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A CLASS OF SOLUTIONS OF THE VACUUM EINSTEIN
CONSTRAINT EQUATIONS WITH FREELY SPECIFIED MEAN

CURVATURE

David Maxwell

Abstract. We give a sufficient condition, with no restrictions on the mean curvature,
under which the conformal method can be used to generate solutions of the vacuum

Einstein constraint equations on compact manifolds. The condition requires a so-called
global supersolution but does not require a global subsolution. As a consequence, we

construct a class of solutions of the vacuum Einsten constraint equations with freely

specified mean curvature, extending a recent result [16] which constructed similar so-
lutions in the presence of matter. We give a second proof of this result showing that

vacuum solutions can be obtained as a limit of [16] non-vacuum solutions. Our principal

existence theorem is of independent interest in the near-CMC case, where it simplifies
previously known hypotheses required for existence.

1. Introduction

The Cauchy problem of general relativity requires initial data (a metric and a
second fundamental form defined on a 3-manifold) that satisfy a system of nonlinear
PDEs known as the Einstein constraint equations. The constraint equations admit
many solutions (permitting the specification of different initial conditions) and it is
important to understand the structure of the set of all possible initial data on a given
manifold. Various approaches have been given for constructing solutions including
parabolic methods [4] and gluing constructions [14] [13]. From the point of view of
classifying the set of all possible solutions, the most fruitful technique has been the
conformal method initiated by Lichnerowicz [24] and extended by Choquet-Bruhat
and York [12].

In the conformal method, one specifies the conformal class of the initial metric,
a piece of the second fundamental form corresponding to part of the time derivative
of the conformal class, and the trace of the second fundamental form (i.e. the mean
curvature). One then seeks a solution of the constraint equations matching this data.
For constant mean curvature (CMC) data, this approach has lead to a complete
classification of solutions on compact [12] [18], asymptotically Euclidean [6] [7] (with
a correction in [26]), and asymptotically hyperbolic [2] [1] manifolds. On the other
hand, we have very few results concerning non-CMC solutions, and most of these
are perturbative. Near-CMC solutions have been constructed on compact [10] [20]
[19] [16] and asymptotically Euclidean [8] [11] manifolds, and we have a near-CMC
non-existence theorem for certain data [21]. It is remarkable, however, that despite
the success of the conformal method in the CMC case, very little is known about the
construction of solutions in the absence of restrictions on the mean curvature.
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An important recent result of Holst, Nagy, and Tsogtgerel [16] (see also the sum-
mary in [17]) gives the first construction, using the conformal method, of a class of
initial data without a near-CMC hypothesis. The authors of that paper show that
solutions of the constraint equations on compact manifolds can be constructed using
the conformal method when global sub- and supersolutions (defined in Section 1.1)
can be found. For Yamabe-positive metrics, for non-vanishing matter fields, and un-
der a certain smallness condition not involving the mean curvature, [16] provides a
global subsolution/supersolution pair that does not have a near-CMC hypothesis and
hence yields the existence of certain far-from-CMC solutions.

It is natural to ask if this far-from-CMC construction can be extended to the vac-
uum case. The global supersolution of [16] (hereafter the HNT global supersolution)
is also applicable in vacuum, and indeed requires that the matter fields, if present,
be weak. The corresponding HNT global subsolution, however, requires the pres-
ence of matter. It is not unusual for the conformal method to require non-vanishing
conditions on parts of the specified data, so it was conceivable that the non-vacuum
hypothesis was necessary.

In this paper we show that this is not the case, and that the conformal method can
be used to construct a corresponding set of vacuum solutions. We give two proofs of
this fact. First, we prove that solutions exist, under certain mild technical conditions,
whenever a global supersolution can be found (Theorem 1). The proof relies on an
a-priori estimate (Proposition 10) that replaces the need for a global subsolution.
Hence the HNT global supersolution alone is sufficient to deduce the existence of
solutions via the conformal method, and we obtain vacuum far-from-CMC solutions.
The second proof considers a sequence of HNT non-vacuum solutions where the matter
fields are converging to zero. Again, a lower bound (Proposition 16) is found for the
sequence and is used to obtain a corresponding subsequence converging to a vacuum
far-from-CMC solutions. The key steps in both proofs rely on a technique from [25]
for constructing subsolutions.

1.1. The conformal method. On a given smooth 3-manifold M , the Einstein con-
straint equations for a metric ḡ and a symmetric (0, 2)-tensor K̄ are

(1)
Rḡ −

∣∣K̄∣∣2
ḡ

+ trḡ K̄
2 = 2ρ̄

divḡ K̄ − d trḡ K̄ = J̄ ,

where Rḡ is the scalar curvature of ḡ, ρ̄ is the matter density, and J̄ is the momentum
density. We are primarily interested in the vacuum case where ρ̄ ≡ 0 and J̄ ≡ 0.

Data for the vacuum conformal method on a compact smooth manifold M con-
sists of a Riemannian metric g specifying a conformal class, a transverse traceless
(i.e symmetric, trace-free and divergence-free) (0, 2)-tensor σ specifying part of the
time derivative of the conformal class, and a scalar function τ specifying the mean
curvature. We seek a solution (ḡ, K̄) of the constraint equations of the form

(2)
ḡ = φ4g

K̄ = φ−2 (σ + LW ) +
τ

3
g̃.
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In equations (2) the unknowns are a positive function φ and a vector field W , while
L is the conformal Killing operator defined by

(3) LW ab = ∇aWb +∇bWa −
2
3

divWgab.

If matter is present, it can be specified by scaled sources ρ and J which are conformally
related to ρ̄ and J̄ by ρ̄ = φ−8ρ and J̄ = φ−6J .

It follows that ḡ and K̄ solve the vacuum constraint equations so long as

−8 ∆φ+Rgφ = −2
3
τ2φ5 + |σ + LW |2 φ−7(4)

div LW =
2
3
φ6 dτ.(5)

If matter is present we must add the terms 2ρφ−3 and J to the right-hand sides of
(4) and (5) respectively. The operator div L is the vector Laplacian, and hence these
equations are a coupled nonlinear elliptic system for φ and W .

If τ is constant then equation (5) has a trivial solution and the problem reduces
to an analysis of the Lichnerowicz equation (4). One technique for finding solutions
of the Lichnerowicz equation is via the method of sub- and supersolutions, which
was used previously in the work of Kazden and Warner [22] on the prescribed scalar
curvature problem. Isenberg [18] used this method to complete the classification of
CMC solutions on compact manifolds. A generalization of the method applies in the
non-CMC setting as well, and we review the terminology now.

Consider the equation

(6) −8 ∆φ+Rφ = −2
3
τ2φ5 + |β|2 φ−7

where β is a symmetric (0, 2)-tensor. We say φ+ is a supersolution of (6) if

(7) −8 ∆φ+ +Rφ+ ≥ −2
3
τ2φ5

+ + |β|2 φ−7
+ .

A subsolution is defined similarly with the inequality reversed.
For the coupled system, we follow [16] and define global subsolutions and global

supersolutions as follows. We say φ+ is a global supersolution if whenever 0 < φ ≤
φ+, then

(8) −8 ∆φ+ +Rφ+ ≥ −2
3
τ2φ5

+ + |σ + LWφ|2 φ−7
+ ,

where Wφ is the solution of (5) obtained from φ. We say φ− > 0 is a global subso-
lution if whenever φ ≥ φ−, then

(9) −8 ∆φ− +Rφ− ≤ −2
3
τ2φ5

− + |σ + LWφ|2 φ−7
− .

The existence result of [16] states that if φ− ≤ φ+ are global sub- and supersolutions,
then there exists a solution (φ,W ) of system (4)–(5) such that φ− ≤ φ ≤ φ+. The
authors of that paper also present a number of global sub- and supersolution pairs,
including one that is used to construct far-from-CMC solutions.
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1.2. Summary of results. Our primary result concerning the solution of system
(4)–(5) has three cases depending on the Yamabe invariant Yg of the metric. Recall
that

(10) Yg = inf
f∈C∞(M)

f 6≡0

∫
M

8 |∇f |2g +Rgf
2 dVg

||f ||2L6

.

(Our notation for Lp spaces and Sobolev spaces W k,p follows that of [23] with the
additional convention that subspaces of positive functions are indicated by a subscript
+.)

Theorem 1. Let g ∈W 2,p with p > 3 be a metric on a smooth, compact 3-manifold.
Suppose g has no conformal Killing fields and that one of the following conditions
holds for a transverse traceless tensor σ ∈W 1,p and a function τ ∈W 1,p.

(1) Yg > 0, σ 6≡ 0,
(2) Yg = 0, σ 6≡ 0, τ 6≡ 0
(3) Yg < 0 and there exists ĝ in the conformal class of g such that Rĝ = − 2

3τ
2.

If φ+ ∈ W 2,p
+ is a global supersolution for (g, σ, τ), then there exists a solution

(φ,W ) ∈W 2,p
+ ×W 2,p of system (4)–(5) such that φ ≤ φ+.

The new results of Theorem 1 are Cases 1 and 2; Case 3 can be deduced from
the existence of a global subsolution found in [16]. Note that Theorem 1 is only an
existence theorem. It is not known if the solutions provided by Theorem 1 are unique.

If τ is constant then the conditions of the three cases reduce to precisely the same
conditions under which CMC solutions of the constraints can be found (aside from
one additional singular case Yg = 0, σ ≡ 0, τ ≡ 0). The hypothesis on τ in Case
3 is necessary for Yamabe-negative metrics since it is needed for solutions of the
Lichneowicz equation to exist [25]. It is not known if the condition σ 6≡ 0 in Cases
1–2 is necessary. However, it was proved in [21] that if Yg ≥ 0 and if σ ≡ 0, then
there do not exist near-CMC solutions of (4)–(5) unless Yg = 0 and τ ≡ 0 also. Hence
some condition involving σ (and possibly also τ) must be required. The hypothesis
in Case 2 that τ 6≡ 0 (if σ 6≡ 0) can be shown to be necessary – otherwise the metric
would be be Yamabe-positive.

Our first application of Theorem 1 is to the HNT supersolution, which exists under
the following hypotheses.

Proposition 1 ([16]). Suppose g ∈ W 2,p with p > 3, and that Yg > 0, τ ∈ W 1,p,
and σ ∈ W 1,p. If ||σ||∞ is sufficiently small, then there exists a global supersolution
of (4)–(5).

A proof of Proposition 1 can be found in Section 4.2. From Theorem 1 and Propo-
sition 1 we immediately obtain the following result, which is the primary aim of this
paper.

Corollary 1. Let g ∈W 2,p with p > 3 be a Yamabe-positive metric on a smooth com-
pact 3-manifold. Suppose g has no conformal Killing fields, σ ∈W 1,p is a transverse
traceless tensor, and τ ∈W 1,p. If σ 6≡ 0 and if ||σ||∞ is sufficiently small, then there
exists a solution (φ,W ) ∈W 2,p

+ ×W 2,p of system (4)–(5).
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We also provide a second proof of Corollary 1 in Section 5 that is independent of
Theorem 1 but instead uses a sequence of HNT non-vacuum solutions.

Theorem 1 permits a strengthening of the current existence theory for near-CMC
data inasmuch as it removes conditions in current theorems required to find subsolu-
tions. In [19] the authors present an existence and uniqueness theorem for Yamabe
non-negative metrics. They present constant global supersolutions so long as

(11)
max(|dτ |)
min(|τ |)

is sufficiently small,

and also assume non-scale invariant conditions on the size of |dτ | to obtain subso-
lutions and to obtain uniqueness. Previously [20] gave a similar proof for Yamabe-
negative metrics, again presenting a global supersolution under condition (11) and
making an additional assumption about the absolute size of |dτ |. [16] provides a
global supersolution under a near-CMC condition similar to (11), but also requires
in the Yamabe-nonnegative case either a non-vacuum hypothesis or that min |σ| is
sufficiently large to obtain a subsolution. Using Theorem 1 we have the following
simplified existence result.

Corollary 2. Let the conditions of one of the cases of Theorem 1 hold. If

(12)
max(|dτ |)
min(|τ |)

is sufficiently small, then there exists a solution (φ,W ) of system (4)–(5).

The utility of Theorem 1 is limited to cases where a global supersolution can be
found. It is not known if the converse of Theorem 1 is true; in particular, given a
solution of system (4)–(5) it is not known if there also exists a corresponding global
supersolution.1 Nevertheless, Theorem 1 makes clear that any future advances in the
existence theory of non-CMC initial data using the method of sub- and supersolutions
need only focus on supersolutions.

In the following, Sections 2 and 3 provide a summary of the basic results we
require in the analysis of equations (4) and (5) respectively. Section 4 is devoted to
the proof of Theorem 1, which is obtained using the Schauder fixed point theorem in
an approach similar to one outlined in [16]. The key step in Section 4 is Proposition
10 which eliminates the need for a subsolution. Section 5 provides the alternative
proof of Corollary 1 using a sequence of non-vacuum solutions.

2. The Lichnerowicz operator

In this section we consider properties of the map taking (0, 2)-tensors β and scalar
functions τ to a solution φ of the Lichnerowicz equation

(13) −8 ∆φ+Rφ = −2
3
τ2φ5 + |β|2 φ−7.

The solvability of this equation has been considered in several works under various
hypotheses on the zeros of β and τ as well as the Yamabe class of g. Building on
previous work in [18] and [9], a complete description of solvability of this equation

1Given a solution (φ, W ) of system (4)–(5), it is not clear if φ itself is a global supersolution.
Although φ is, for one particular W , a solution and hence a supersolution of (4), it is not apparent that

it is a supersolution for the whole class of vector fields W required for it to be a global supersolution.
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on compact manifolds, including the Yamabe negative case, appeared in [25]. In
the context of the function spaces used in the current paper we have the following
classification.

Proposition 2. Suppose β, τ ∈ L2p and g ∈ W 2,p where p > 3. Then there exists a
positive solution φ ∈W 2,p

+ of (13) if and only if one of the following is true.

(1) Yg > 0 and β 6≡ 0,
(2) Yg = 0 and β 6≡ 0, τ 6≡ 0,
(3) Yg < 0 and there exists ĝ in the conformal class of g such that Rĝ = − 2

3τ
2,

(4) Yg = 0, β ≡ 0, τ ≡ 0.

In Cases 1–3 the solution is unique. In Case 4 any two solutions are related by scaling
by a constant multiple.

In [25], Proposition 2 was proved under low regularity assumptions on the confor-
mal data. In this paper we work for convenience with metrics in W 2,p with p > 3.
This level of regularity ensures that the metric is C1,α. The corresponding hypothesis
in Proposition 2 that β, τ ∈ L2p arises to ensure that the solution φ ∈ W 2,p and is
related to the fact that −∆ +V : W 2,p → Lp is an isomorphism if V ∈ Lp, V ≥ 0,
and V 6≡ 0 (see, e.g, [9]). We will later make the stronger assumption that σ, τ ∈W 1,p

when working with the coupled system.
We are primarily interested in the map that, for fixed τ , takes β to a solution of

equation (13). We say that g and τ are Lichnerowicz compatible if they satisfy one
of the conditions of Cases 1–3 and we say that β is admissible if it further satisfies
the same condition. We will not need to consider the singular Case 4, which has no
bearing on the construction of non-CMC solutions.

If g and τ are Lichnerowicz compatible, we define the Lichnerowicz operator Lτ to
be the map taking β to the unique solution of (13). Proposition 2 effectively describes
the domain of Lτ as an open subset Dτ of L2p; Dτ = L2p\{0} if Yg ≥ 0 and Dτ = L2p

if Yg < 0.

2.1. Sub- and supersolutions. The existence of solutions in Cases 1–3 of Propo-
sition 2 follows from the method of sub- and supersolutions In the context of the
function spaces used in this paper we have the following propositions, which can be
deduced, e.g., from the results for less regular metrics in [25].

Proposition 3. If g ∈W 2,p and τ ∈ L2p are Lichnerowicz compatible and if β ∈ L2p

is admissible, then there exist a subsolution φ− and a supersolution φ+ of (13) such
that φ− ≤ φ+.

Proposition 4. Suppose g ∈W 2,p and β, τ ∈ L2p for some p > n. If φ−, φ+ ∈W 2,p

are a subsolution and a supersolution respectively of (13) such that φ− ≤ φ+, then
there exists a solution φ ∈W 2,p(M) of (13) such that φ− ≤ φ ≤ φ+.

An important technical tool used in the proof of Proposition 2 is the well-known
conformal covariance of (13), which allows us to pick a convenient conformal repre-
sentative for g. This covariance can be expressed in terms of sub- and supersolutions.
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Lemma 1. Suppose g ∈ W 2,p and β, τ ∈ L2p for some p > 3. Suppose also that
ψ ∈W 2,p

+ . Define

(14)

ĝ = ψ4g

β̂ = ψ−2β

τ̂ = τ.

Then φ is a supersolution (resp. subsolution) of (13) if and only if φ̂ = ψ−1φ is a
supersolution (resp. subsolution) of the conformally transformed equation

(15) −8 ∆ĝ φ̂+Rĝφ̂ = −2
3
τ̂2φ̂5 +

∣∣∣β̂∣∣∣2
ĝ
φ̂−7.

In particular, φ is a solution of (13) if and only if ψ−1φ is a solution of (15).

Proof. Let φ be a subsolution or supersolution of (13). Let g′ = φ4g, and let Rg′ be
its scalar curvature. Then it is well known that

(16) Rg′ = φ−5(−8 ∆g φ+Rgφ).

But g′ = (ψ−1φ)4ĝ, so

(17) Rg′ = ψ5φ−5(−8 ∆ĝ(ψ−1φ) +Rĝψ
−1φ).

Hence
(18)

−8 ∆ĝ φ̂+Rĝφ̂+
2
3
τ̂2φ̂5 −

∣∣∣β̂∣∣∣2
ĝ
φ̂−7 =

= −8 ∆ĝ(ψ−1φ) +Rĝψ
−1φ+

2
3
τ2(ψ−1φ)5 −

∣∣∣β̂∣∣∣2
ĝ
(ψ−1φ)−7

= ψ−5(−8 ∆g φ+Rgφ) + ψ−5 2
3
τ2φ5 − ψ−5 |β|2g φ

−7

=
[
−8 ∆g φ+Rgφ+

2
3
τ2φ5 − |β|2g φ

−7

]
ψ−5.

The result now follows noting that ψ−5 > 0 everywhere. �

Proposition 4 requires that φ− ≤ φ+. This never poses a problem in practice,
however, since we can always rescale sub- and supersolutions of (13) to obtain this
inequality.

Lemma 2. If φ+ is a supersolution of (13), then for any α ≥ 1, αφ+ is also a
supersolution. If φ− is a subsolution of (13), then for any α ≤ 1, αφ− is also a
subsolution.
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Proof. We employ the monotonicity of the terms on the right-hand side of (13). Note
that for α ≥ 1,
(19)

−8 ∆αφ+ +Rαφ+ +
2
3
τ2(αφ+)5 − |β|2 (αφ+)−7 ≥

≥ α

[
−2

3
τ2φ5

+ + |β|2 φ−7
+

]
+

2
3
τ2(αφ+)5 − |β|2 (αφ+)−7

= (α5 − α)
2
3
τ2φ5

+ + (α− α−7) |β|2 φ−7
+

≥ 0.

Hence αφ+ is a supersolution. The argument for subsolutions is similar. �

An immediate application of Lemma 2 (implying uniqueness of solutions of (13)
for Lichnerowicz compatible data) is the fact that any supersolution at all of (13)
provides an upper bound for solutions.

Lemma 3. Suppose g ∈W 2,p and τ ∈ L2p are Lichnerowicz compatible and β ∈ L2p

is admissible. If φ+ ∈W 2,p
+ is a positive supersolution of (13), then Lτ (β) ≤ φ+. An

analagous result holds for subsolutions.

Proof. Suppose φ+ is a given supersolution and let φ− be the subsolution from Propo-
sition 3. Pick α ≤ 1 such that αφ− ≤ φ+ everywhere. For example we can take

(20) α = min (1,min(φ+)/max(φ−)) .

Then Proposition 4 implies there exists a solution φ̂ of (13) satisfying φ− ≤ φ̂ ≤ φ+.
Since solutions of (13) for Lichnerowicz compatible data are unique, we conclude that
φ̂ = φ and therefore φ ≤ φ+. �

3. The vector Laplacian

The vector Laplacian div L is well known to be elliptic and its kernel consists of
the conformal Killing fields of g. Hence the equation

(21) div LW = X

is solvable if and only if
∫

M
〈X,Z〉 dV = 0 for every conformal killing field Z. In

the context of the function spaces used in this paper, we have the following standard
existence result (see, e.g., [9]).

Proposition 5. Suppose g ∈W 2,p with p > 3 has no conformal Killing fields. Given
X ∈ Lp there exists a unique solution W of

(22) div LW = X.

Moreover, there is a constant c independent of X such that

(23) ||W ||W 2,p ≤ c||X||Lp .

The hypothesis that (M, g) has no conformal Killing fields is superfluous. For
smooth metrics, [21] proved that a similar existence theorem and estimate follows
even in the presence of conformal Killing fields, so long as we take X to be L2

orthogonal to the subspace of conformal Killing fields. Our construction of non-CMC
solutions in this paper requires solvability of equation (21) in general, however, and
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we must therefore assume that g has no conformal Killing fields. It is a curious fact
that all current non-CMC existence theorems require the hypothesis that g does not
have any conformal Killing fields (or that τ is constant on the integral curves of all
conformal Killing fields) but there are no proofs that these conditions are necessary.

For a scalar field τ in W 1,p with p > n, define Wτ : L∞ →W 2,p by

(24) Wτ (φ) = W

where W is the solution of

(25) div LW =
2
3
φ6dτ.

We have the following standard estimate from [20]; a stronger version that applies
even in the case where g has conformal Killing fields can be found in [21].

Proposition 6. Let τ ∈W 1,p with p > 3. Then there exists a constant Kτ such that

(26) ||LWτ (φ)||∞ ≤ Kτ ||φ||6∞
for every φ ∈ L∞.

Proof. From the Sobolev embedding W 1,p ↪→ L∞ and inequality (23) we have for
various constants ck independent of φ and τ ,

(27)
||LWτ (φ)||∞ ≤ c1||Wτ (φ)||W 1,∞

≤ c2||Wτ (φ)||W 2,p ≤ c3||φ6dτ ||Lp ≤ c4||τ ||W 1,p ||φ||6∞.

Taking Kτ = c4||τ ||W 1,p completes the proof. �

4. Existence of solutions of the coupled system

The standard approach to finding solutions of the coupled system (4)–(5) is via
a fixed point argument. In [20] and [19] the authors use the contraction mapping
principle to find a (unique) fixed point. Topological methods have also been used to
find fixed points, e.g. Leray-Schauder theory in [10] and the Schauder fixed point the-
orem in [16]. These methods require weaker hypotheses but do not ensure uniqueness.
Our existence theorem uses the Schauder fixed point theorem and is closely related
to the approach of [16] (although the specific map for which we find a fixed point is
different). In particular, we also do not obtain a proof of uniqueness.

In this section we assume that g ∈W 2,p and τ ∈W 1,p (with p > 3) are Lichnerow-
icz compatible and that σ ∈W 1,p is admissible (i.e. σ 6≡ 0 if Yg ≥ 0). This is exactly
the hypothesis that g, τ , and σ satisfy one of Cases 1–3 of Theorem 1.

Define N σ,τ : L∞+ →W 2,p
+ by

(28) N σ,τ (φ) = Lτ (σ + LWτ (φ)).

To ensure N σ,τ is well defined, we assume that g has no conformal Killing fields (so
that the domain of Wτ is all of L∞). We must must also verify that σ + LWτ (φ)
belongs to the domain of Lτ for any choice of φ ∈ L∞+ . It suffices to show that if
Yg ≥ 0, then σ + LWτ (φ) 6≡ 0. Since σ is divergence free, it is L2 orthogonal to the
image of L. Hence

(29)
∫

M

|σ + LWτ (φ)|2 dV =
∫

M

|σ|2 + |LWτ (φ)|2 dV ≥
∫

M

|σ|2 dV 6= 0,

since σ 6≡ 0 if Yg ≥ 0.
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The solutions of system (4)–(5) for conformal data σ and τ are in one-to-one
correspondence with the fixed points of N σ,τ . We will find fixed points of N σ,τ via
an application of the Schauder fixed point theorem, which states that if f : U → U is
a continuous map from a closed convex subset U of a normed space to itself, and if
f(U) is compact, then f has a fixed point [5].

In Section 4.1 we show that if φ+ is a global supersolution, then there is a constant
K0 > 0 such that the set U = {φ ∈ L∞ : K0 ≤ φ ≤ φ+} is invariant under N σ,τ .
Clearly U is closed and convex in L∞. In Section 4.2 we show that N σ,τ (U) is
precompact in L∞ and that N σ,τ is continuous, which establishes Theorem 1.

4.1. An invariant set for N σ,τ . Let φ+ ∈W 2,p
+ be a global supersolution. We seek

an invariant set of the form {φ ∈ L∞ : K0 ≤ φ ≤ φ+ where K0 > 0 is a constant. To
begin, it is easy to show that {φ ∈ L∞ : 0 < φ ≤ φ+} is invariant under N σ,τ .

Proposition 7. If φ ∈ L∞+ satisfies φ ≤ φ+, then

(30) N σ,τ (φ) ≤ φ+.

Proof. Let ψ = N σ,τ (φ), so ψ is a solution of

(31) −8 ∆ψ +Rψ = −2
3
τ2ψ5 + |σ + LW |2 ψ−7

where W = Wτ (φ). Since φ+ is a global supersolution and since 0 ≤ φ ≤ φ+, we
conclude that φ+ is a supersolution of (31). Lemma 3 then implies ψ ≤ φ+. �

To find the lower bound K0 for the invariant set we consider the cases Yg ≥ 0 and
Yg < 0 separately. For the case Yg ≥ 0 an estimate for a lower bound for N σ,τ (φ) can
be obtained from a lower bound for the Green’s function of a certain elliptic PDE.

Proposition 8. Let V ∈ Lp with p > 3 and suppose V ≥ 0, V 6≡ 0. Then Green’s
function G(x, y) of the operator −∆ +V exists and satisfies

(32) G(x, y) ≥ mG

for some constant mG > 0.

Proof. Let H(x, y) be a positive Green’s function for the Laplacian on M , so

(33) −∆y H(x, y) = δx −
1

Vol(M)
.

The existence of this Green’s function and its properties are established in [3] in the
case of smooth metrics; the same techniques apply to C1,α metrics and hence W 2,p

metrics if p > 3. In particular,

(34) H(x, y) =
1
4π

|x− y|−1 + h(x, y)

where, since dim(M) = 3, h(x, y) is continuous on M ×M .
For fixed x, H(x, ·) ∈ L3−ε for any ε > 0. Since V ∈ Lp for some p > 3, we

conclude that H(x, ·)V (·) ∈ Lr where

(35)
1
r

=
1
p

+
1

3− ε
<

2
3

for ε sufficiently small. That is, H(x, ·)V (·) ∈ Lr with r > 3/2.
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Let Ψ(x, y) be the solution of

(36) −∆y Ψ(x, y) + V (y)Ψ(x, y) =
1

Vol(M)
− V (y)H(x, y).

The solution exists and belongs to W 2,r since H(x, ·)V (·) ∈ Lr with r > 3/2 [9]. In
particular, for fixed x, Sobolev embedding implies Ψ(x, y) is continuous in y. More-
over, the map taking x to H(x, ·) is easily seen to be continuous as a map from M
to L3−ε and hence the map taking x to V (·)H(x, ·) is continuous from M to Lr. It
follows that Ψ(x, y) is continuous in both x and y.

Define G(x, y) = H(x, y) + Ψ(x, y). Clearly G(x, y) is the Green’s function for
−∆ +V . We now show that G is uniformly bounded below by a positive number.
Note that the asymptotic structure of G implies that G(x, y) ≥ 1 in in a neighborhood
U of the diagonal in M ×M . Since G is continuous on M ×M \ U , it follows that
it achieves a minimum on M × M \ U at a point (x0, y0). Take ε so small that
G(x0, y) ≥ 1 on Bε(x0). Then on M \Bε(x0) we have

(37) −∆y G(x0, y) + V (y)G(x0, y) = 0

and G(x0, y) ≥ 1 on ∂Bε(x0). The strong maximum principle of [27] (or [15] Theorem
8.19 if V ∈ L∞) then applies and G(x0, y0) > 0. Setting mG = min(1, G(x0, y0))
completes the proof. �

The estimate for the lower bound of G(x, y) implies an estimate for the lower bound
of the solution of −∆φ+ V φ = f whenever f is non-negative.

Proposition 9. Let V ∈ Lp with p > 3 and suppose V ≥ 0, V 6≡ 0. There exist
positive constants c1 and c2 such that for every f ∈ Lp with f ≥ 0 the solution φ of

(38) −∆φ+ V φ = f

satisfies

(39) max(φ) ≤ c1||f ||Lp

and

(40) min(φ) ≥ c2||f ||L1 .

Proof. Since V ≥ 0, V 6≡ 0 we have −∆ +V : W 2,p → Lp is an isomorphism and
||φ||W 2,p ≤ c||f ||Lp for some constant c independent of f . By Sobolev embedding,
W 2,p embeds continuously in L∞ which establishes inequality (39).

Let G(x, y) be the Green’s function for −∆ +V . Then, since f ≥ 0,

(41) φ(x) =
∫

M

f(y)G(x, y) dV (y) ≥ mG

∫
M

f(y) dV (y) = mG||f ||L1

where mG is the lower bound for G(x, y) found in Proposition 8. This implies in-
equality (40) with c2 = mG. �

We can now establish the desired lower bound (in the Yamabe non-negative case)
for N σ,τ (φ) when φ ≤ φ+.

Proposition 10. Suppose φ+ ∈ W 2,p
+ is a global supersolution, Yg ≥ 0, and σ 6≡ 0.

Then there exists a constant K0 > 0 such that whenever 0 < φ ≤ φ+,

(42) K0 ≤ N σ,τ (φ).
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Proof. Suppose 0 < φ0 ≤ φ+ and let W = Wτ (φ0). We will construct a subsolution
φ− of the equation

(43) −8 ∆φ+Rφ = −2
3
τ2φ5 + |σ + LW |φ−7

and determine a lower bound K0 for φ− that is independent of the choice of φ0.
Estimate (42) then follows from Lemma 3.

The construction of the subsolution follows a procedure found in [25]. Pick ψ ∈
W 2,p

+ such that ĝ = ψ4g has continuous positive or zero scalar curvature depending
on the sign of Yg. Define β̂ = ψ−2(σ + LW ) and let η be the solution of

(44) −8 ∆ĝ η +
(
Rĝ +

2
3
τ2

)
η =

∣∣∣β̂∣∣∣2
ĝ
.

Since Rĝ + 2
3τ

2 ≥ 0 and is not identically zero, it follows that the solution η exists
and is positive.

We now claim that αη is a subsolution of

(45) −8 ∆ĝ φ+Rĝφ = −2
3
τ2φ5 +

∣∣∣β̂∣∣∣2
ĝ
φ−7

if α is taken small enough. To see this, note that
(46)

−8 ∆ĝ αη+Rĝαη+
2
3
τ2(αη)5−

∣∣∣β̂∣∣∣2
ĝ
(αη)−7 =

2
3

[
(αη)5 − αη

]
τ2 +

[
α− (αη)−7

] ∣∣∣β̂∣∣∣2 .
Hence αη is a subsolution if α8 ≤ η−7 and α ≤ η−1; we take α = min(1,max(η)−1).
By Lemma 1 it follows that ψ−1αη is a subsolution of (43). If we can determine a
uniform lower bound m′ for αη, then setting K0 = min(ψ−1)m′ completes the proof.

To find a uniform lower bound for αη = min(1,max(η)−1)η, it suffices to find
uniform upper and lower bounds for η. From Proposition 9 applied to −∆ĝ + 1

8 (Rĝ +
2
3τ

2) we have constants c1 and c2 such that

(47) max(η) ≤ c1

∣∣∣∣∣∣∣∣∣∣∣β̂∣∣∣2
ĝ

∣∣∣∣∣∣∣∣
Lp

and

(48) min(η) ≥ c2

∣∣∣∣∣∣∣∣∣∣∣β̂∣∣∣2
ĝ

∣∣∣∣∣∣∣∣
L1

.

Now

(49)
∫

M

∣∣∣β̂∣∣∣2p

ĝ
dV̂ =

∫
M

ψ−12p+6 |β|2g dV ≤ max(ψ12p−6)
∫

M

|β|2p
g dV

and

(50)
∫

M

∣∣∣β̂∣∣∣2
ĝ
dV̂ =

∫
M

ψ−6 |β|2g dV ≥ min(ψ−6)
∫

M

|β|2g dV.

Since ψ is a fixed conformal factor and does not depend on φ, it suffices to estimate

(51)
∫

M

|β|2p
g dV =

∫
M

|σ + LW |2p
g dV from above

and

(52)
∫

M

|σ + LW |2 from below.
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Following the argument at the start of Section 4 we have

(53)
∫

M

|σ + LW |2 dV =
∫

M

|σ|2 + |LW |2 dV ≥
∫

M

|σ|2 dV.

Since σ 6≡ 0 we have obtained the desired lower bound.
On the other hand,

(54)
∫

M

|σ + LW |2p
g dV ≤ 22p−1

∫
M

|σ|2p + |LW |2p
dV.

Moreover, from Proposition 6

(55) |LW |2p ≤ Vol(M)||LW ||2p
L∞ ≤ Vol(M)

[
Kτ max(φ+)6

]2p

which establishes the desired upper bound. �

The proof of the lower bound in the Yamabe negative case is much easier. In [20]
a global subsolution was found under the hypothesis that τ has no zeros. This was
extended by [16] to any compatible τ using a technique from [25]. The proof is short,
and we reproduce it here.

Proposition 11. Suppose Yg < 0 and that τ is Lichnerowicz compatible. Then there
exists a constant K0 > 0 such for any φ ∈ L∞+ ,

(56) K0 ≤ N σ,τ (φ).

Proof. Pick η ∈W 2,p
+ such that ĝ = η4g has scalar curvature − 2

3τ
2; such a conformal

factor exists since τ is Lichnerowicz compatible. Then

(57) −8 ∆g η+Rgη+
2
3
τ2η5−|β|2 η−7 = −2

3
τ2η5+

2
3
τ2η5−|β|2 η−7 = − |β|2 η−7 ≤ 0.

Hence η is a subsolution. Lemma 3 then implies that φ ≥ η and hence K0 = min η is
a lower bound. �

4.2. Mapping properties of N σ,τ . Suppose that φ+ ∈ W 2,p is a global superso-
lution. Let K0 be the constant from Proposition 10 or 11 depending on the sign of
Yg, and define U = {φ ∈ L∞ : K0 ≤ φ ≤ φ+}. We know from Section 4.1 that U is
invariant under N σ,τ , and we now complete the proof using the Schauder fixed point
theorem that N σ,τ has a fixed point in U . As mentioned earlier, it suffices to show
that N σ,τ is continuous and N σ,τ (U) is precompact.

Proposition 12. There exists a constant M such that for any φ ∈ U ,

(58) || N σ,τ (φ)||W 2,p ≤M.

Proof. LetW = Wτ (φ), and let ψ = N σ,τ (φ). We have the elliptic regularity estimate

(59) ||ψ||W 2,p ≤ c [||∆ψ||Lp + ||φ||Lp ] .

Since 0 < ψ ≤ φ+ we have ||φ||Lp ≤ Vol(M)1/p max(φ+). Also, ψ solves

(60) −8 ∆ψ = −Rψ − 2
3
τ2ψ5 + |σ + LW |2 ψ−7.

Since R ∈ Lp, σ ∈ L2p, 0 < K0 ≤ ψ ≤ φ+, and since Proposition 6 implies

(61) ||LW ||L∞ ≤ Kτ max(φ+)6,

it follows that the right-hand side of (60) is bounded in Lp independent of φ. Hence
inequality (58) holds. �
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Corollary 3. The set N σ,τ (U) is precompact.

Proof. From Proposition 12, it follows that N σ,τ (U) is contained in a ball in W 2,p

and hence in a ball in C1,α. By the compact embedding of C1,α in L∞, we conclude
that N σ,τ (U) is compact. �

To show N σ,τ is continuous, it is enough to show that Wτ and Lτ are continuous.
That Wτ is continuous is obvious, but there is something to show for Lτ . The
continuity in this case follows from the implicit function theorem.

Proposition 13. If g ∈ W 2,p and τ ∈ L2p are Lichnerowicz compatible, then the
map Lτ : Dτ →W 2,p is C1.

Proof. Let β0 ∈ Dτ and let ψ0 = Lτ (β0) = L(β0). Define ĝ = ψ4
0g and let L̂ be the

corresponding Lichnerowicz operator. That is, L̂(β) is the solution of

(62) −8 ∆ĝ φ+Rĝφ = −2
3
τ2φ5 + |β|2 φ−7.

By conformal covariance we have

(63) Lτ (β) = ψ0L̂τ (ψ−2
0 β)

and hence to show that L is C1 near β0 it suffices to show that L̂ is C1 near β̂0 =
ψ−2

0 β0. Noting that L̂(β̂0) ≡ 1, we may drop the hat notation and it suffices to show
that L is C1 near any point β0 such that L(β0) ≡ 1.

Define F : W 2,p
+ ×Dτ → L2p by

(64) F (φ, β) = −8 ∆φ+Rφ+
2
3
τ2φ5 − |β|2 φ−7;

the Lichnerowicz operator satisfies F (Lτ (β), β) = 0. A standard computation shows
that the Gâteaux derivative of F is given by

(65) DFφ,β(h, k) = −8 ∆h+Rh+
10
3
τ2φ4h+ 7 |β|2 φ−8h− 2φ−7 〈β, k〉 .

It is easily seen that the operator DF is continuous in φ and β.
Now

(66) DF1,β0(h, 0) = −8 ∆h+Rh+
10
3
τ2h+ 7 |β0|2 h.

But since L(β0) ≡ 1,

(67) R = −2
3
τ2 + |β0|2

and hence

(68) DF1,β0(h, 0) = −8 ∆h+
[
8
3
τ2 + 8 |β0|2

]
h.

Since the potential (8/3)τ2 + 8 |β0|2 is non-negative and does not vanish identically
(since g and τ are Lichnerowicz compatible and β0 is admissible), we conclude that
DF1,β0 : W 2,p → Lp is an isomorphism. The implicit function theorem then implies
that L is a C1 function in a neighborhood of β0. �

This completes the proof of Theorem 1. Our result of primary interest, Corollary
1, relies crucially on the HNK supersolution. For completeness, we give a proof here
of its existence.
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Proposition 14 ([16]). Suppose g ∈ W 2,p with p > 3, Yg > 0, τ ∈ W 1,p, and
σ ∈ W 1,p. If ||σ||∞ is sufficiently small, then there exists a global supersolution of
(4)–(5).

Proof. Pick ψ ∈W 2,p
+ such that the scalar curvature R̂ of ĝ = ψ4g is strictly positive.

We claim that if ε is sufficiently small, and if ||σ||L∞ is additionally sufficiently small,
then εψ is a global supersolution.

Suppose 0 < φ ≤ εψ, and let W be the corresponding solution of (5). Note that
(69)
−8 ∆(εψ) +R(εψ) + τ2(εψ)5 − |σ + LW |2(εψ)−7 =

= εR̂ψ5 + τ2(εψ)5 − |σ + LW |2 (εψ)−7

≥ εR̂ψ5 − 2 |LW |2 (εψ)−7 − 2 |σ|2 (εψ)−7.

By Proposition 6 there exists a constant Kτ such that

(70) ||LW ||∞ ≤ Kτ ||φ||6∞ ≤ Kτ ε
6 max(ψ)6.

Hence

εR̂ψ5 − 2 |LW |2 (εψ)−7 − 2 |σ|2 (εψ)−7 ≥

≥ εmin(R̂) min(ψ)5 − 2K2
τ ε

5 max(ψ)12 min(ψ)−7 − 2 |σ|2 (εψ)−7

= ε2K2
τ

max(ψ)12

min(ψ)7

[
min(R̂)

2K2
τ

(
min(ψ)
max(ψ)

)12

− ε4

]
− 2 |σ|2 (εψ)−7.(71)

Now pick ε so small that

(72)
min(R̂)

2K2
τ

(
min(ψ)
max(ψ)

)12

− ε4

is positive. It then follows that εψ is a global supersolution so long as ||σ||L∞ is so
small that the right hand side of (71) remains positive. �

5. Vacuum solutions as the limit of non-vacuum solutions

In this section we give an alternative proof of Corollary 1 using sequences of non-
vacuum solutions. We start with the following theorem which is an immediate con-
sequence of the results of [16].

Proposition 15 ([16]). Let g ∈ W 2,p with p > 3 be a metric on a smooth, compact
3-manifold. Suppose that g has no conformal Killing fields, g is Yamabe positive, and
that σ ∈W 1,p is a transverse traceless tensor and τ ∈W 1,p. If ||σ||L∞ is sufficiently
small, then for each ρn = 1

n there exists a solution (φn,Wn) ∈W 2,p
+ ×W 2,p of

−8 ∆φn +Rgφn = −2
3
τ2φ5

n + 2ρnφ
−3
n + |σ + LWn|2 φ−7

n(73)

div LWn =
2
3
φ−6

n dτ.(74)

Moreover, there exists a constant N+ > 0 independent of n such that 0 < φn ≤ N+

for every n.

We now consider what happens to the sequence (φn,Wn) and show a subsequence
of it converges to a solution (φ,W ) of the vacuum equations.
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Lemma 4. There is a subsequence of {Wn} that converges in W 1,p and weakly in
W 2,p to a limit W . Moreover, {LWn} converges uniformly to LW .

Proof. From Proposition 6 we have

(75) ||LWn||W 2,p ≤ c||dτφ6
n||Lp ≤ c||dτ ||Lp ||φn||6L∞ ≤ c||dτ ||LpN6

+.

So the sequence {Wn} is bounded in W 2,p and has a subsequence that converges
weakly in W 2,p and strongly in W 1,p to a limit W .

Reducing to this subsequence, we know that {LWn} is bounded in Cα since {Wn}
is bounded in W 2,p and therefore in C1,α for some α > 0. But then by the Arzelà-
Ascoli theorem, a subsequence converges in C0. Since LWn → LW in Lp, we conclude
that LWn → LW in C0. �

We henceforth reduce to this subsequence.

Lemma 5. Suppose σ 6≡ 0. Then σ + LW 6≡ 0.

Proof. If σ + LW ≡ 0 then div LW = 0 weakly, and hence W is in the kernel of the
vector Laplacian. In particular LW = 0, so σ ≡ 0, a contradiction. �

We henceforth also assume that σ 6≡ 0, which is necessary to establish the following
lower bound for the sequence.

Proposition 16. If σ 6≡ 0, then there is a constant N− such that

(76) 0 < N− ≤ φn

for every n.

Proof. Pick ψ̂ ∈ W 2,p
+ such that ĝ = ψ̂4g has positive scalar curvature Rĝ; this is

possible since Yg > 0. Let βn = σ + LWn, β = σ + LW , β̂n = ψ̂−2βn, β̂ = ψ̂−2β,
and ρ̂n = ψ−8ρn.

Following [25] we seek non-constant sub- and supersolutions of

(77) −8∆ĝφ+Rĝφ = −2
3
τ2φ5 +

∣∣∣β̂∣∣∣2
ĝ
φ−7 + 2ρ̂nφ

−3.

We will find a positive lower bound for the sub-solutions and use this lower bound to
obtain a positive lower bound for the functions φn.

For each n, let ψn be the solution of

(78) −8∆ĝψn +
[
Rĝ +

2
3
τ2

]
ψn = |β̂n|2ĝ + 2ρ̂n,

which exists since Rĝ + 2
3τ

2 > 0. Since β̂n and ρ̂n converge uniformly to β̂ and 0, it
follows that ψn converges in W 2,p to the solution ψ of

(79) −8 ∆ĝ ψ +Rĝψ +
2
3
τ2ψ = |β̂|2ĝ.

In particular, from Sobolev embedding, this convergence is in C0. Note that since β
(i.e. σ + LW ) is not identically zero, ψ is not identically zero. From the weak and
strong maxiumum principles ([15] Theorems 8.1 and 8.19) it follows that each ψn and
also ψ is a positive function. Since the convergence is uniform on a compact manifold,
there are constants m and M such that 0 < m ≤ ψn ≤M for every n.



VACUUM EINSTEIN CONSTRAINTS 643

Consider the function αψn. Then

(80) − 8∆ĝαψn +Rĝαψn +
2
3
τ2(αψn)5 − |β̂|2ĝ(αψn)−7 − 2ρ̂n(αψn)−3 =

2
3
τ2

[
(αψn)5 − αψn

]
+

∣∣∣β̂∣∣∣2
ĝ

[
α− (αψn)−7

]
+ ρ

[
α− (αψn)−3

]
.

One readily verifies that if α ≥ max(1,min(ψn)−1) then each term on the right-hand
side of (80) is non-negative and αψn is a supersolution. We define α+ = max(1,m−1).

Similarly, if α ≤ min(1,max(ψn)−1) then each term on the right-hand side of (80)
is non-positive and αψn is a subsolution. We define α− = max(1,M−1).

Since α−ψn and α+ψn are sub- and supersolutions of (77) it follows from Lemma
1 that α−ψ−1ψn and α+ψ

−1φn are sub- and supersolutions of (73). Lemma 3 then
implies

(81) α−ψ
−1ψn ≤ φn ≤ α+ψ

−1ψn

for each n. Letting N− = α−max(ψ)−1m completes the proof. �

Proposition 17. A subsequence of {φn} converges uniformly and in W 1,p to a func-
tion φ ∈W 2,p

+ that is a solution of

(82) −8∆φ+Rφ = −2
3
τ2φ5 + |σ + LW |2φ−7.

Proof. The functions φn solve

(83) −8∆φn = −Rφn −
2
3
τ2φ5

n + |σ + LWn|2φ−7
n + 2ρnφ

−3
n .

Since the right-hand side of (83) is bounded in Lp (here we use the fact that N− ≤
φn ≤ N+ for every n) we conclude from elliptic regularity estimate

(84) ||φn||W 2,p ≤ c1 (||∆φn||Lp + ||φn||Lp) ≤ c2 (||∆φn||Lp +N+)

that the sequence {φn} is bounded in W 2,p. Reducing to a subsequence, we conclude
that {φn} converges weakly in W 2,p and strongly in W 1,p and also in C0 to a limit
φ ∈W 2,p and φ ≥ N− > 0. A standard convergence argument shows that φ is a weak
solution of

(85) −8∆φ+Rφ = −2
3
τ2φ5 + |σ + LW |2φ−7.

Since φ is a weak solution and φ ∈W 2,p we conclude that φ is a strong solution. �

Proposition 18. The vector field W is a solution of

(86) div LW =
2
3
φ6dτ.

Proof. Since Wn →W in W 1,p and φ6
ndτ → φ6dτ in Lp, and since

(87) div LWn =
2
3
φ6

ndτ,

a standard argument shows that W weakly solves

(88) div LW =
2
3
φ6dτ.

Since W ∈W 2,p, W is a strong solution. �
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This completes the second proof of Corollary 1.

6. Conclusion

The conformal method of solving the Einstein constraint equations is remarkably
effective when the mean curvature is constant, and is remarkably recalcitrant when
it is not. In this paper we have made progress towards our understanding of the
non-CMC case. We have proved that there exist solutions of the vacuum constraint
equations whenever a global supersolution can be found. Using a well-known near-
CMC global supersolution, we have simplified the hypotheses required for existence
in the near-CMC case. And as a consequence of the HNT supersolution, we have
shown that for Yamabe-positive metrics, and for small enough transverse traceless
tensors, there exist vacuum solutions of the constraint equations for any choice of
mean curvature.

Our existence theorem shows that any potential failure of the conformal method
must arise from a loss of control from above of the conformal factor. Currently
known global supersolutions impose this control by making strong smallness assump-
tions, either on the mean curvature, or on the transverse traceless tensor. Presum-
ably one can interpolate between these smallness conditions, but the question of
existence for generic large data remains open. There also remain numerous other
open questions, including the existence of far-from-CMC solutions for Yamabe-null
or Yamabe-negative metrics, uniqueness for far-from-CMC data, and existence for
metrics admitting conformal Killing fields. As a consequence, the applicability of
the conformal method for general mean curvatures remains largely unknown. Nev-
ertheless, the results of [16] and the current paper are a step towards answering this
question.
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[2] L. Andersson, P. Chrúsciel, and H. Friedrich, On the regularity of solutions to the Yamabe
equations and the existence of smooth hyperboloidal initial data for Einstein’s field equations,

Comm. Math. Phys. 149 (1992) 587–612.
[3] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Verlag (1998).
[4] R. Bartnik, Quasi-spherical metrics and prescribed scalar curvature, J. Diff. Geom. 37 (1993)

31–71.
[5] B. Bollobás, Linear Anaylsis: an introductory course, Cambridge University Press (1992).
[6] M. Cantor, A necessary and sufficient condition for York data to specify an asymptotically flat

spacetime, Compositio Math. 38 (1979), no. 1, 1741–1744.

[7] M. Cantor and D. Brill, The Laplacian on asymptotically flat manifolds and the specification
of scalar curvature, Compositio Math. 43 (1981), no. 3, 317–330.

[8] Y. Choquet-Bruhat, The coupled Einstein constraints, in B. Hu and T. Jacobson, editors, Di-
rections in General Relativity, Cambridge University Press (1993).

[9] ———, Einstein constraints on compact n-dimensional manifolds, Classical Quantum Gravity

21 (2004), no. 3, S127–S151.
[10] Y. Choquet-Bruhat, J. Isenberg, and V. Moncrief, Solution of constraints for Einstein equations,

C. R. Acad. Sci. Paris, Ser. I 315 (1991) 349–355.



VACUUM EINSTEIN CONSTRAINTS 645

[11] Y. Choquet-Bruhat, J. Isenberg, and J. W. York, Jr, Einstein constraints on asymptotically
Euclidean manifolds, Phys. Rev. D 61 (2000) 1–20.

[12] Y. Choquet-Bruhat and J. W. York, Jr, The Cauchy problem, in A. Held, editor, General

Relativity and Gravitation, Plenum, New York (1980).
[13] P. T. Chrusciel, J. Isenberg, and D. Pollack, Initial data engineering, Comm. Math. Phys. 257

(2005), no. 1, 29–42.
[14] J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint

equations, Comm. Math. Phys. 214 (2000), no. 1, 137–189.
[15] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-

Verlag (1999).

[16] M. Holst, G. Nagy, and G. Tsogtgerel, Rough Solutions of the Einstein Constraint Equations

on Closed Manifolds Without Near-CMC Conditions (2007). [gr-qc/0712.0798v2].
[17] ———, Far-from-constant mean curvature solutions of Einstein’s constraint equations with

positive Yamabe metrics (2008). [grqc/0802.1031v2].
[18] J. Isenberg, Constant mean curvature solutions of the Einstein constraint equations on closed

manifolds, Classical Quantum Gravity 12 (1995) 2249–2274.

[19] J. Isenberg, A. Clausen, and P. T. Allen, Near-Constant Mean Curvature Solutions of the
Einstein Constraint Equations with Non-Negative Yamabe Metrics (2007). [grqc/0710.0725v1].

[20] J. Isenberg and V. Moncrief, A set of nonconstant mean curvature solutions of the Einstein

constraint equations on closed manifolds, Classical Quantum Gravity 13 (1996) 1819–1847.
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