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ON THE Sn-EQUIVARIANT EULER CHARACTERISTIC OF
MODULI SPACES OF HYPERELLIPTIC CURVES.

E. Gorsky

Abstract. The generating function for Sn-equivariant Euler characteristics of moduli

spaces of pointed hyperelliptic curves for any genus g ≥ 2 is calculated. This answer

generalizes the known ones for genera 2 and 3 and the answers obtained by J. Bergström
for any genus and n ≤ 7 points.

1. Introduction

Consider the moduli space Hg,n of hyperelliptic curves of genus g with n marked
points. One has the natural action of the symmetric group Sn on this space, so its
homologies are representations of Sn. Let Vλ be the irreducible representations of
Sn, sλ be the corresponding Schur polynomials and Hi(Hg,n) =

∑
λ ai,λVλ for some

integers ai,λ. Define the Sn-equivariant Euler characteristic of Hg,n by the formula

χSn(Hg,n) =
∑
i,λ

(−1)iai,λsλ.

Let pn denote the nth elementary Newton polynomial in the infinite number of
variables. Then χSn(Hg,n) can be also calculated by the formula

χSn(Hg,n) =
∑

i

(−1)i
∑

σ∈Sn

(−1)|σ|pk1(σ)
1 · . . . · pkn(σ)

n · Tr(σ|Hi(Hg,n)),

where ki(σ) denotes the number of cycles of length i in the permutation σ.
This text provides the explicit answer for the generating function for Sn-equivariant

Euler characteristics of moduli spaces Hg,n of hyperelliptic curves of arbitrary genus
g ≥ 2 and n marked points.

This problem was studied by several authors. The answer for g = 0 is well known,
the answer for g = 1 was obtained by E. Getzler ([5],[6]). After that it was developed
by O. Tommasi and J. Bergström in [1],[2],[10]. For example, O. Tommasi proved
that for any genus homologies of the moduli space Hg (without marked points) are
trivial, so the Euler characteristic of the corresponding coarse moduli space is equal
to 1. Using point counts over finite fields, J. Bergström discovered a sequence of
recurrence relations between the coefficients of the corresponding characters, which
permitted him to compute the Sn-equivariant Euler characteristics of Hg,n for n ≤ 7
and any g. These answers are quite complicated, for example, for n = 4 the answer
non-trivially depends of the residue of the genus modulo 12. For genus 2 the answer
for all n was obtained by E. Getzler in [7]. In another form it was formulated in [9].
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For genus 3 a the answer was obtained by Bini and van den Geer ([3]). G. Bini also
calculated in [4] all non-equivariant Euler characteristics of Hg,n.

The approach of the current paper extends the one used in [9]. It is based on
consideration of the forgetful map Hg,n → Hg. Its fiber over a curve C is isomorphic
to F (C, n)/Aut(C), where by F (X, n) from now on we will denote the configuration
space of ordered n-tuples of distinct points of a space X. E. Getzler in ([5]) obtained a
formula for the generating function for the Sn-equivariant Hodge-Deligne polynomial
of F (X, n) for any X. After a slight modification of Getzler’s formula the following
formula was obtained in ([9]).

Let a finite group G acts on a quasiprojective variety X, and for g ∈ G we denote
by Xk(g) the subset of X consisting of points with g-orbits of length k. For example,
X1(g) is the set of g-fixed points. Then the following equation holds:

(1)
∞∑

n=0

tnχSn(F (X, n)/G) =
1
|G|

∑
g∈G

∞∏
k=1

(1 + pktk)
χ(Xk(g))

k .

For example, to get the generating function for non-equivariant Euler characteristic
one has to set p1 = 1 and pi = 0 for i > 1, so

(2)
∞∑

n=0

tn

n!
χ(F (X, n)/G) =

1
|G|

∑
g∈G

(1 + t)χ(X1(g)).

The last equation can be checked independently, since the generating function for the
Euler characteristics of g-fixed points on F (X, n) equals to (1 + t)χ(X1(g)).

Now we decompose Hg in strata ΞG consisting of curves with automorphism group
G. If needed, one should also decompose these strata in such manner that corre-
sponding group actions are isomorphic. Now we obtain a formula for the equivariant:

(3)
∞∑

n=0

tnχSn(Hg,n) =
∑
G

χ(ΞG)
|G|

∑
g∈G

∞∏
k=1

(1 + pktk)
χ(Xk(g))

k

and non-equivariant:

(4)
∞∑

n=0

tn

n!
χ(Hg,n) =

∑
G

χ(ΞG)
|G|

∑
g∈G

(1 + t)χ(X1(g))

Euler characteristics of moduli spaces of hyperelliptic curves.
Therefore a priori to obtain the answer one should decompose Hg in strata corre-

sponding to all possible automorphism group actions, calculate Euler characteristics of
the corresponding strata and Xk(g) for all k and g. In ([9]) this program was realized
for genus 2. For higher genus this program is theoretically doable, because hyperellip-
tic curves with non-trivial symmetry groups correspond to symmetric configurations
of ramification points on CP1, but the number of possible symmetric configurations
increases dramatically with genus. Also the structure of these groups becomes very
sophisticated, for example, all symmetry groups of regular polyhedra (e.g. of icosa-
hedron) will appear.

In this article we propose a refinement of this approach, namely, we change the
order of summation in (3). All automorphism groups of different hyperellipic curves
are contained in a certain extension of the group PGL(2, C). Therefore we can define
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some natural classes of such automorphisms. We choose these classes A such that
χ(Xk(g)) for all k are constant on A (so we can denote it as χk(A)), and (3) can be
rewritten in a following form:

∞∑
n=0

tnχSn(Hg,n) =
∑
A

(
∑
G

χ(ΞG)
|G|

· |{h ∈ G|h ∈ A}|) ·
∞∏

k=1

(1 + pktk)
χk(A)

k .

The idea is that the sum in parentheses corresponding to every class A has some
unexpected nice properties. For example, for A = {e} we get (since every group
has unique unit element) the orbifold Euler characteristic of Hg. We prove that for
all other A the corresponding coefficients are orbifold Euler characteristics of some
configuration spaces. This gives an easy and natural way for computation of these
coefficients in our case, what leads to the final answer.

The paper is organized in the following way. In the section 2 we discuss the
answer for the non-equivariant Euler characteristic (Theorem 1), which is obtained
independently and coincides with the results of [4], in the section 3 we define in a
slightly more general setting the coefficients mentioned above and prove some of their
properties. Finally, in the section 4 we compute these coefficients for the moduli spaces
of hyperelliptic curves and apply them to obtain the final answer for the equivariant
case (Theorem 2). In the appendices we check the coincidence of our answer with the
one obtained by J. Bergström in ([1]) for n ≤ 4 marked points and the formula of
G. Bini ([4]) for the non-equivariant Euler characteristics. The coincidence with the
results of Bini and van den Geer ([3]) for genus 3 is also obtained up to 30 points,
but this check is not included in this text.

2. Non-equivariant answer

From the discussion in the previous section we get the formula (4), so the non-
equivariant answer has the form

∞∑
n=0

tn

n!
χ(Hg,n) =

∑
k

ck(1 + t)k,

where ck are some unknown coefficients, and k runs over the set of Euler characteristics
of fixed point sets of all possible automorphisms of a hyperelliptic curve of genus
g. Such an automorphism can be identical (k = 2 − 2g), a hyperelliptic involution
(k = 2 + 2g), or its restriction onto the underlying CP1 is nontrivial, i.e. has 2 fixed
points, and so k can be equal to 0, 1, 2, 3 or 4. An important remark is that ck = c4−k,
since if an automorphism has k fixed points, then its composition with the involution
has 4− k fixed points. Another remark is that c2−2g = c2+2g is equal to the orbifold
Euler characteristic of Hg, which equals to −1

2·2g(2g+1)(2g+2) (e.g [4] or [9]).
Therefore we get the following equation:

∞∑
n=0

tn

n!
χ(Hg,n) =

−1
2 · 2g(2g + 1)(2g + 2)

[(1 + t)2−2g + (1 + t)2+2g] + c0[1 + (1 + t)2]+

c1[(1 + t) + (1 + t)3] + c2(1 + t)2.
The last thing to do is to find unknown c0, c1 and c2.
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Since the theorem of Tommasi ([10]) states that homologies of Hg are trivial, we
have χ(Hg,0) = 1. From the results of Bergström ([1],[2]) it follows that χ(Hg,2) = 2
and χ(Hg,4) = −2g. This gives us the system of 3 linear equations for the coefficients,
and, after solving it, we get

c0 = − g

8(g + 1)
, c1 =

g

2g + 1
, c2 =

g + 1
4g

.

Finally, we get the following equation.

Theorem 1.
∞∑

n=0

tn

n!
χ(Hg,n) =

−1
2 · 2g(2g + 1)(2g + 2)

[(1+t)2−2g+(1+t)2+2g]− g

8(g + 1)
[1+(1+t)2]+

g

2g + 1
[(1 + t) + (1 + t)3] +

g + 1
4g

(1 + t)2.

Corollary 1. If n > 2g + 2, then

χ(Hg,n) = (−1)n+1 (2g + n− 3)!
2 · 2g(2g + 1)(2g + 2) · (2g − 3)!

.

If 5 ≤ n ≤ 2g + 2, then

χ(Hg,n) = (−1)n+1 (2g + n− 3)!
2 · 2g(2g + 1)(2g + 2) · (2g − 3)!

− 1
2

(2g − 1)!
(2g + 2− n)!

.

Also
χ(Hg,0) = 1, χ(Hg,1) = 2, χ(Hg,2) = 2, χ(Hg,3) = 0,

χ(Hg,4) = −2g, χ(Hg,5) = 0.

This answer was obtained using some external information: known answers for 0,
2 and 4 points, but it’s important to remark that knowing only these three answers
we can reconstruct the whole generating function. The coefficients c0, c1, c2 have a
nice form, which may be surprising in this approach using solution of a system of
linear equations on them. Their properties will be studied in the next section, and in
section 4 we’ll give another proof of the Theorem 1.

3. Calculation of the coefficients

Consider the universal curve, i. e. the universal family E → Hg. The simplest
invariant of this family is the orbifold Euler characteristic, which can be written as
an integral with respect to the Euler characteristic over a base:

χorb(E) =
∫
Hg

1
|Aut(C)|

dχ.

We suggest a following way for its generalization. All automorphism groups of dif-
ferent hyperellipic curves are contained in a certain extension of the group PGL(2, C).



EQUIVARIANT EULER CHARACTERISTIC 595

Therefore we can define some natural classes of such automorphisms, which are sup-
posed to be locally closed unions of conjugacy classes. We can determine if an au-
tomorphism of a fiber belongs to a class A, and set a number NA(C) equal to the
number of elements of Aut(C) belonging to A. We define a following rational number:

(5) χA(E) =
∫
Hg

NA(C)
|Aut(C)|

dχ =
∑
G

χ(ΞG)
|G|

NA(G),

where ΞG is the stratum of curves with the automorphism group isomorphic to G.
Consider the space M of pairs (C,ϕ), where ϕ is an automorphism of a curve C.

The fiber of the natural projection

µ : M → Hg

over a curve C is exactly Aut(C), so fibers are discrete and we can induce the orbifold
structure from Hg to M .

Consider the subspace MA in this space consisting of pairs with automorphisms
from a class A.

Lemma 1. The orbifold Euler characteristic of MA equals to χA(E).

Proof. Consider the restriction of the projection µ on MA. Its fiber over a curve
C is a finite set with NA(C) elements, so we can apply the Fubini formula for the
integration with respect to the Euler characteristic:

χorb(MA) =
∫
Hg

χ(µ−1(C))dχorb =
∫
Hg

NA(C)
dχ

|Aut(C)|
= χA(E).

�

Let us calculate these coefficients in our case. Let B(X, n) denote the configuration
space of unordered n-tuples of points of a given space X.

Lemma 2. The orbifold Euler characteristic of B(C∗, k)/C∗ equals to (−1)1−k

k .

Proof. We can choose an arbitrary point in a k-tuple from B(C∗, k) and divide the
coordinates of all points from the tuple by its coordinate. We’ll get this point at
1 and k − 1 distinct points on C \ {0, 1}, and this configuration has no additional
symmetries.

Recall that for any space X
∞∑

m=0

tmχ(B(X, m)) = (1 + t)χ(X).

It follows, for example, from the equation (2). Therefore
∞∑

m=0

tmχ(B(C \ {0, 1},m)) = (1 + t)−1,

and χ(B(C \ {0, 1},m)) = (−1)m.
Since the points which goes to 1 can be chosen in k ways, we get

χorb(B(C∗, k)/C∗) =
χ(B(C \ {0, 1}, k − 1))

k
=

(−1)k−1

k
.

�
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Lemma 3. Let An be the class of automorphisms of order n of C∗ with N unordered
distinct marked points. Then

(6) χAn(B(C∗, N)/C∗) = (−1)1−
N
n

ϕ(n)
N

,

where ϕ(n) is the Euler function of n, i.e. the number of integers less than n and
coprime with n.

Proof. As above, define MAn
(B(C∗, N)/C∗) as the space of pairs (N -tuple of points,

its automorphism of order n). Lemma 1 implies that

χAn(B(C∗, N)/C∗) = χorb(MAn
(B(C∗, N)/C∗)).

Consider the map q : MAn
→ C∗, transforming a pair (N -tuple of points, its

automorphism h of order n) to h. Image of q consists of ϕ(n) primitive roots of unity.
The fiber q−1(h) consists of all N -tuples invariant under h.

Let us calculate the orbifold Euler characteristic of q−1(h). Consider an N -tuple
of distinct points on C∗ invariant under h. At first, let’s raise the coordinates of all
these points into nth power. Now we have N

n unordered distinct points on C∗ modulo
the action of C∗, so for computing the orbifold Euler characteristic we can use the
previous lemma – it gives us (−1)1−

N
n

n
N . Since nth power is a n-fold covering, we get

χorb(q−1(h)) = (−1)1−
N
n

n

N
· 1
n

=
(−1)1−

N
n

N
.

Now we can apply the Fubini formula:

χAn(B(C∗, N)/C∗) = χorb(MAn(B(C∗, N)/C∗)) =∫
C∗

χorb(q−1(h))dχ = ϕ(n)χorb(q−1(h)) = (−1)1−
N
n

ϕ(n)
N

.

�

4. The equivariant answer

The equation (3) says that
∞∑

n=0

tnχSn(Hg,n) =
∑
G

χ(ΞG)
|G|

∑
g∈G

∞∏
k=1

(1 + pktk)
χ(Xk(g))

k .

Suppose that we choose the set of classes Aj of automorphisms of hyperelliptic
genus g curves such that:

1) Ai ∩ Aj = ∅ for i 6= j.
2) Every automorphism of a hyperellyptic curve of finite order belongs to one of

Aj .
3) For every k and j for g ∈ Aj the number χ(Xk(g)) does not depend on g.

Therefore in can be denoted as χk(Aj).
From the definition of χAj (Hg) it is clear that under these conditions the equation

(3) can be rewritten in the form
∞∑

n=0

tnχSn(Hg,n) =
∑

j

χAj (Hg)
∞∏

k=1

(1 + pktk)
χk(Aj)

k .
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Now let us describe these classes. Recall that if an automorphism of a hyperelliptic
curve is not equal to the identity of to the hyperelliptic involution, its restriction on
CP1 has 2 fixed points. We distinguish all possible symmetries of a hyperelliptic curve
by the structure of fixed points and the order n of their restriction on CP1. For each
stratum we calculate the corresponding coefficient χAj (Hg) and the structure of all
orbits on a covering. By N we denote the number of non-fixed ramification points on
CP1.

1. Identity. The coefficient equals to − 1
2·2g(2g+1)(2g+2) as the orbifold Euler char-

acteristic of Hg, the monomial equals to (1 + p1t)2−2g.

2. Hyperelliptic involution. The coefficient is the same, all non-ramification points
have order 2, so the monomial equals to (1 + p1t)2+2g(1 + p2t

2)−2g.

3. One ramification point is fixed and fibers over the second fixed point do not
interchange. In this case N = 2g + 1, and by lemma 3 the coefficient equals to
(−1)1−

n
N

ϕ(n)
2N (the factor 1

2 is added because of a hyperelliptic involution), and since
N is odd, the coefficient equals ϕ(n)

2(2g+1) . All points except three fixed ones have order

n, so the monomial equals to (1 + p1t)3(1 + pntn)−
2g+1

n .

4. One ramification point is fixed and fibers over the second fixed point interchange.
The factor is exactly the same as in the previous case, but the structure of orbits is
slightly different: one point is fixed, preimages of the second fixed point gives an orbit
of length 2, all other ramification points have order n, and all other points have order
2n. Hence the monomial equals to (1+p1t)1(1+p2t

2)(1+pntn)
2g+1

n (1+p2nt2n)−
2g+1

n .

5. No ramification points are fixed (N = 2g + 2), N
n is even and n is even. In this

case the preimages of fixed points simultaneously interchange or do not interchange.
The coefficient is −ϕ(n)

4N : from lemma 3 we get −ϕ(n)
N , but we should multiply it by one

1
2 because of the involution, and by the second one because we cannot distinguish the
fixed points. If the preimages of the fixed points are fixed, we have 4 fixed points and
all other points have order n, and the monomial equals to (1 + p1)4(1 + pntn)−

2g+2
n .

If they are not fixed, we have 4 points of order 2 and all other points have order n,
so the monomial equals to (1 + p2t

2)2(1 + pntn)−
2g+2

n .

6. No ramification points are fixed (N = 2g + 2), N
n is even and n is odd. The

coefficient is the same as in the previous case, but the structure of orbits is different if
fibers interchange: ramification points have order n, but generic points have order 2n,
so the corresponding monomial equals to (1 + p2t

2)2(1 + pntn)
2g+2

n (1 + p2nt2n)−
2g+2

n .

7. No ramification points are fixed (N = 2g + 2), N
n is odd, so n is even. In

this case the fibers over one of fixed points interchange, and over second one do not
interchange, so we can distinguish fixed points and the coefficient equals to ϕ(n)

2N . We
have 2 fixed points, 2 points of the order 2, and all other points have order n, so the
corresponding monomial has a form (1 + p1t)2(1 + p2t

2)(1 + pntn)−
2g+2

n .

8. Two of ramification points are fixed (N = 2g), n is odd. In this case the
coefficient equals −ϕ(n)

4N , since we cannot distinguish fixed points and N/n is even.
There are two possible structures of orbits: gn can be identical or an involution. In
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the first case we have 2 fixed points, all other have order n and the monomial equals
to (1 + p1t)2(1 + pntn)−

2g
n . In the second only ramification points have order n, and

the monomial equals to (1 + p1t)2(1 + pntn)
2g
n (1 + p2nt2n)−

2g
n .

9. Two of ramification points are fixed (N = 2g), n is even. The coefficient equals
(−1)1−

N
n

ϕ(n)
2N , nth power of an automorphism is an involution, so the monomial equals

to (1 + p1t)2(1 + pntn)
2g
n (1 + p2nt2n)−

2g
n .

We get a final answer:

Theorem 2.
∞X

k=0

tkχSk (Hg,k) =

−
1

2 · 2g · (2g + 1) · (2g + 2)
[(1 + p1t)2−2g + (1 + p1t)2+2g(1 + p2t2)−2g ]+

X
n|(2g+1)

ϕ(n)

2(2g + 1)
[(1+p1t)3(1+pntn)−

2g+1
n +(1+p1t)1(1+p2t2)(1+pntn)

2g+1
n (1+p2nt2n)−

2g+1
n ]−

X
n|(g+1),2|n

ϕ(n)

4(2g + 2)
[(1 + p1t)4(1 + pntn)−

2g+2
n + (1 + p2t2)2(1 + pntn)−

2g+2
n ]−

X
n|(g+1),2 6|n

ϕ(n)

4(2g + 2)
[(1 + p1t)4(1 + pntn)−

2g+2
n + (1 + p2t2)2(1 + pntn)

2g+2
n (1 + p2nt2n)−

2g+2
n ]+

X
n|2g+2,n6|g+1

ϕ(n)

2(2g + 2)
(1 + p1t)2(1 + p2t2)(1 + pntn)−

2g+2
n −

X
n|g,2 6|n

ϕ(n)

4 · 2g
[(1 + p1t)2(1 + pntn)−

2g
n + (1 + p1t)2(1 + pntn)

2g
n (1 + p2nt2n)−

2g
n ]−

X
n|2g,2|n

(−1)1−
2g
n

ϕ(n)

2 · 2g
(1 + p1t)2(1 + pntn)

2g
n (1 + p2nt2n)−

2g
n .

Everywhere we assume n > 1.

It is useful to recall two identities with the Euler function:∑
a|n

ϕ(a) = n

and ∑
a|n

(−1)n/aϕ(a) = 0, if n is even.

Let us check the correlation of this answer with the one for non-equivariant case
(obtained in the Theorem 1). If we set all pi = 0 for i > 1 and p1 = 1, then we’ll get

∞∑
k=0

tk

k!
χ(Hg,k) = − 1

2 · 2g · (2g + 1) · (2g + 2)
[(1 + t)2−2g + (1 + t)2+2g]+

∑
n|2g+1

ϕ(n)
2(2g + 1)

[(1 + t)3 + (1 + t)]−
∑

n|g+1

ϕ(n)
4(2g + 2)

[(1 + t)4 + 1]+
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∑
n|2g

(−1)1−
2g
n

ϕ(n)
2 · 2g

(1 + t)2 +
∑

n|2g+2,n 6|g+1

ϕ(n)
2(2g + 2)

(1 + t)2.

We have∑
n|2g+1,n>1

ϕ(n) = (2g + 1)− 1 = 2g,
∑

n|g+1,n>1

ϕ(n) = (g + 1)− 1 = g,

∑
n|2g,n>1

(−1)1−
2g
n ϕ(n) = 0− (−1) = 1,

∑
n|2g+2,n 6|g+1

ϕ(n) = (2g + 2)− (g + 1) = g + 1,

so
∞∑

k=0

tk

k!
χ(Hg,k) = − 1

2 · 2g · (2g + 1) · (2g + 2)
[(1 + t)2−2g + (1 + t)2+2g]+

g

2g + 1
[(1 + t)3 + (1 + t)]− g

8(g + 1)
[(1 + t)4 + 1] + [

1
4g

+
1
4
](1 + t)2,

that is a correct answer for the non-equivariant Euler characteristics.

For g = 2 we get the same answer as in [9].

5. Appendix A: answers up to 4 points

It is important to check this answer for small number of points, say, modulo t5.
From the first line of the Theorem 2 we always get

−1
2 · 2g · (2g + 1) · (2g + 2)

[2+4p1·t+((2+4g2)p2
1−2g·p2)t2+(4g2·p3

1−4g(g+1)·p1p2)t3+

(
4g4 − g2

3
p4
1 + (−4g3 − 6g2 − 2g)p2

1p2 + (2g2 + g)p2
2)t

4].

In what follows it is convenient to introduce Mk(n) as 1 if g = n ( mod k) and 0

otherwise.

From the second line we get
g

2g + 1
[2 + 4p1t + (3p2

1 + p2)t2 + (p3
1 + p1p2)t3]−M3(1)

2
3
p1p3t

4,

from the next two lines we get

−g

8(g + 1)
[2 + 4p1t + (6p2

1 + 2p2)t2 + 4p3
1t

3 + (p4
1 + p2

2)t
4]−

M2(1)
8

[−2p2t
2 − 4p1p2t

3 + (gp2
2 − 6p2

1p2)t4] +
2M3(2)

3
p1p3t

4 +
M4(3)

4
p4t

4,

from the next one we get

1
4
[1 + 2p1t + (p2

1 + p2)t2 + 2p1p2t
3 + p2

1p2t
4]+

M2(0)
4

[−p2t
2 − 2p1p2t

3 + (−p2
1p2 +

g

2
p2
2)t

4]− M4(1)
4

p4t
4,
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and from the last two we get

1
4g

[1 + 2p1t + p2
1t

2] +
(−1)1−g

4
[p2t

2 + 2p1p2t
3 + (p2

1p2 +
g − 1

2
p2
2 − p4)t4]+

M2(0)(−1)1−
g
2

4
p4t

4.

As we checked before, all coefficients at powers of p1 (which correspond to the
non-equivariant Euler characteristic) are correct. Coefficient at p3 always vanishes,
coefficient at p1p3 is 2

3 (M3(2)−M3(1)), so it is also correct.
Coefficient at p2 equals to

1
2(2g + 1)(2g + 2)

+
g

2g + 1
− g

4(g + 1)
+

M2(1)
4

+
1
4
− M2(0)

4
+

(−1)1−g

4
=

1−M2(0) + M2(1)
2

,

that is 0 for even g and 1 for odd.
Coefficient at p1p2 equals to

1
2(2g + 1)

+
g

2g + 1
+

M2(1)
2

+ 1/2−M2(0) +
M2(1)−M2(0)

2
= 1−M2(0) + M2(1),

that is 0 for even g and 2 for odd.
Coefficient at p2

1p2 equals to

2g2 + 3g + 1
2(2g + 1)(g + 1)

+
3M2(1)

4
+

1
4
− M2(0)

4
+

(−1)1−g

4
=

1
2
− M2(0)

2
+ M2(1),

that is 0 for even g and 3
2 for odd ones.

Coefficient at p2
2 equals to

− 1
8(g + 1)

− g

8(g + 1)
− g

8
M2(1) +

g

8
M2(0) +

(g − 1)(−1)1−g

8
= −M2(1)

4
,

what is true.
Coefficient at p4 equals to

M4(3)
4

− M4(1)
4

+
(−1)g

4
+

M2(0)(−1)1−
g
2

4
,

that is 0 for g = 0( mod 4), is − 1
2 for g = 1( mod 4), is 1

2 for g = 2( mod 4) and is
again 0 for g = 3( mod 4).

So we finally can conclude that up to 4 points for any genus the answer obtained
above coincides with known before in ([1]).
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Appendix B: comparison with the results of G. Bini

G. Bini proved in [4] that for 5 ≤ n ≤ 2g + 2 the following identity holds:

χ(Hg,n) = −
(−2)n · n!

2(2g + 2)!
((2g − 1)!

“2g − 1 + n

n

”
−

(2g)!

4

“2g + n− 2

n− 2

”
+

(2g + 1)!

32

“2g + n− 3

n− 4

”

+

[n/2]X
r=3

(−1)r(2g − 1)!

22r

“2g − 1 + r

r

”“2g − 1 + n− r

n− 2r

”
)

+
(−2)nn!

4(2g + 1)!
((2g − 1)!

“2g + n− 2

n− 1

”
−

(2g)!

4

“2g + n− 3

n− 3

”
+

[(n−1)/2]X
r=2

(−1)r(2g − 1)!

22r

“2g − 1 + r

r

”“2g − 2 + n− r

n− 1− r

”
)

−
(−2)nn!

16(2g)!
(2g − 1)!

“2g − 3 + n

n− 2

”
− (2g − 1)(2g − 2) . . . (2g − n + 3)

−
(−2)nn!

16(2g)!
(

[(n−2)/2]X
r=1

(−1)r(2g − 1)!

22r

“2g − 1 + r

r

”“2g − 3 + n− r

n− 2− 2r

”
)

−
(−2)nn!

2

n−1X
j=3

(−1)j(j − 3)!

2jj!

[(n−j)/2]X
r=0

(−1)r

22r

“j + r − 3

r

”“2g − 1 + r

2g + 2− j

”“2g − 1 + n− j − r

n− j − 2r

”
.

To check that this answer coincides with the expected one, we first make this
formula more compact.

Remark that:

(2g − 1)!
(

2g − 1 + n

n

)
=

(2g + n− 1)!
n!

,

(2g)!
(

2g + n− 2
n− 2

)
=

(2g + n− 2)!
(n− 2)!

,

(2g + 1)!
(

2g + n− 3
n− 4

)
=

(2g + n− 3)!
(n− 4)!

,

(2g − 1)!
(

2g − 1 + r

r

)(
2g − 1 + n− r

n− 2r

)
=

(2g − 1 + n− r)!
r!(n− 2r)!

.

Remark that three first summands in the first bracket have the same form for r = 0, 1
and 2 respectively. Thus the first bracket can be written in a form

(7) − (−2)n · n!
2(2g + 2)!

[n/2]∑
r=0

(−1)r

22r

(2g − 1 + n− r)!
r!(n− 2r)!

.

Analogously the second sum can be rewritten in a form

(8)
(−2)nn!

4(2g + 1)!

[(n−1)/2]∑
r=0

(−1)r

22r

(2g − 2 + n− 3)!
r!(n− 1− 2r)!

.

Further,

(2g − 1)!
(

2g − 3 + n

n− 2

)
=

2g − 3 + n

(n− 2)!
,

(2g − 1)!
(

2g − 1 + r

r

)(
2g − 3 + n− r

n− 2− 2r

)
=

(2g − 3 + n− r)!
r!(n− 2− 2r)!

,
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and, finally,
(j − 3)!

j!

“j + r − 3

r

”“2g − 1 + r

2g + 2− j

”“2g − 1 + n− j − r

n− j − 2r

”
=

(2g − 1 + n− j − r)!

j!r!(2g + 2− j)!(n− j − 2r)!
.

Remark that above we have summands of the same form for j = 0, 1 and 2 respec-
tively. Therefore Bini’s theorem can be reformulated in the following way:

χ(Hg,n) = − (−2)nn!
2

n−1∑
j=0

[(n−j)/2]∑
r=0

(−1)j+r

2j+2r

(2g − 1 + n− j − r)!
j!r!(2g + 2− j)!(n− j − 2r)!

−

−(2g − 1)(2g − 2) . . . (2g − n + 3).
Let us calculate also a summand corresponding to j = n, r = 0. We get

−n!
2

(2g − 1)!
n!(2g + 2− n)!

= −1
2
(2g − 1)(2g − 2) . . . (2g − n + 3),

so we have

(9) χ(Hg,n) = − (−2)nn!
2

∑
0≤j+2r≤n

(−1)j+r

2j+2r

(2g − 1 + n− j − r)!
j!r!(2g + 2− j)!(n− j − 2r)!

−

−1
2
(2g − 1)(2g − 2) . . . (2g − n + 3).

Lemma 4.

− (−2)nn!
2

∑
0≤j+2r≤n

(−1)j+r

2j+2r

(2g − 1 + n− j − r)!
j!r!(2g + 2− j)!(n− j − 2r)!

=

(−1)n+1 (2g + n− 3)!
2 · 2g(2g + 1)(2g + 2)(2g − 3)!

.

Corollary 2. The Bini’s answer coincides with the one obtained in Theorem 1.

The corollary is clear since the term outside the sum corresponds to the generating
function

− 1
2 · 2g(2g + 1)(2g + 2)

(1 + t)2+2g.

Now let us prove the lemma. Its statement can be reformulated asX
0≤j+2r≤n

(−1)n−j−r2n−j−2r (2g − 1 + n− j − r)!

j!r!(2g + 2− j)!(n− j − 2r)!
= (−1)n (2g + n− 3)!

2g(2g + 1)(2g + 2)n!(2g − 3)!
.

Let us compare the generating functions of the expressions by n in both parts. Let
a = n− j − r, b = n− j − 2r. Then r = a− b, n = 2a + j − b. We have

∞∑
n=0

tn
∑

0≤j+2r≤n

(−1)n−j−r2n−j−2r (2g − 1 + n− j − r)!
j!r!(2g + 2− j)!(n− j − 2r)!

=

=
∞∑

j=0

∞∑
a=0

a∑
b=0

t2a+j−b(−1)a2b (2g − 1 + a)!
j!(a− b)!(2g + 2− j)!b!

=
2g+2∑
j=0

1
(2g + 2)!

tj
(

2g + 2
j

)
×

∞∑
a=0

t2a(−1)a(2g − 1 + a)!
a∑

b=0

1
a!

t−b2b

(
a

b

)
=
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(1 + t)2g+2

(2g + 2)!

∞∑
a=0

t2a(−1)a(1 +
2
t
)a (2g − 1 + a)!

a!
=

(1 + t)2g+2

(2g + 2)!

∞∑
a=0

(−2t− t2)a (2g − 1 + a)!
a!

=

(1 + t)2g+2

(2g + 2)!
(2g − 1)!(1− (−2t− t2))−2g =

(1 + t)2g+2

2g(2g + 1)(2g + 2)
(1 + t)−4g =

(1 + t)2−2g

2g(2g + 1)(2g + 2)
=

∞∑
n=0

tn(−1)n (2g + n− 3)!
2g(2g + 1)(2g + 2)n!(2g − 3)!

.

This completes the proof. Everywhere in this calculation factorials of negative
integers are supposed to be zero.
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