Y be a smooth irreducible hypersurface such that
H ¢ Supp(M). Let L ~q A+ E a big divisor on'Y with

o A a nef and big Q-divisor such that H ¢ B, (A);
e E an effective Q-divisor whose support does not contain H and such that the
pair (H, E|g) is kit.

Then the restriction
HY(X,m(Ky + M+ H + L)) — H°(H,m(Kg + M|y + L))
is surjective for all integer m > 0.

2

For other extension results, all inspired by [S2], the reader may look at [C], [P&]
and [Vai].

Proof of Corollary[{.3. We want to apply Theorem [4.1]to L' = M + L. We can write
M+ L= (A+ M)+ E = (big and nef) + effective,
as M is nef. The only thing to check is that
H ¢ B (A+ M),

assuming H ¢ B, (A). But this is immediate, since by the nefness of M, any
decomposition A ~q (ample) + E, with E effective, gives rise to a decomposition
A+ M ~q (ample + M) + E. Therefore we have

B, (A+ M) C B,(A)

and we are done. O
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5. Bounding the restricted volumes from below

It is well-known to specialists that a positive lower bound to the restricted volumes
of a big divisor A on a variety Y allows to construct, along the lines of the Angehrn-
Siu proof of the Fujita conjecture, a global section of Ky + A separating two general
points on Y (cf. [T} Proposition 5.3] and [ELMNPI, Theorem 2.20]). Such a lower
bound is the object of the following result.

Theorem 5.1. Let Y be a smooth projective variety, M an effective and nef integral
Cartier divisor on'Y, and V. C 'Y be an irreducible subvariety not contained in the
support of M. Let L be a big divisor on Y and L ~q A+ E a decomposition such
that :

(i) A is an ample Q-divisor ;
(il) E is an effective Q-divisor such that V is an irreducible component of

Non-klt(Y, E) with (Y, E) lc at the general point of V.
Then : voly |y (Ky + M + L) > vol(Ky + M|y ).
The proof of the theorem is a fairly easy consequence of the extension result
when codim(V) = 1. In the general case, it also requires, among other things, the use

of Campana’s weak positivity result 3.2} In the following two subsections we prove
Theorem (.11

5.1. The case codimy (V) = 1. First of all, by [T, Lemma 4.6] we may assume
without loss of generality that V' is smooth. Hypothesis (ii) simply means that V'
appears with multiplicity 1 in E. We may therefore take a modification p: Y’ —Y
such that u*E = V' + F has simple normal crossings and moreover

(5.1) V' ¢ Supp(F).

Take an integer mg > 0 such that mo(p*A + {F}) has integer coefficients. By (5.1
the support of this divisor does not contain V', so we have an inclusion

(5.2) HO (V' m(Ky: + p*M|y))

HO(V' m(Kv: + p*Mly: + (W A+ {F})|v))
for any integer m > 0 divisible by myg. Since the pair (Y’,{F}) is klt, applying the
extension result to the divisor p*A + {F}, and observing that pu*L — [F] ~q
V' + p*A+ {F}, we get a surjection

(5.3) HO(Y' m(Ky: + p*M + pi* L — [F)))

i

HOWV! m(Ky + p*(M)|y: + (W A+ {F})|v)).
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In conclusion we have
WV,m(Ky + Mly)) = WOV m(Ky: + p*Mly))
(G2)+E3)) WY'\V! m(Ky: + p*M + p*L — [F]))
WYV m(Kyr + p*M + " L))
RO(Y|V,m(Ky + M + L))
so Theorem [5.1]is proved in this case.

<
<

5.2. The case codimy (V) > 2. We follow here Debarre’s presentation [D], §6.2]. We
may assume V smooth (see [T, Lemma 4.6]). Take a log-resolution p =Y’ — Y of
FE, and write

/,L*E—Ky//y = ZCLFF
F

By hypothesis V is an irreducible component of Non-klt(Y, E) such that (Y, FE) is lc
at the general point of V. This means that

(i) if V is strictly contained in pu(F'), then ap <1 ;

(ii) if V = pu(F), then ap < 1, with equality for at least one F.

Thanks to the so-called concentration method due to Kawamata and Shokurov (see
[KMM,, §3-1], [T Lemma 4.8] and [T}, Remark 4.9]) one can further assume that

(iii) there exists a unique divisor (which will be denoted by V') among the F’s
such that u(V') = V;
(iv) if ap < 0 then F is p-exceptional.

Therefore we have the commutative diagram of smooth varieties :

(5.4) VI——syY’
b
Ve—Y
and if we set G 1= 3y apF, and write [G] as a difference of effective divisors

without common components [G] = G; — Ga, by (i)-(iv) above we have that :

e (55 is p-exceptional ;
o V & pu(Supp(Gr)).

Hence, for any integer m > 0, the sheaf u. 0y (—m[G]) is an ideal sheaf on Y whose
cosupport does not contain V', so that

(5.5) H*(Y,m(Ky + M+ L)) > H°(Y,p.0y/(—m[G])(m(Ky + M + L))
HY' m(u*(Ky + M + A+ E) - [G)))
HO(Y',m(Ky: + p*M + V' + {G} + p*A)),

Il

1

as soon as the divisors on the right-hand side are integral. Since the pair (V/,{G}|v/)
is klt, we can apply the extension result Corollary to the divisor

and to the smooth hypersurface V' C Y’. Hence we get a surjection

HOY ,m(Ky: + "M + V' 4 {G} + @A) — HOV . m(Kys + (M)l + Lv))-
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The last surjection together with the injection (5.5) and, again, the fact that the
cosupport of Oy (—m[G]) does not contain V, leads to the inclusion :
(5.6)  HV'm(Kys+ p*(M)ly + L'ly)) € BY|V.m(Ky + M + L)).

On the other hand, thanks to Campana’s theorem[3.2] one can show that for a suitable
positive integer m’ we have :

HO(V' ! (K v +{GYvr + fAlv)) # 0
(see [D} pages 17-18]). Hence we obtain by multiplication an injection
HO(V,mm! (Ky + Mly)) — H(V',mm/(Ky: + f*(Mlv) + L'|y)).

The last inclusion, together with and the fact that the restricted volumes are
limits complete the proof of Theorem O

Using the log-concavity property of the restricted volume, established in
[ELMNP2], we deduce from Theorem the following consequence which will be
the key ingredient in the inductive proof of Theorem

Corollary 5.2. Let Y be a smooth projective variety. Let M’ be an effective and nef
integral Cartier divisor on'Y and V C 'Y an irreducible subvariety not contained in
the support of M'. Let L be a big divisor on X and L ~q A+ E a decomposition
such that :
(i) A is an ample Q—divisor ;
(il) E is an effective Q—divisor such that V is an irreducible component of
Non-kl((Y, E) with (Y, E) lc at the general point of V;

(iii) Ky + L is bigand V ¢ B4y (Ky + L).

Then, for any positive integer v, we have

Lo
V01y|v(Ky -+ ;M + L) Z Vdim(V)

1
vol(Ky + = M'|y).
1%

Proof. Write
1 1 1
Ky + ;M’ +L= ;(Ky +M' + L)+ (1— ;)(Ky +L).

By (iii), thanks to the log-concavity property of the restricted volume proved in
[ELMNP2, Theorem A] we have

voly v (Ky + %M’ + L)Y > %VOIY‘V(KY + M + L)V (1 - %) voly |y (Ky + L)'/,
where d = dim(V'). Therefore, by Theorem 5.1} we obtain

voly v (Ky + %M’ + L)Y > %VOI(KV + M'|y)VE > %VOI(KV + %M’|V)1/d
and the corollary is proved. O

Remark 5.3. We will apply Corollary [5.2] to the base Y of the fibration f : X — Y
and to (multiples of) a divisor L = Ky + aL}S/Y, where o will be a certain positive
rational number. The pseudo-effectivity of Ky that appears among the hypotheses
of Theorem [T.3]is therefore needed here to insure the bigness of the sum Ky + L that
appears in Corollary hypothesis (iii).
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6. Point separation for big pluriadjoint systems

From Theorem [[.3] it is easy to deduce the existence of a uniform positive lower
bound on the volume of big adjoint linear systems Ky + M with M nef.

Corollary 6.1. For any positive integers n and v, any smooth complex projective
variety Y of dimension n and any big and nef Q-divisor M with v - M integral, and
such that Ky + M is big, we have :

1
(V)™

vol(Ky + M) >

where my,,, is as in Theorem [I.3,

Proof. Let my, be as in Theorem Let m = v -my,. Let p:Y’ — Y be the
blow-up along the base locus of |m(Ky + M)|. Then we can write

prm(Ky + M) = |G| + F,

where |G| is the base-point-free part, and F is the fixed part. In particular G is nef,
so vol(G) = G™. In conclusion we have :

l(pw*m(Ky + M
(6.1) vol(Ky + M) = vol(p*m( ny-l- ) > —
m m
1 1 1
G -

O

On the other hand we will see that a sort of converse to Corollary [6.1] is true.
Namely, assuming the existence of such a lower bound in dimension < n, we will
determine an effective multiple of Ky + M which is birational. The multiple will still
depend on its volume but in a very precise way, sufficient to derive Theorem [1.3

Theorem 6.2. Let n and v be positive integers. Suppose there exists a positive
constant v such that, for any smooth projective variety V' of dimension < n with
pseudo-effective canonical divisor, and any big and nef Q-Cartier divisor N on V
such that vN is integral, we have vol(Ky + N) > v. Then, there exists two positive
constants a = an, and b := by, such that, for any smooth projective variety Y of
dimension n with pseudo-effective canonical divisor, and any big and nef Q-Cartier
divisor M on'Y such that vM is integral, the rational pluriadjoint map

Pm(ky+a1) Y - PHY(Y, Oy (m(Ky + M)))*

is birational onto its image, for all

b
>
m > a-+ VOI(KY + M)l/n

such that mM 1is integral.
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6.1. Proof of Theorem [6.2] The proof follows the approach adopted by Angehrn
and Siu [AS] in their study of the Fujita conjecture (see also [Ko2, Theorem 5.9]),
with the variations appearing in [HM], [T] and [Ts1],[Ts2] to make it work for big
divisors, and it is based on the following application of Nadel’s vanishing theorem.

Lemma 6.3. Let Y be a smooth projective variety. Let M (respectively E) be a big
and nef (resp. a pseudo-effective) Q-divisor. Let x1,xq be two points outside the
support of E. Suppose there exists a positive rational number ty such that the divisor
Dy ~ to(M + E) satisfies the following:

(i) z1, 22 € Non-kli(Y, Dy);

(ii) x1 is an isolated point in Non-kit(Y, Dy).
Then, for all integer m > to + 1 such that (m — 1)E +mM is integral, there exists a
section s € HO(Y, Ky + (m — 1)E +mM) such that s(z1) # 0 and s(z2) = 0.

Proof. Take any integer m > to+ 1 such that (m —1)FE +mM is integral. Notice that
Do+ (m—ty—1)E
is an effective Q-divisor, and that
(m—1DE+mM—(Dg+ (m—tg—1)E)=(m —tg)M
is a Q-divisor which is big and nef. Hence by Nadel’s vanishing theorem [2.2] we have:
HYY, 7 (Y, Do+ (m —ty — 1)E) ® Oy (Ky + (m — 1)E +mM)) = 0.
Let Vi be the subscheme defined by the ideal sheaf #(Y, Dy + (m —ty — 1)E) and
consider the short exact sequence of Vo C Y :
0— A(Y,Dy+ (m—ty—1)E) — Oy — Oy, — 0.
Tensoring it with Oy (Ky + (m — 1)E +mM), and taking cohomology, we thus get a
surjection:
HY(Y,Ky + (m —1)E +mM) - H°(Vy, (Ky + (m — 1)E +mM)|y,).
Notice that as the points x1, x5 lie outside the support of E, around them we have
Non-klt(Y, Do) = Non-klt(Y, Dy + (m — to — 1) E),

that is, Vj still contains 1, x5, the former as an isolated point. In particular, there
exists a section
s€ H(Y,Ky + (m — 1)E +mM)
such that
s(z1) # 0 and s(xz2) = 0.
O

Using it is easy to construct a rational multiple of the big divisor Ky + M
satisfying the condition (i) above. The main problem is that its Non-klt locus may
well have positive dimension at x;. We will then proceed by descending induction
and use the lower bound on the restricted volumes proved in Corollary in order
to cut down the dimension of the Non-klt locus at x; and end up with a divisor
Dy ~ to(Ky 4+ M), with tg < a+b/(vol(Ky + M))*/™ and satisfying both hypotheses
of Lemma In the course of the proof we will invoke the following elementary
result.
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Lemma 6.4. Let Y be a smooth projective variety, and M an effective Q-divisor
such that Ky + M is big. Let V' be a subvariety passing through a very general point
of Y and ¢ : V' =V a desingularization. Then the Q-divisor Ky, + ¢*M is big.

Proof. Thanks to the existence of the Hilbert scheme we may assume there exists a
smooth family ¥ — B and a finite surjective morphism ® : ¥ — Y such that its
restriction to the general fiber gives ¢ : V/ — V. Take an integer m > 0 such that
mM is integral. Since ® is finite, and ®*|m(Ky +M)| C |m(Ky +®*M)|, the divisor
Ky +®*M is big, and so is its restriction to the general fiber over B. But the normal
bundle of any fiber in the family is trivial, so by adjunction we have (Kv )|y = Ky
and we are done.

Proof of Theorem[6.4 The proof follows the Angehrn-Siu approach, as in the case
M = 0 that was considered in [HM], [I] and in [TsI], [Ts2]. We will proceed
by descending induction on d € {1,...,n} to produce an effective Q—divisor Dy ~
ta(Ky + M) such that :

(1) 21,29 € Non-klt(Y, Dyg);

(2) (Y, Dy) is lc at a non-empty subset of {1, 22}, say at z1;

(3) Non-klt(Y, D4) has a unique irreducible component Vj passing through
and dim V; < d;

(4) tg < tar1 +vapr with vgy = v(d + 1)(2/v)V @D (1,4 + 2) + €, where v/
equals vol(Ky + M) (resp. v’ equals v) if d =n — 1 (resp. if d < n — 1), and
€ > 0 may be taken arbitrarily small.

(We set t,, = 0). Take two very general points z; and x5 on Y. Precisely, they
must be outside, the support of the effective divisor F in the Kodaira decomposition
of Ky + M ~q A+ E, the sub-locus of Y covered by the images of P! (since we
want our subvarieties V to be non-uniruled), and the union of all the log-subvarieties
of the pair (Y, M) which are not of log-general type (i.e. subvarieties Z of Y not
contained in M and such that Kz + v*M is not big, where v : Z/ — Z is any
desingularization on Z). As in the first step of the Angehrn-Siu proof, thanks to the
bigness of Ky + M, we can pick an effective Q-divisor D,,_1 ~ t,_1(Ky + M) which
has multiplicity > n at both points, as soon as t,,_; < n2'/"vol(Ky + M)~ /" 4 ¢
(with € > 0 arbitrarily small). Indeed having multiplicity > r at z1 and z2 imposes
2("‘”_1) ~ 2% conditions. On the other hand, for m > 0 such that [mv,|M is

n

integral, the dimension of H°(Y, [mv,|(Ky + M)) grows as vol(Ky + M)% S0 we

have . .
vol(Ky + M) [m“j‘] 5 2m ki

n! n!
as soon as v, := n(2/vol(Ky + M))l/n + ¢ (with € > 0 arbitrarily small). In
particular, by (2.3), we get that Non-klt(Y, D,,_1) 3 x1, 22 and, up to multiplying by
a positive rational number < 1, we can assume that (Y, D,,_1) is lc at one of the two
points, say at x1. Also, up to performing an arbitrarily small perturbation of D,, 1,
thanks to Lemma [2.3] we may assume there exists a unique irreducible component of

Non-klt(Y, D,,—1) through x;. The base of the induction is therefore completed.

For the inductive step we proceed as follows. Suppose that we have constructed an
effective Q-divisor Dy ~ t4(Ky + M) satisfying conditions (1), (2), (3) and (4) above.
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Suppose for simplicity that Dy is non-klt at 25 and lc at 21 (the other two possibilities,
which are treated in the same way, but render the discussion more complicated, are
discussed in details in [Pal §A.3], when M = 0. The general case can be treated in the
same way). Also, we may assume that z; is a non-singular point of Non-klt(Y, D)
(if not, a limiting procedure described in [L2 10.4.C] allows to conclude). Since
the points lie outside the support of E the same is true for (Y, Dy + tE), where
t:=[tq] + 1 — tq. Since Ky is pseudo-effective, adding to it any positive multiple of
Ky + M we still get a big divisor. Therefore we apply Corollary [5.2] to the divisors

L:=([ta) + 1)(Ky + M) ~tA+ (Dg+tE) and M' := vM

and get
1
VOly‘Vd (KY =+ M + L) = ([td] + 2)dVOly|Vd<KY + M) Z ﬁ VO].(KVd + M|Vd)

where Vj is the irreducible component of Non-klt(Y, Dy + tE) through z;. Since z;
is general, V; cannot be contained in M. Moreover, always by generality of z; the
divisor Ky, + M|y, is big (see Lemma [6.4), and V; cannot be uniruled (hence its
canonical divisor is pseudo-effective, by [BDPP]). Then, using the hypothesis, we
have

VOl(KVd +M|Vd) > 0.

Now, we want to add to Dy an effective Q-divisor of the form vy(Ky 4+ M) which has
multiplicity > d at x;, but chosen among those restricting to a non-zero divisor on
V. Precisely, for small rational § > 0, we add to (1 — §) D, a divisor G equivalent to

(d(2/ voly v, (Ky + M)/ + £)(Ky + M)

(which is < (vd(2/v)Y%(tq + 2) + ¢)(Ky + M) by Corollary [5.2)), Using Lemma
we get a divisor Dg_1 ~ tq_1(Ky + M) with

tao1 <tg+vd2/v)Y 4ty +2) +e

and such that its Non-klt locus contains 1, x3. Moreover G can be chosen such that
the new divisor D41 is klt around z; outside the support of G|y, i.e.

Non-klt(Y, D4_1) has dimension at z; strictly lower than dim (V).

Again, multiplying D1 by a rational number < 1 and applying Lemma also
conditions (2) and (3) are satisfied. The inductive step is thus proved.
In conclusion, we have obtained an effective Q-divisor Dy ~ to(Ky + M) with

to < a{n,u + b%,ut"—l < a{th + b%,un(z/ VOl(KY + M))l/n

whose Non-klt locus contains z; as an isolated point, and x5. Therefore, by Lemma
we deduce the existence of a global section

s€ H(Y,Ky + (m — 1)Ky +mM) = H*(Y,m(Ky + M))

separating the two points, for all m > al, , + b, ,n(2/vol(Ky + M))*/™ divisible by
. ]
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6.2. Proof of Theorem [1.3l

Proof of Theorem[I.3 The proof is by induction on the dimension of the varieties.
Theorem holds for n = 1. Suppose it holds for n — 1. From Corollary we
deduce the existence of a positive lower bound :

VOI(KV + N) > Un—1,v

for all pairs (V, N) where V is a smooth projective variety of dimension < n — 1,
and N is a big and nef Q-divisor on V such that vN is integral. In particular the
hypotheses of Theorem are fullfilled. Notice that here we use in a crucial way the
hypothesis that the denominators of the N’s are bounded. Otherwise the righthand
side in the inequality , which is 1/m™, with m divisible by v, would go to zero
for v — +o0.

Consider the pairs (Y, M), where Y is n-dimensional and M is a big and nef Q-
divisor such that vM is integral. For those such that volume of Ky + M is bounded
from below, say vol(Ky + M) > 1, then Theorem implies that |m(Ky + M)|
separates points, for all

m>a+b>a+b/vol(Ky + M)/

such that m is divisible by v. For those such that vol(Ky + M) < 1, then a priori the
quantity a + b/ vol(Ky + M)'Y™ may still be arbitrarily large. This does not occur :
using Theorem and projecting down, we have that the variety Y is birational to
a subvariety of P2"+! of degree :

< <a+ b )nvol(Ky-i-M)
vol(Ky + M)1/n

= (avol(Ky + 1)V + b)n < (a+b)™

Such varieties are parametrized by an algebraic variety (the Chow variety), so thanks
to the Lemma below, the volumes of Ky + M are also bounded from below by a
positive constant ¢, ,, (which is not effective!). Hence we may take

My, = [1+a+ b/c}/;‘]

and we conclude that the pluricanonical system |m(Ky + M)| separates two general
points for all m > m,, ,, divisible by v. O

Lemma 6.5 (see [I], Lemma 6.1). Consider the Chow variety
Chow = Ug<q, Chown, q, (P2"+1).

Let T = U;T be the Zariski closure of those points in Chow. For any i, we have
inf{vol(Ky, + My) : t € T; and Ky, + M is big} > 0.

Proof. Tt is of course sufficient to prove the statement for one T' = T;. We argue by
induction on dim(7). If the dimension is zero, there is nothing to prove. Suppose
dim(7T") > 0. We consider the universal family U — T and U—Ua desingularization,
together with a line bundle whose restriction to a smooth fiber is Ky, +M; . Let T° C
T be the open subset over which the induced map p : U — T is smooth. Let S C T be
the Zariski dense subset whose points correspond to varieties with Ky, + M, big. The
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S NT° is also dense. By construction, for any s € S NT°, the fiber i/v; =pl(s)isa
smooth variety with Ky, + M, big. By the upper semicontinuity of the h°, the same
is true for every fiber over T°, and moreover we have inf{vol(Ky, + M) : t € T°} > 0.
On the other hand, as for the complement S N (T \ 7°), we invoke the inductive
hypothesis and are done. O

From Theorem [[.3] we deduce our main result.

Proof of Theorem[1.3 Fix n,b and k. Let r := r(k) = maz{r(B) : B < k}, where
r(B) is the integer appearing in (3.4) and v :=r - b. Set

m(n, b, k) := max{maim(y), : 1 <dim(Y) <n}

where mgim(y),, is as in Theorem Let f: X — Y be an algebraic fiber space
verifying the hypotheses of Theorem Notice that by (3.1) and (3.2) we have :

(6.2) HO(Y,ibKy +iL%,y) C H'(Y,ibKy +iLx/y) = H*(X,ibKx)

for all ¢ > 0 divisible by the integer r. Take M := %Lg‘g/y. By the Q-divisor
M is nef and by the divisor v - M is integral. The variety Y is non-uniruled,
therefore by [BDPP] its canonical divisor Ky is pseudo-effective. Notice moreover
that, since by the divisor M is big, we have that Ky 4+ M is big. Then, by
Theorem we get the birationality of the pluriadjoints maps ¢, (ky 4+, for all
m > m(n, b, k) divisible by v. The inclusion yields the desired uniformity result
for the litaka fibration of X. O
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