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CONTROLLING MANIFOLD COVERS OF ORBIFOLDS

D. B. McReynolds

Abstract. In this article we prove a generalization of Selberg’s lemma on the existence
of torsion free, finite index subgroups of arithmetic groups. Some of the geometric

applications are the resolution a conjecture of Nimershiem and answers to questions of

Long–Reid and the author.

1. Introduction

For a compact orbifold M with an infinite fundamental group, there is no reason
to expect M to possess a finite manifold cover. Indeed, even the existence of a finite
orbifold cover cannot be guaranteed. However, when πorb

1 (M) admits a faithful linear
representation, Selberg’s lemma (see for instance [2]) furnishes M with many finite
manifold covers. Given their prolificacy, one might ask more geometrically of these
covers. Explicitly, we ask the following pair of questions.

Question 1. If N is a properly immersed, π1–injective submanifold of M , can N be
lifted to an embedded submanifold in a finite manifold cover of M?

Question 2. If N is an immersed, totally geodesic submanifold of M , can N to be
lifted to an embedded submanifold in a finite manifold cover of M?

This article aims at resolving the first question in some special cases. In the final
section, we partially address the second question. Even in these special situations,
there are some new geometric applications. We have elected to postpone the motiva-
tion for these geometric results until Section 6. Before describing them, we give an
abbreviated account of the associated algebraic problem.

The enterprize of promoting immersions to embeddings in finite covers has received
some attention in recent years. The associated algebraic problem for subgroups π1(N)
of πorb

1 (M) is directly related to subgroup separability (see [20]). In this vein, we
proved in [15] a result that promotes π1–injective immersions to embeddings in finite
covers when M is arithmetic and N is infranil. Our present goal is to ensure the
cover constructed in [15] can be taken to be a manifold. Algebraically, this requires
a torsion free, finite index subgroup Λ0 of πorb

1 (M) that contains π1(N). The main
result of this article is the resolution of this problem. Throughout the remainder of
this article, [η] will denote the GL(n,Z)–conjugacy class of an element η of GL(n,Z).

Theorem 1.1. Let η ∈ GL(n,Z) be a semisimple element and Γ < GL(n,Z) a
torsion free, virtually unipotent subgroup. Then there exists a finite index subgroup
Λ0 of GL(n,Z) such that Γ < Λ0 and [η] ∩ Λ0 = ∅.
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Corollary 1.2. Let Γ < GL(n,Z) be a torsion free, virtually unipotent subgroup.
Then there exists a torsion free, finite index subgroup Λ0 of GL(n,Z) such that Γ < Λ0.

The main geometric application of Corollary 1.2 given here is on the structure of
cusp cross sections of arithmetic orbifolds and manifolds. Specifically, using the afore-
mentioned subgroup separability result [15, Theorem 3.1] in tandem with Corollary
5.3 (see Section 5), we can promote π1–injective immersions of infranil manifolds into
arithmetic orbifolds to embeddings in some finite manifold cover of the target orb-
ifold. With this and our previous work in [15, 16], we can derive a few new geometric
results. The first verifies a conjecture of Nimershiem [18, Conjecture 2’].

Theorem 1.3 (Nimershiem’s conjecture). Let M be a closed flat n–manifold. Then
the space of similarity classes of flat structures on M that can be realized in cusp
cross sections of (arithmetic) hyperbolic (n+1)–manifolds is dense in the space of flat
similarity classes.

This was previously known only for n = 1, 2, and 3 (see [18]). The following
corollary of Theorem 1.3 was also previously known only for small n.

Corollary 1.4. Every closed flat n–manifold is diffeomorphic to a cusp cross section
of an arithmetic hyperbolic (n+ 1)–manifold.

Corollary 1.4 upgrades the main result of Long–Reid [12, Theorem 1.1] to mani-
folds, answering a question implicitly asked by Long and Reid [12, p. 286] (Nimer-
shiem [18, Conjecture 1’] also conjectured this without an arithmetic assumption).

Our next result is the extension of Theorem 1.3 to the complex and quaternionic
hyperbolic settings via [16, Theorem 3.5] and Corollary 5.3.

Theorem 1.5. (a) Let N be a closed almost flat manifold modeled on the Heisen-
berg group N2n+1. Then the space of similarity classes of almost flat metrics
on N that can be realized in cusp cross sections of complex hyperbolic (n+1)–
manifolds is either empty or dense in the space of almost flat metrics.

(b) Let N be a closed almost flat manifold modeled on the quaternionic Heisenberg
group N4n+3. Then the space of similarity classes of almost flat metrics on N
that can be realized in cusp cross sections of quaternionic hyperbolic (n+ 1)–
manifolds is either empty or dense in the space of almost flat metrics.

In [15, Theorem 5.4], we gave a necessary and sufficient condition on when this set
is non-empty. This provides the following corollary which answers a question asked
in [15, Section 8].

Corollary 1.6. Every closed Nil 3–manifold is diffeomorphic to a cusp cross section
of an arithmetic complex hyperbolic 2–manifold.

Density for almost flat structures on compact Nil 3–manifolds follows from Theorem
1.5 (a) and Corollary 1.6. Our final result is the geometric consequence of Corollary
5.3.

Corollary 1.7. Let N be a closed infranil manifold and X an arithmetic orbifold.
Then any proper π1–injective immersion of N into X can be lifted to be an embedding
in a finite manifold cover of X.
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Note that Theorem 1.1 (see Theorem 5.2) permits one to find finite manifold covers
of X such that any finite number of closed geodesics fail to lift and N can be lifted
to be embedded.

2. Preliminaries

Notation. For each prime p, Zp,Qp will denote the p–adic integers and field, re-
spectively. The full profinite closure of Z will be denoted by Ẑ. Associated to these
topological rings are the topological groups GL(n,Zp),GL(n,Qp), and GL(n, Ẑ). Fi-
nally, the reduction homomorphism given by reducing coefficients modulo m will be
denoted by rm : GL(n,Z) → GL(n,Z/mZ).

2.1. Given a subgroup Γ of GL(n,Z), we denote the closure of Γ in GL(n,Zp) by
Clp(Γ) and its closure in GL(n, Ẑ) by Cl(Γ). The following is a restatement of [15,
Theorem 3.1].

Theorem 2.1. If Γ < GL(n,Z) is virtually solvable, then Cl(Γ) ∩GL(n,Z) = Γ.

2.2. Given an element γ in GL(n,Z), there exists a unique decomposition γ = γsγu

called the Jordan decomposition. The elements γs, γu ∈ GL(n,C) have the following
properties:

(1) γs is diagonalizable and γu − In is nilpotent.
(2) [γs, γu] = γ−1

s γ−1
u γsγu = In.

An element γ is called semisimple if γu = In and unipotent if γs = In. It will
be our convention to consider the trivial element as unipotent. Whether or not an
element is semisimple or unipotent is a conjugacy invariant, a fact gleamed from the
formulae

(1) (η−1γη)s = η−1γsη, (η−1γη)u = η−1γuη.

2.3. A subgroup Γ of GL(n,C) is unipotent if Γ is conjugate in GL(n,C) into the
group of upper triangular matrices with ones along the diagonal. More generally, if
Γ has a finite index subgroup that is unipotent, we say that Γ is virtually unipotent.

Given a virtually unipotent subgroup Γ of GL(n,Z), each element γ in Γ possesses
a Jordan decomposition γsγu. As some power of γ is unipotent, γm = γm

u where
m is the order of γs. In the event that Γ is torsion free, γu is necessarily nontrivial
and hence no element of Γ can be semisimple. Note also that both γs, γu reside in
GL(n,Q).

2.4. Associated to Γ is the set of semisimple factors

Semi(Γ) = {γs : γ ∈ Γ} ⊂ GL(n;C).

According to (1), the conjugate action of Γ induces an action on the set Semi(Γ). The
finiteness of the quotient Semi(Γ)/Γ under this action will be critical.

Lemma 2.2. If Γ < GL(n,Z) is virtually unipotent, then Semi(Γ)/Γ is finite.

We postpone the proof of Lemma 2.2 until Section 4. For future reference, we fix a
complete set of representatives sγ1, . . . ,

sγr ∈ Semi(Γ) for the quotient set Semi(Γ)/Γ.
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3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We begin by deducing Corollary 1.2 from
Theorem 1.1.

Proof of Corollary 1.2. A well known corollary of Weil local rigidity is the finiteness
of conjugacy classes of torsion elements in GL(n,Z) (see for instance [19, VII.5]). Let
η1, . . . , ηt be a complete set of representatives for these conjugacy classes of torsion
elements. According to Theorem 1.1, for each ηj , there exists a finite index subgroup
Λj of GL(n,Z) such that Γ < Λj and [ηj ] ∩ Λj = ∅. The subgroup

Λ0 =
t⋂

j=1

Λj ,

is easily seen to suffice for verifying the corollary. �

3.1. Proof of Theorem 1.1. In this subsection, we prove Theorem 1.1. The proof is
elementary (modulo Lemma 2.2), relying only Jordan form and passage to convergent
subsequence (via compactness).

3.1.1. Some basic facts. We begin by recording some elementary facts, the proofs of
which have been included for completeness.

Lemma 3.1. If γ is a limit of unipotent elements in GL(n,Zp), then γ is unipotent.

Proof. Let {γj} be a sequence of unipotent elements in GL(n,Zp) that converge to γ.
As there exists a uniform bound on the multiplicative order of γj − In, it follows that
γ is unipotent. Specifically, if N is an integer such that the multiplicative order of
γj − In is bounded above by N for all j, it follows that for all j > 0, (γj − In)N = 0n.
Thus

0n = lim
j

(
(γj − In)N

)
=

(
lim

j
(γj − In)

)N

=
((

lim
j
γj

)
− In

)N

= (γ − In)N .

�

Lemma 3.2. If η ∈ GL(n,Z) is semisimple, then Clp([η]) consists of semisimple
elements.

Proof. For λ ∈ Clp([η]), there exists a convergent sequence
{
η′j

}
in [η] whose limit

is λ. For each η′j , by definition there exists βj ∈ GL(n,Z) such that β−1
j η′jβj = η.

As {βj} is a sequence in the compact group GL(n,Zp), there exists a convergent
subsequence {β`} of {βj} with limit β ∈ GL(n,Zp). Note that by continuity of taking
inverses, the sequence

{
β−1

`

}
is also convergent and has limit β−1. In total, this yields

η = lim
`
η = lim

`
(β−1

` η′`β`) =
(

lim
`
β−1

`

)
·
(

lim
`
η′`

)
·
(

lim
`
β`

)
= β−1λβ.

As η is semisimple, λ is as well. �

Lemma 3.3. For subsets R1, R2 ⊂ GL(n,Z), if Clp(R1) ∩ Clp(R2) = ∅, then there
exists a positive integer K such that rpK (R1) ∩ rpK (R2) = ∅.
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Proof. Note that as the closed sets Clp(R1) and Clp(R2) are disjoint, the topologi-
cal normality of GL(n,Zp) implies that we can find open subsets Oj of GL(n,Zp)
that contain Clp(Rj) and are disjoint from Clp(Rk) where j 6= k. The subsets
Clp(r−1

p` (rp`(Rj))) are open (and closed) in GL(n,Zp), contain Clp(Rj), and have
the feature that

∞⋂
`=1

Clp(r−1
p` (rp`(Rj))) = Clp(Rj).

Therefore, for some large integer K, it must be that

Clp(r−1
pK (rpK (R1))) ∩ Clp(r−1

pK (rpK (R2))) = ∅.

Thus, we must have the less restrictive, desired conclusion

rpK (R1) ∩ rpK (R2) = ∅.

�

3.1.2. Limit point criterion. For the statement of the following proposition, recall
by Lemma 2.2 that there exists a finite set { sγ1, . . . ,

sγr} of semisimple factors up
to Γ–conjugation.

Proposition 3.4. If η ∈ Clp(Γ) is semisimple, then there exists 1 ≤ kη ≤ r such that
sγkη ∈ Clp(Γ).

Proof. By definition, there exists a convergent sequence {γj} in Γ with limit η. Con-
sider the pair of sequences sγj = (γj)s, uγj = (γj)u. We will first prove the proposition
under the assumption that sγj = sγkη

for all j and some fixed kη. We will see be-
low that the general situation can be reduced to this. Under the assumption that
sγj = sγkη , the associated unipotent factor sequence { uγj} of {γj} must also con-
verge since uγj = γj( sγkη )−1. Suggestively setting ηu to be the limit of the sequence
{ uγj}, we assert that sγkη

ηu is the Jordan decomposition for η. That ηu is unipo-
tent follows from Lemma 3.1 (we already know that sγkη

is semisimple). To see that
sγkη

ηu = η, notice that sγkη
· uγj = γj . Therefore,

η = lim
j
γj = lim

j

(
sγkη · uγj

)
= sγkη ·

(
lim

j

uγj

)
= sγkη · ηu.

Finally to see that [ sγkη
, ηu] = In, note that

In = lim
j

[ sγkη
, uγj ] = lim

j

(
( sγkη

)−1 · ( uγj)−1 · sγkη
· uγj

)
= ( sγkη )−1 ·

(
lim

j
( uγj)−1

)
· sγkη ·

(
lim

j

uγj

)
= ( sγkη

)−1 · η−1
u · sγkη

· ηu = [ sγkη
, ηu]

as needed. This shows that sγkη
ηu is the Jordan decomposition for η. As η is semisim-

ple, it must be that ηu = In and hence η = sγkη
for some kη.

It could be the case that the semisimple factor sequence sγj for γj is not constant.
Using Lemma 2.2, we will reduce this case to the previous one. To begin, by Lemma
2.2, there exists a sequence {αj} in Γ such that

(α−1
j γjαj)s = α−1

j
sγjαj = sγkj , kj ∈ {1, . . . , r} .
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In particular, some kη must occur infinitely often and so we can pass to a subsequence
γi such that

(α−1
i γiαi)s = sγkη

for some fixed 1 ≤ kη ≤ r. As {αi} is a sequence in the compact group Clp(Γ), {αi}
has a convergent subsequence {α`} with limit α ∈ Clp(Γ). Again by continuity of
taking inverses,

{
α−1

`

}
is convergent with limit α−1 ∈ Clp(Γ). In total, we see now

that

lim
`
α−1

` γ`α` =
(

lim
`
α−1

`

)
·
(

lim
`
γ`

)
·
(

lim
`
α`

)
= α−1ηα.

As α, α−1, η ∈ Clp(Γ), so is α−1ηα. In addition, since η is semisimple, so is its
conjugate α−1ηα. By taking α−1ηα instead of η, we can assume that η is the limit
of a sequence {γj} in Γ whose semisimple factors are constant. �

Remark. By construction, η and sγkη
are conjugate in GL(n,Zp).

3.1.3. Avoiding a semisimple factor. As before, the elements sγ1, . . . ,
sγr are a com-

plete list of semisimple factors up to Γ–conjugation given by Lemma 2.2.

Lemma 3.5. For each k = 1, . . . , r, there exists a prime pk such that sγk /∈ Clpk
(Γ).

Proof. If sγk /∈ GL(n,Z), then there exists a matrix coefficient ν of sγk such that
ν /∈ Z. Taking pk to be a prime occurring in the denominator of ν, it follows that
ν /∈ Zpk

. As any limit of elements in Γ is in GL(n,Zp), sγk /∈ Clpk
(Γ). We now

consider the alternative when sγk ∈ GL(n,Z). According to Theorem 2.1, if sγk ∈
GL(n,Z)∩Cl(Γ), then sγk ∈ Γ. However, Γ is torsion free and sγk is finite order, and
thus could not possibly reside in Γ. Therefore, there must exist a prime pk such that
sγk /∈ Clpk

(Γ), as desired. �

3.1.4. Proof of Theorem 1.1. We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let [η] be a GL(n,Z)–conjugacy class for a semisimple element
η in GL(n,Z). Using the primes in Lemma 3.5 and setting

N =
r∏

i=1

pi, ClN (Γ) =
r∏

i=1

Clpi
(Γ),

it follows that sγk /∈ ClN (Γ) for all k = 1, . . . r. In particular, ClN (Γ) contains no
semisimple elements by Proposition 3.4. By Lemma 3.2, ClN ([η]) consists entirely of
semisimple elements. These two facts imply that ClN (Γ) ∩ ClN ([η]) = ∅. By Lemma
3.3, there exists a positive integer K such that rNK (Γ) ∩ rNK ([η]) = ∅. The proof is
completed by taking the finite index subgroup r−1

NK (rNK (Γ)) for Γ0. �

Theorem 1.1 is the strongest possible result. In Section 7.1, we give an example, due
to Stebe [21], of an infinite cyclic subgroup of GL(n,Z) with semisimple generator for
which Theorem 1.1 is false. In particular, the virtual unipotency assumption cannot
be dropped.
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3.2. Torsion in profinite groups. For a torsion free, residually finite G, there is
no reason to expect the profinite closure Ĝ of G to be torsion free. Indeed, torsion
free, finite index subgroups of GL(n,Z) with n > 2 provide linear examples (see [13]).
Even for nilpotent groups G, it need not be the case that Ĝ is torsion free (see [10]).
However, for the class of Γ considered here, it follows from [10] that Γ̂ is torsion free.
In addition, it follows from [15] that Cl(Γ) = Γ̂. Using this with Lemma 3.2 provides
a different proof of Corollary 1.2. Our proof of Theorem 1.1 provides an elementary
proof that Γ̂ is torsion free for virtually unipotent subgroups of GL(n,Z). In fact, our
proof shows that Cl(Γ) contains no semisimple elements.

4. Proof of Lemma 2.2

In this section, we prove Lemma 2.2. We refer the reader to [6] for the material
used below on nilpotent Lie groups, Lie algebras, and almost crystallographic groups.

4.1. Preliminaries. For a virtually unipotent subgroup Γ of GL(n,Z), there exists
a short exact sequence

1 −→ Γu −→ Γ −→ θ −→ 1
where Γu is the Fitting subgroup of Γ and θ is a finite group (the holonomy group
of Γ). The associated holonomy representation ϕ : θ → Out(Γu) together with a 2–
cocycle f ∈ H2

ϕ(Γu, θ) determine Γ. We will prove Lemma 2.2 by induction of the
step size of Γu. The base case when Γu is abelian is simply the case when Γ is a
crystallographic group. Before addressing the base case, we simplify our situation.

Set N to be the Mal’cev completion [6, p. 9] of Γu and n to be the Lie algebra
of N. By construction, Γu admits an injection into N. The group N is a connected,
simply connected, nilpotent Lie group and so the exponential map (see [6, p. 7–
8]) exp: n → N has a smooth inverse log : N → n. By Mal’cev rigidity [6, Theorem
1.2.3], the holonomy representation ϕ has a unique extension ϕ : θ → Out(N) and this
extension lifts to a homomorphism into Aut(N) ([6, Lemma 3.1.2]). This provides us
with an injection ψ : Γ → Noϕθ where, in an abuse of notation, ϕ denotes some lift of
ϕ to Aut(N). This allows us to write each element γ ∈ Γ as (nγ , θγ) with nγ ∈ N and
θγ ∈ θ. We also have a Jordan decomposition of γ given by γ = (ns, θγ) ·(nu, 1) where
ns, nγ ∈ N and θγ(nu) = nu. The set of semisimple factors under this decomposition
is given by

SemiN(Γ) = {(ns, θγ) : γ ∈ Γ} ⊂ N oϕ θ.

and we can reduce the finiteness of Semi(Γ)/Γ to the finiteness of SemiN(Γ)/Γ. That
this can be done is seen by the following argument. By Mal’cev rigidity, the inclusion
of Γ into GL(n,Z) induces a smooth injection ρ : N oϕ θ → GL(n,R). By the
uniqueness of the Jordan decomposition (see [3, I.4]), we have that ρ((ns, θγ)) = γs,
ρ((nu, 1)) = γu. Consequently, it suffices to show the finiteness of SemiN(Γ)/Γ. We
are now ready to prove Lemma 2.2.

4.2. Proof of Lemma 2.2. Our proof will be done by inducting on the step size of
Γu.

Case (Base). In this case Γu
∼= Zm for some m and hence N = Rm. By the

Bieberbach theorems (see [4]), we write elements of Γ as (t, S) where t ∈ Zm and
S ∈ GL(m,Z). As there are only finitely many S (these are the elements of θ), it
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suffices to prove that there are only finitely many semisimple factors of the form (ts, S)
up to Γ–conjugation for each individual S. The action of S on Qm decomposes into
two subspaces Qm = WS ⊕Wtriv,S where Wtriv,S is the maximal subspace of Qm

on which S acts trivially. It is a simple matter to see that the Jordan decomposition
of an element (t, S) is of the form (ts, S)(tu, Im) where ts ∈ WS and tu ∈ Wtriv,S .
Conjugating by (t, Im) produces (ts + (S − Im)t, S). As we are only concerned with
those vectors in WS , we may assume t ∈ WS . The possible vectors t form a finite
index Z–submodule of WS(Z) whose image under S − Im is still a finite index Z–
submodule of WS(Z) since S − Im is invertible on WS . As the set of possible vectors
ts is contained in WS(Z), up to Γu–conjugacy, the possible vectors are identified with
a subset of the quotient WS(Z)/(S − Im)(L), where L is the Z–submodule of vectors
in WS(Z) which arise as translation vectors for an element of Γu. As this quotient is
finite, we conclude SemiN(Γ)/Γu is finite and thus SemiN(Γ)/Γ is finite.

Case (General). For the general case, let Γk
u denote the kth term in the lower central

series for Γu and assume that Γu has step size j > 1 (i.e., Γj
u = {1}). Associated to

each Γk
u is it’s Mal’cev completion Nk and Lie algebra nk. The conjugate action of Γ

on N oϕ θ induces an Ad(Γ)–action on n oϕ θ. The semisimple factor set SemiN(Γ)
produces a corresponding set

Semin(Γ) = {(ηs, θγ) : γ ∈ Γ, ηs = log(ns)} ⊂ n oϕ θ.

The finiteness of SemiN(Γ)/Γ is equivalent to the finiteness of Semin(Γ)/Ad(Γ). Con-
sequently, it suffices to show the latter. In addition, it suffices to show the finiteness
of Semin(Γ)/Ad(Γu) as |Semin(Γ)/Ad(Γu)| is at least as big as |Semin(Γ)/Ad(Γ)|.
We now establish the finiteness of the latter set. The Lie algebra n of N is a graded
vector space of the form

n =
j−1⊕
i=0

ni/ni+1 =
j−1⊕
i=0

Gri(n)

where n0 = n and nj = {0}. In particular, each element ηs has the form

(2) ηs = (η0, . . . , ηj−1), ηi ∈ Gri(n).

Notice that we have a pair of almost crystallographic groups Γ′ and Γ′′ given by

1 −→ Γ1
u −→ Γ′ −→ θ −→ 1

and
1 −→ Γu/Γ1

u −→ Γ′′ −→ θ −→ 1.
This pair of groups inject into the groups N1 oϕ θ and (N/N1)oϕ θ, respectively. For
Γ′, we have an induced Ad(Γ1

u)–action on n1 oϕ θ where the latter is nothing more
than

n1 =
j−1⊕
i=1

ni/ni+1 =
j−1⊕
i=1

Gr(n).

Likewise, we have an Ad(Γu/Γ1
u)–action on (n/n1) oϕ θ. According to our induction

hypothesis, there are only finitely many possibilities for η1, . . . , ηj−1 in (2) up to the
Ad(Γ1

u)–action. Similarly, by our induction hypothesis, there are only finitely many
possibilities for η0 in (2) up to the Ad(Γu/Γ1

u)–action. Thus, there are only finitely
many possibilities for η0, . . . , ηj−1 in (2) up to the Ad(Γu)–action. In particular, up
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to the Ad(Γu)–action, there are only finitely many possibilities for ηs in (ηs, θγ) ∈
Semin(Γ). As the possibilities for θγ range over the finite group θ, this implies the
finiteness of Semin(Γ)/Γ.

5. Theorem 1.1 for arithmetic lattices

The proof of Theorem 1.1 and its Corollary 1.2 work for subgroups 4 of GL(n,Q)
commensurable with GL(n,Z). Briefly we describe this here. We begin with the
following lemma whose validity can be deduced from the proof that Γ injects into
N oϕ θ.

Lemma 5.1. There exists a lattice Γ0 < N oϕ θ such that Γ0 contains each sγk and
Γ.

With Lemma 5.1, we can generalize Theorem 1.1. To this end, let 4 be a subgroup
of GL(n,Q) commensurable with GL(n,Z) and assume that 4 contains a torsion free,
virtually unipotent subgroup Γ. Using the same approach as in the proof of Theorem
1.1, note that Proposition 3.4 is validated as before (note that passing to convergent
subsequences is done now inside the compact set Clp(4)). For Lemma 3.5, we must
modify our argument. It could be the case that 4 does not contain the elements sγk

coming from Lemma 2.2. However, by Lemma 5.1 and [19, Corollary 10.14], there
exists a group 40 commensurable with 4 that contains Γ0. By Theorem 2.1 (this
holds for groups commensurable with GL(n,Z)), Cl(Γ) ∩ 40 = Γ. In particular,
for each sγk, there must exist a prime pk such that sγk /∈ Clpk

(Γ). This shows
that Theorem 1.1 can be extended to groups 4 in GL(n,Q) commensurable with
GL(n,Z). For a general arithmetic lattice Λ, there exists an injective homomorphism
ψ : Λ → GL(n,Q) such that ψ(Λ) is contained in a subgroup 4 in GL(n,Q) that
is commensurable with GL(n,Z). Using the above argument, for any semisimple
element η ∈ Λ, we can find a finite index subgroup 40 of 4 such that Γ < 40 and
[η]4 ∩ 40 = ∅ where [η]4 is the 4–conjugacy class of η. Certainly [η]Λ ⊂ [η]4 and
thus [η]Λ ∩40 = ∅. Intersecting 40 with Λ produces a finite index subgroup Λ0 of Λ
such that Γ < Λ0 and [η]Λ ∩ Λ0 = ∅. In total, we obtain the following theorem and
corollary.

Theorem 5.2. Let Λ be an arithmetic lattice, Γ < Λ a torsion free, virtually unipotent
subgroup, and η ∈ Λ a semisimple element. Then there exists a finite index subgroup
Λ0 of Λ such that Γ < Λ0 and [η]Λ ∩ Λ0 = ∅.

Corollary 5.3. Let Λ be an arithmetic lattice and Γ < Λ a torsion free, virtually
unipotent subgroup. Then there exists a torsion free, finite index subgroup Λ0 of Λ
such that Γ < Λ0.

The arithmetic assumption is only used in the proof of Lemma 3.5. Thus, we have
the following corollary.

Corollary 5.4. Let Λ < GL(n,C) be a finitely generated group and Γ < Λ a torsion
free, virtually unipotent subgroup. Given an infinite order semisimple element η ∈ Λ,
there exists a finite index subgroup Λ0 < Λ such that Γ < Λ0 and [η]Λ ∩ Λ0 = ∅.

This corollary follows from the fact that any semisimple η in Clp(Γ) is conjugate
to a torsion element and thus itself is torsion. Indeed, there is nothing special about
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taking the conjugacy class of an infinite order semisimple element. The following is a
consequence of the same logic.

Corollary 5.5. Let Λ < GL(n,C) be a finitely generated group, Γ < Λ a torsion
free, virtually unipotent subgroup, and C be an infinite cyclic subgroup generated by a
semisimple element. Then Cl(Γ) ∩ Cl(C) = {1}.

Wilton–Zalesskii have also obtained this result in the case when Λ is a Kleinian
group and Γ is a parabolic subgroup.

Remark. We mention in passing that one can prove Corollary 5.3 as before using
the fact that Γ̂ is torsion free, Cl(Γ) = Γ̂, and Lemma 3.2.

6. Geometric applications of Corollary 5.3

In this section, we derive the main geometric corollaries of Corollary 5.3 mentioned
in the introduction. For brevity, we refer the reader to [12, 15, 16] for some of the
details.

6.1. Flat manifolds.

6.1.1. Proof of Corollary 1.4. For a fixed flat n–manifold N , Long and Reid [12]
constructed an arithmetic hyperbolic (n + 1)–orbifold M such that N is diffeomor-
phic to a cusp cross section of M . In particular, π1(N) is a torsion free, virtually
unipotent subgroup of πorb

1 (M). By Corollary 5.3, there exists a finite index, torsion
free subgroup Λ0 < πorb

1 (M) such that π1(N) < Λ0. Passing to the cover M0 → M
corresponding to Λ0, yields an arithmetic hyperbolic (n+ 1)–manifold M0 such that
N is diffeomorphic to a cusp cross section of M0. �

6.1.2. Nimershiem’s conjecture. Reviewing the proof of Corollary 1.4, notice that
passage from M to M0 does not change the flat similarity class on the cusp cross
section diffeomorphic toN . In particular, we obtain the following orbifold-to-manifold
promotion.

Corollary 6.1. The space of flat similarity classes on a flat n–manifold that arise
in cusp cross sections of arithmetic hyperbolic (n+ 1)–orbifolds is precisely the same
as those that arise in arithmetic hyperbolic (n+ 1)–manifolds.

We established [16, Proposition 3.2] the density of those similarity classes that arise
in cusp cross sections of arithmetic orbifolds. This with Corollary 6.1 proves Theorem
1.3.

6.1.3. Classification of arithmetic cusp shapes. One of the main motivations for the
geometric results of this article come from Gromov [8] whose work inspired the con-
jectures of Farrell–Zdravkovska [7] and Nimershiem [18]. In the former, it was conjec-
tured that every flat n–manifold was diffeomorphic to the cusp cross section of a one
cusped hyperbolic (n + 1)–manifold. However, Long and Reid [11] found examples
of flat 3–manifolds that can never be diffeomorphic to a cusp cross section of a one
cusped hyperbolic 4–manifold. Corollary 1.4 shows the conjectural picture proposed
by Farrell–Zdravkovska is not too far off (in some sense).

Corollary 6.1 and [16, Theorem 3.7] show the set of flat similarity classes appearing
as cusp shapes in arithmetic hyperbolic manifolds is the image of the rational points
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of an algebraic set under a projection map. In total, this classifies cusp shapes of
arithmetic hyperbolic (n+ 1)–manifolds.

6.2. Infranil manifolds. The generalizations to complex and quaternionic hyper-
bolic spaces of the above results, namely Theorem 1.5, follow from an identical argu-
ment using Corollary 5.3 and [16, Theorem 3.5]. The density of these structures in
the case N is a Nil 3–manifold follows from Corollary 5.3 and [16, Corollary 3.6]. Fi-
nally, Corollary 1.7 follows from Corollary 5.3 and [15, Theorem 3.12]. Just as there
are flat n–manifolds that cannot arise as the cusp cross section of a single cusped
hyperbolic (n+1)–manifold, there exist Nil 3–manifolds that cannot arise as the cusp
cross section of a one cusped complex hyperbolic 2–manifold (see [9]). Corollary 1.7
again shows the failure is not total.

7. Final remarks

7.1. Generalizing Theorem 5.2. For a virtually unipotent, torsion free subgroup
Γ, there is no difference in separating Γ from an infinite semisimple class or a torsion
class. Even for an infinite cyclic group 〈A〉 generated by a semisimple element A,
it could very well be the case that one cannot separate 〈A〉 from a fixed semisimple
conjugacy class [B] with 〈A〉 ∩ [B] = ∅. Indeed, the failure of conjugacy separability
in SL(n,Z), n > 2 provides examples (see [21]). Namely, there exists elements A,B ∈
SL(n,Z) for n > 2 such that A,B are not conjugate in SL(n,Z) but under any
homomorphism to a finite group, the images of A and B are conjugate. Note as A,B
are conjugate in SL(n,Zp) for all p, 〈A〉 is disjoint from the SL(n,Z)–conjugacy class
of B. To see that every finite index subgroup Γ0 < SL(n,Z) that contains 〈A〉 cannot
be disjoint from [B], we quotient SL(n,Z) by the normal core of Γ0. By our selection
of A,B, the image of Γ0 under this homomorphism intersects the image of [B] since
the image of A is in the image of [B]. Since Γ0 is the pullback of the image of Γ0 in
this quotient, we see that Γ0∩ [B] is non-empty. This shows that one cannot omit the
virtual unipotency from Theorem 5.2. It is possible however to separate 〈A〉 from a
fixed torsion class. Indeed, using Theorem 2.1, Lemma 3.2, and the fact that 〈̂A〉 is
torsion free, one can find a torsion free finite index subgroup of SL(n,Z) that contains
〈A〉. In fact, when A is semisimple, this does not require an arithmetic assumption
either.

7.2. Higher rank cusp cross sections. For cusp cross sections of higher rank
locally symmetric spaces, the fundamental group of a cusp cross section is virtually
solvable but typically not virtually unipotent. For instance, cusp cross sections of
Hilbert modular surfaces are Sol 3–orbifolds (see [17] for more on this). Though
Theorem 1.1 might not hold for these groups, Corollary 1.2 extends. Indeed, the
profinite completion of such torsion free groups are known to be torsion free by [10]
and the profinite completion is isomorphic to Cl(Γ) by [15]. This with Lemma 3.2
implies Corollary 1.2 for these groups.

7.3. Totally geodesic, immersed surfaces. In general, it seems difficult to resolve
torsion in Question 2 from the introduction even when M is a hyperbolic 3–orbifold
and N is a totally geodesic surface. However, there are some special cases when this
can be done. Indeed, when π1(M) is subgroup separable, since π̂1(N) is torsion free
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and the closure of π1(N) in π̂1(M) is isomorphic to π̂1(N), one can extend Corollary
1.2. One class of M that satisfy this condition are noncompact arithmetic hyperbolic
3–orbifolds (see [1]) which are endowed with many totally geodesic, immersed surfaces
(see [14]).
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