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APPLICATIONS OF CUTOFF RESOLVENT ESTIMATES TO THE
WAVE EQUATION

Hans Christianson

Abstract. We consider solutions to the linear wave equation on non-compact Riemann-

ian manifolds without boundary when the geodesic flow admits a filamentary hyperbolic
trapped set. We obtain a polynomial rate of local energy decay with exponent depending

only on the dimension.

1. Introduction

In this paper we study local energy decay for solutions to the linear wave equation
on the non-compact Riemannian manifolds with trapping studied by Nonnenmacher-
Zworski [12]. Let (X, g) be a Riemannian manifold of odd dimension n ≥ 3 without
boundary, with (non-negative) Laplace-Beltrami operator −∆ acting on functions.
The Laplace-Beltrami operator is an unbounded, essentially self-adjoint operator on
L2(X) with domain H2(X). We assume (X, g) is asymptotically Euclidean in the
sense of [12, §3.2]. That is, for R0 > 0 sufficiently large, each infinite branch of
M \B(0, R0) agrees with Rn, and on each branch, the semiclassical Laplacian −h2∆
takes the form

−h2∆|M\B(0,R0) =
∑
|α|≤2

aα(x, h)(hDx)α,

with aα(x, h) ∈ C∞b (Rn) and independent of h for |α| = 2,∑
|α|=2

aα(x, h)ξα ≥ C−1|ξ|2, 0 < C <∞, and

∑
|α|≤2

aα(x, h)ξα → |ξ|2, as |x| → ∞ uniformly in h.

In order to quote the results of [12] we also need the following analyticity assumption:
∃ε > 0 such that the aα(x, h) extend holomorphically to

{rω : ω ∈ Cn, dist (ω,Sn) < ε, r ∈ C, |r| ≥ R0, arg r ∈ (−ε, ε)},
and satisfy the same estimates in this extended region. As in [12], the analyticity
assumption immediately implies

∂β
x

∑
|α|≤2

aα(x, h)ξα − |ξ|2
 = o(|x|−|β|) 〈ξ〉2 , |x| → ∞.

We assume also that the classical resolvent (−∆ − λ2)−1 has a holomorphic con-
tinuation to a neighbourhood of λ ∈ R as a bounded operator L2

comp → L2
loc.
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We consider solutions u to the following wave equation on X × Rt, (−D2
t −∆)u(x, t) = 0, (x, t) ∈ X × [0,∞)

u(x, 0) = u0 ∈ H1(X) ∩ C∞c (X),
Dtu(x, 0) = u1 ∈ L2(X) ∩ C∞c (X),

(1.1)

where here Dt = −i∂t as usual.
For u satisfying (1.1) and χ ∈ C∞c (X), we define the local energy, Eχ(t), to be

Eχ(t) =
1
2

(
‖χ∂tu‖2

L2(X) + ‖χu‖2
H1(X)

)
.

Observe ifX = R3, then the Sharp Huygens Principle tells us there exists T depending
only on the supports of χ, u0, and u1 such that Eχ(t) ≡ 0 for all t ≥ T . In more
general geometric settings, we study decay rates for the local energy as an analogue
of the Sharp Huygens Principle. The geometry of the underlying manifold can put up
serious road blocks to proving energy decay, especially if the geodesic flow has trapped
sets. A classically trapped set consists of geodesics which don’t escape to infinity as
their arclength parameter goes to infinity. Since on a complete Riemannian manifold,
geodesics are determined by an initial point and velocity, in this context we think of
geodesics as curves living in phase space, or the cotangent bundle T ∗X, which project
onto X as the usual geodesics.

Local energy for solutions to the wave equation has been well studied in various
settings. Proving decay rates for local energy quantities is essential in the study of
nonlinear wave equations, as well as wave-type equations in various black hole back-
grounds. Morawetz [10], Lax-Morawetz-Phillips [8], and Morawetz-Ralston-Strauss
[11] study the wave equation in non-trapping exterior domains in Rn, showing the
local energy decays exponentially in odd dimensions n ≥ 3, and polynomially in even
dimensions. This has been generalized to cases with non-trapping potentials [15] and
compact non-trapping perturbations of Euclidean space [16]. In the case of elliptic
trapped rays (see [14]), it is known that exponential decay of the local energy is in
general not possible. Ikawa [6, 7] shows in dimension 3 there is exponential local en-
ergy decay with a loss in derivatives in the presence of trapped rays between convex
obstacles, provided the obstacles are sufficiently small and far apart. In the case X is
Euclidean outside a compact set, ∂X 6= ∅, and with no assumptions on trapping, Burq
shows in [1] that Eχ(t) decays at least logarithmically with some loss in derivatives.
The author shows in [4] that if there is one hyperbolic trapped orbit with no other
trapping, then the local energy decays sub-exponentially with a loss in derivative
(including the case ∂X = ∅).

The main result of this paper is that if there is a hyperbolic trapped set which
is sufficiently “thin”, then the local energy decays at least polynomially, with an
exponent depending on the dimension n. For a precise definition of trapped set, see,
for example, [12, 1.5-1.6]. The assumption that the trapped set is “thin” is quantified
in the assumption in Theorem 1 that the topological pressure PE(1/2) < 0 (see [12,
3.19,§5.2] for the definition of topoligical pressure).

Theorem 1. Suppose (X, g) satisfies the assumptions of the introduction, dimX =
n ≥ 3 is odd, and (X, g) admits a compact hyperbolic fractal trapped set, KE, in the
energy level E > 0 with topological pressure PE(1/2) < 0. Assume there is no other
trapping and (−∆ − λ2)−1 admits a holomorphic continuation to a neighbourhood
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Figure 1. A poten-
tial V (x) with three
bumps.

KE

V (x) = E

Figure 2. The level
set V (x) = E and a
closed hyperbolic or-
bit in the set KE re-
flecting off the “soft”
boundary.

around R ⊂ C. Then for each ε > 0 and s > 0, there is a constant C > 0, depending
on ε, s, and the supports of χ, u0, and u1, such that

Eχ(t) ≤ C
(

log(2 + t)

〈t〉

) 2s
3n+ε (

‖u0‖2H1+s(X) + ‖u1‖2Hs(X)

)
.(1.2)

Remark 1.1. At the time of publication, the author was informed by Nonnenmacher-
Zworski [13] of an improvement to the resolvent estimate in Theorem 2 to a small
fixed strip in the imaginary direction, at the expense of polynomial growth in the
estimate. Using Theorem 3 and Remark 3.1 one can then improve Theorem 1 to
exponential decay in time. That is, under the assumptions of Theorem 1, we actually
have the estimate

Eχ(t) ≤ Cse−t/Cs
(
‖u0‖2H1+s(X) + ‖u1‖2Hs(X)

)
.

As in [4], there are applications to the nonlinear wave equation, although we will
not record them here.

As an example of where such a trapped set might occur, suppose X is equal to Rn
outside a compact set and −∆ is separable in at least one variable. After a conjuga-
tion, T∆T−1, and a rescaling, λ = 1/h, we are left with a semiclassical operator

P (h) = hDia
ijhDj + V (x),

where V is a smooth, compactly supported potential. There are many potentials
which admit a hyperbolic trapped set. For example, the “three-bump” potential of
Figures 1 and 2 has a fractal trapped set in which each orbit is described by a finite
sequence of “reflections” off the soft boundaries. That means the trapped set can be
described via so-called symbolic dynamics, and hence is a Cantor-type fractal set. If
the bumps are far enough apart, the set is very thin, and Theorem 1 applies.

Figure 1. A poten-
tial V (x) with three
bumps.

RESOLVENTS AND THE WAVE EQUATION 10003

Figure 1. A poten-
tial V (x) with three
bumps.

KE

V (x) = E

Figure 2. The level
set V (x) = E and a
closed hyperbolic or-
bit in the set KE re-
flecting off the “soft”
boundary.

around R ⊂ C. Then for each ε > 0 and s > 0, there is a constant C > 0, depending
on ε, s, and the supports of χ, u0, and u1, such that

Eχ(t) ≤ C
(

log(2 + t)

〈t〉

) 2s
3n+ε (

‖u0‖2H1+s(X) + ‖u1‖2Hs(X)

)
.(1.2)

Remark 1.1. At the time of publication, the author was informed by Nonnenmacher-
Zworski [13] of an improvement to the resolvent estimate in Theorem 2 to a small
fixed strip in the imaginary direction, at the expense of polynomial growth in the
estimate. Using Theorem 3 and Remark 3.1 one can then improve Theorem 1 to
exponential decay in time. That is, under the assumptions of Theorem 1, we actually
have the estimate

Eχ(t) ≤ Cse−t/Cs
(
‖u0‖2H1+s(X) + ‖u1‖2Hs(X)

)
.

As in [4], there are applications to the nonlinear wave equation, although we will
not record them here.

As an example of where such a trapped set might occur, suppose X is equal to Rn
outside a compact set and −∆ is separable in at least one variable. After a conjuga-
tion, T∆T−1, and a rescaling, λ = 1/h, we are left with a semiclassical operator

P (h) = hDia
ijhDj + V (x),

where V is a smooth, compactly supported potential. There are many potentials
which admit a hyperbolic trapped set. For example, the “three-bump” potential of
Figures 1 and 2 has a fractal trapped set in which each orbit is described by a finite
sequence of “reflections” off the soft boundaries. That means the trapped set can be
described via so-called symbolic dynamics, and hence is a Cantor-type fractal set. If
the bumps are far enough apart, the set is very thin, and Theorem 1 applies.

Figure 2. The level
set V (x) = E and a
closed hyperbolic or-
bit in the set KE re-
flecting off the “soft”
boundary.

around R ⊂ C. Then for each ε > 0 and s > 0, there is a constant C > 0, depending
on ε, s, and the supports of χ, u0, and u1, such that

Eχ(t) ≤ C
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log(2 + t)
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) 2s
3n+ε (

‖u0‖2
H1+s(X) + ‖u1‖2

Hs(X)

)
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Remark 1.1. At the time of publication, the author was informed by Nonnenmacher-
Zworski [13] of an improvement to the resolvent estimate in Theorem 2 to a small
fixed strip in the imaginary direction, at the expense of polynomial growth in the
estimate. Using Theorem 3 and Remark 3.1 one can then improve Theorem 1 to
exponential decay in time. That is, under the assumptions of Theorem 1, we actually
have the estimate

Eχ(t) ≤ Cse
−t/Cs

(
‖u0‖2

H1+s(X) + ‖u1‖2
Hs(X)

)
.

As in [4], there are applications to the nonlinear wave equation, although we will
not record them here.

As an example of where such a trapped set might occur, suppose X is equal to Rn

outside a compact set and −∆ is separable in at least one variable. After a conjuga-
tion, T∆T−1, and a rescaling, λ = 1/h, we are left with a semiclassical operator

P (h) = hDia
ijhDj + V (x),

where V is a smooth, compactly supported potential. There are many potentials
which admit a hyperbolic trapped set. For example, the “three-bump” potential of
Figures 1 and 2 has a fractal trapped set in which each orbit is described by a finite
sequence of “reflections” off the soft boundaries. That means the trapped set can be
described via so-called symbolic dynamics, and hence is a Cantor-type fractal set. If
the bumps are far enough apart, the set is very thin, and Theorem 1 applies.

The proof of Theorem 1 is a consequence of an adaptation of [1, Théorème 1] to
this setting and the following resolvent estimates.
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Theorem 2. Suppose (X, g) satisfies the assumptions of Theorem 1. Then for any
χ ∈ C∞c (X) and any ε > 0 there is a constant C = Cχ,ε > 0 such that

‖χ(−∆− λ2)−1χ‖L2(X)→L2(X) ≤ C
log(1 + 〈λ〉)

〈λ〉
,

for

λ ∈ {λ : | Imλ| ≤ Γ( Reλ)} .

Here Γ is a smooth curve satisfying

Γ(s) =
{
C1, |s| ≤ C0,
C2|s|−3n/2−ε, |s| ≥ C0 + 1,

and ±Γ′(s) ≤ 0 for ±s ≥ C0, and for some choice of C0, C1, C2 > 0.

Remark 1.2. The proof of Theorem 1 depends more on the neighbourhood in which
the resolvent estimates hold than on the estimates themselves. Given a complex
neghbourhood of the real axis, any polynomial cutoff resolvent estimate will give the
same local energy decay rate. Theorem 2 represents a gain over the estimates in [12,
Theorem 5] in the sense that the estimate holds in a complex neighbourhood of R,
rather than just on R.

2. Proof of Theorem 2

To prove Theorem 2, we use the results of Nonnenmacher-Zworski [12] to prove a
high energy estimate for the resolvent with complex absorbing potential, then use the
holomorphic continuation to bound the cutoff resolvent by a constant for low energies.
If we consider the problem

(−∆− λ2)u = f,(2.1)

and restrict our attention to values |λ| ≥ C for some constant C > 0, we can transform
equation (2.1) into a semiclassical problem for fixed energy by setting

λ =
√
z/h

for z ∼ 1 and 0 < h ≤ h0. Then (2.1) becomes

(P − z)u = h2f,

where

P = −h2∆

is the semiclassical Laplacian.
The following Proposition is the high energy resolvent estimate from [12] with the

improvement that the estimate holds in a larger neighbourhood of R ⊂ C.

Proposition 2.1. Suppose W ∈ C∞(X; [0, 1]), W ≥ 0 satisfies

suppW ⊂ X \B(0, R1), W ≡ 1 on X \B(0, R2),

for R2 > R1 sufficiently large, and

‖(P − iW − z)−1‖L2→L2 ≤ CN

(
1 + log(1/h) +

hN

Im z

)
,
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for z ∈ [E − δ, E + δ] + i(−ch, ch). Then for each ε > 0 and each χ ∈ C∞c (X), there
is a constant C = Cε,χ > 0 such that

‖χ(P − z)−1χ‖L2→L2 ≤ C
log(1/h)

h
,

for z ∈ [E − c1h,E + c1h] + i(−c2h3n/2+1+ε, c2h
3n/2+1+ε).

We first improve [12, Lemma 9.2] in order to get cutoff resolvent estimates with
the absorbing potential in a polynomial neighbourhood of the real axis. The proof
of the following lemma is an adaptation of the “three-lines” theorem from complex
analysis and borrows techniques from [3, 2, 12] and the references cited therein.

Lemma 2.2. Suppose F (z) is holomorphic in a neighbourhood of

Ω = [−1, 1] + i(−c−, c+),

and satisfies

log |F (z)| ≤ M, z ∈ Ω,

|F (z)| ≤ α+
γ

Im z
, z ∈ Ω ∩ { Im z > 0}.

Then if γ ≤ εM−3/2 for ε > 0 sufficiently small, there exists a constant C = Cε > 0
such that

|F (z)| ≤ Cα, z ∈ [−1/2, 1/2] + i(−M−3/2,M−3/2).

Proof. Choose ψ(x) ∈ C∞c ([−1, 1]), ψ ≡ 1 on [−1/2, 1/2], and set

ϕ(z) = β−1/2

∫
e−(x−z−icβ)2/βψ(x)dx,

where 0 < β < 1 and c > 0 will be chosen later. The function ϕ(z) enjoys the
following properties:

(a) ϕ(z) is holomorphic in Ω,
(b) |ϕ(z)| ≤ C on Ω ∩ {| Im z| ≤ β1/2},
(c) |ϕ(z)| ≥ C−1 on {|Re z| ≤ 1/2}∩{| Im z| ≤ β} if c > 0 is chosen appropriately,
(d) |ϕ(z)| ≤ Ce−C/β for z ∈ {±1}+ i(−β1/2, β1/2).
Now for a ∈ R to be determined, set

g(z) = eiazϕ(z)F (z).

For δ± > 0 to be determined, let

Ω′ := Ω ∩ {−δ− ≤ Im z ≤ δ+}.

We have the following bounds for g(z) on the boundary of Ω′:

log |g(z)| ≤


−C/β +M − a Im z, Re z = ±1, if | Im z| ≤ β1/2,
C +M + aδ−, Im z = −δ− ≥ −β1/2,
C + log(α+ γ/δ+)− aδ+, Im z = δ+ ≤ β1/2.

We want to choose a, β, and δ± to optimize these inequalities. Choosing a = −2M/δ−
yields

log |g(z)| ≤ C −M for Im z = −δ−,
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and choosing δ+ = |2/a| yields

log |g(z)| ≤ C + log(α+ γ/δ+) + 2, for Im z = δ+.

Finally, chooing β = C ′/M for an appropriate C ′ > 0 yields

log |g(z)| ≤ −C−1M for Re z = ±1, | Im z| ≤ max{δ+, δ−},

and taking δ− = C ′′M−1/2, δ+ = C ′′M−3/2 gives

log |g(z)| ≤ C ′′′ + log(α+ γ/δ+) on ∂Ω′.

In order to conclude the stated inequality on F (z), we need to invert e−iazϕ(z),
which, from the definition of a and the properties of ϕ stated above, is possible for

z ∈ [−1/2, 1/2] + i(−M−3/2,M−3/2).

Then for z in this range and γ satisfying γ ≤ εM−3/2,

|F (z)| ≤ Cα(1 + ε) ≤ C ′α,

as claimed. �

Now to prove Proposition 2.1, as in [12], we apply Lemma 2.2 to

F (ζ) =
〈
h(P − iW − hζ)−1f, g

〉
L2 ,

for f, g ∈ L2. For M we use the well-known estimate (see, for example [5, Lemma
6.1])

‖(P − iW − z)−1‖L2→L2 ≤ Cεe
Ch−n−ε

, Im z ≥ −h/C,
and take M = Cεh

−n−ε. For the other parameters, we take

γ = hN , α = c0 + log(1/h).

Rescaling, we conclude

‖(P − iW − z)−1‖ ≤ C
log(1/h)

h

in the stated region. Then we apply the remainder of the proof [12, Theorem 5]. �

3. Proof of Theorem 1

In this section we adapt the proof of [1, Théorème 1] to the case where one has
better resolvent estimates. Theorem 1 follows from a more abstract theorem on
semigroups (see [1, Théorème 3] and [9]). In order to motivate this theorem, let us
see what is needed for the proof of Theorem 1.

Set

B =
(

0 −i id
−i∆ 0

)
,

so that if

U0 := (u0, u1) ∈ H := H1(X)× L2(X)

is smooth with compact support, and u solves (1.1),

U(t) :=
(

u(t)
∂tu(t)

)
= eitBU0.
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We note also that for s ∈ R we have

‖u0‖Hs+1 + ‖u1‖Hs ' ‖(1− iB)sU0‖H ,

so that if χ1, χ2 ∈ C∞c (X) and χ2 ≡ 1 on suppU0, to prove Theorem 1, we want to
estimate

‖χ1e
itBU0‖Hs+1×Hs = ‖χ1e

itBχ2U0‖Hs+1×Hs .

We observe the commutator [χ2, B] is compactly supported and bounded on H, so
that we are left to estimate

‖χ1e
itBχ2‖Hs+1×Hs→H = ‖χ1e

itBχ2(1− iB)−s‖H→H

≤ C‖χ1e
itB(1− iB)−sχ̃2‖H→H ,

where χ̃2 ∈ C∞c (X) is supported on a slightly larger set than χ2. Hence if we can
show

‖χ1e
itB(1− iB)−sχ̃2‖H→H ≤ C

(
〈t〉

log(2 + t)

) −2s
3n+ε

,

we are almost done. This estimate follows from the next theorem, upon taking (in
the notation below), k = 2, P (t) = t−3n/2−ε/2, and

F (t) =
(

t

log t

) 4
3n+ε

.

Finally, we observe the spaces H1+s × Hs are complex interpolation spaces, hence
interpolating with the trivial estimate

Eχ(t) ≤ C(‖u0‖2
H1 + ‖u1‖2

L2),

yields (1.2) for s ≥ 0.
�

This motivates trying to estimate quantities involving semigroups and cutoff resol-
vents of the form

‖χ1e
itB(1− iB)−sχ2‖H→H ,

where χj : H → H are bounded operators on a Hilbert space H and the resolvent
satisfies some analyticity assumptions. For this we develop the following more general
theorem similar to [1, Théorème 3] and [9].

Let H be a Hilbert space and let B be an unbounded linear operator on H. Assume
for Im ξ ≤ 0,

Im (Bu, u)H ≥ 0.

Let Dom (B) = Dom (1 − iB) denote the domain of B. Assume for Im ξ < 0, ξ − B
is bijective and bounded with respect to the natural norm on Dom (B),

‖u‖2
Dom (B) = ‖u‖2

H + ‖Bu‖2
H ,

and

‖(ξ −B)−1‖H→H ≤ C| Im ξ|−1.
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By the Hille-Yosida Theorem, for every k ∈ N and s ≥ 0, we can construct the
operators

eisB

(1− iB)k
,

where eisB satisfies the evolution equation{
(Ds −B)eisB = 0,
eisB |s=0 = id .(3.1)

Now suppose χj , j = 1, 2 are bounded operators H → H, and χ1(ξ − B)−1χ2

continues holomorphically to a neighbourhood of the region

Ω =
{
ξ ∈ C : | Im ξ| ≤

{
C1, |Re ξ| ≤ C2

P (|Re ξ|), |Re ξ| ≥ C2,

}
,

where P (|Re ξ|) > 0 and is monotone decreasing (or constant) as |Re ξ| → ∞,
P (C2) = C1, and assume for simplicity that ∂Ω is smooth. Assume

‖χ1(ξ −B)−1χ2‖H→H ≤ G(|Re ξ|)(3.2)

for ξ ∈ Ω, where G(|Re ξ|) = O(|Re ξ|N ) for some N ≥ 0. We further assume that
the propagator eisB “acts finitely locally,” in the sense that for s ∈ [0, 1],

χ̃2 := eisBχ2e
−isB

is also a bounded operator on H, and χ1(ξ −B)−1χ̃2 continues holomorphically to a
neighbourhood of Ω and still satisfies the estimate (3.2), possibly with G replaced by
CG for a constant C > 0.

Theorem 3. Suppose B satisfies all the assumptions above, and let k ∈ N, k > N+1.
Then for any F (t) > 0, monotone increasing, satisfying

F (t)(k+1)/2 ≤ exp(tP (F (t))),(3.3)

there is a constant C > 0 depending on the supports of χ1 and χ2 such that∥∥∥∥χ1
eitB

(1− iB)k
χ2

∥∥∥∥
H→H

≤ CF (t)−k/2.(3.4)

Remark 3.1. Evidently, if we have polynomial resolvent bounds in a fixed strip
around the real axis, we have exponential local energy decay for the wave equation
with a loss in derivatives.

Further, Theorem 3 applies if X is a compact manifold, H = H1(X)×L2(X), and

B =
(

0 −i id
−i∆g 2ia(x)

)
,

which is the the matrix for the first order system associated to the damped wave
equation. In this situation if a controls X geometrically except for in a neighbourhood
of a single closed hyperbolic geodesic (see [3, Corollary 8]), there are indeed polynomial
resolvent bounds in a fixed strip. We can take χ1 = χ2 = 1 to conclude there is
exponential energy decay with loss in derivatives for solutions to the damped wave
equation. This corrects a mistake in the proof of [3, Theorem 5].

To put these estimates in perspective, we recall that in the original paper of Burq
[1] there were no assumptions on trapping, but ∂X 6= ∅. In this case, there can
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be resonances near 0, so the domain to which the cutoff resolvent extends is more
complicated. Roughly, the cutoff resolvent extends for large Re ξ to a region in the
upper half plane bounded by e−|Re ξ|/C , with exponentially growing bounds. There is
also possibly an angular sector containing the origin in the upper half plane where the
resolvent does not continue. In this paper we have much better bounds (as mentioned
above, polynomial bounds are all we need), and a polynomial neighbourhood of the
real axis to which the cutoff resolvent extends. This explains why the estimate in this
paper is stronger, but of course under more assumptions.

Before proceeding with the proof of Theorem 3, we first need a lemma, which gives
a nice representation of the propagator as a contour integral.

Lemma 3.2. For k ≥ 2, the propagator satisfies the following identity on H:

eitB

(1− iB)k
=

1
2πi

∫
Im ξ=− 1

2

eitξ(1− iξ)−k(ξ −B)−1dξ.

Proof. We write Ik for the right hand side and observe both the left hand side and
Ik satisfy the evolution equation

(Dt −B)w = 0.

To calculate Ik(0), we deform the contour to see

Ik(0) =
1

2πi

(∫
Im ξ=−C

−
∫

∂D(−i,ε)

)
(1− iξ)−k(ξ −B)−1dξ.

Letting C → ∞, the first integral vanishes. Thus we need to calculate the second
integral, which actually makes sense for k ≥ 1. For k = 1, this is the residue formula,
while for k > 1 the formula follows by induction and the continuity of (ξ − B)−1 as
ε→ 0.

Thus the left hand side and Ik have the same initial conditions, and the lemma is
proved. �

Proof of Theorem 3. The idea of the proof of Theorem 3 is to introduce a cutoff to
times t > 0. This has the effect that, upon differentiation in t, a solution to a
homogeneous equation (e.g. the propagator (3.1)) becomes inhomogeneous, allowing
us to use Duhamel’s formula to write an integral representation of the solution. Having
done this, we estimate the “high-frequency” part of this integral separately from the
“low-frequency” part, and then finally choose an appropriate definition of “high-
frequency” which optimizes these two estimates.

For an initial condition u0 ∈ H, let V (t) = eitBχ2u0, and consider U(t) = ψ(t)(1−
iB)−kV (t) for ψ(t) ∈ C∞(R) satisfying ψ ≡ 0 for t ≤ 1/3, ψ ≡ 1 for t ≥ 2/3, and
ψ′ ≥ 0. We observe by the sub-unitarity of eitB for t ≥ 0,

‖U(t)‖ ≤ C‖V (t)‖ ≤ C ′‖u0‖,

where for the remainder of the proof, ‖ · ‖ = ‖ · ‖H unless otherwise specified.
The family U(t) satisfies

(Dt −B)U = Ã(t)(1− iB)−kV (t),
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where Ã is a bounded operator on H with support contained in [1/3, 2/3]. As U(0) =
0, Duhamel’s formula yields

U(t) =
∫ t

0

ei(t−s)BÃ(s)(1− iB)−kV (s)ds,

and by Lemma 3.2,

U(t) =
∫ t

s=0

∫
Im ξ=−1/2

ei(t−s)ξÃ(s)(1− iξ)−k(ξ −B)−1V (s)dξds.

For a function F (t) > 0, monotone increasing in t to be selected later, we will cut off
frequencies in |ξ| above and below F (t). We convolve with a Gaussian to smooth this
out:

U(t) =
∫ t

s=0

∫
Im ξ=−1/2

∫
λ

ei(t−s)ξÃ(s)(1− iξ)−k(ξ −B)−1

·(c0/π)
1
2 e−c0(λ−ξ/F

1
2 (t))2V (s)dλdξds

=
∫ t

0

∫
Im ξ=−1/2

(∫
|λ|≤F

1
2 (t)

+
∫
|λ|≥F

1
2 (t)

)
(·)dλdξds

=: I1 + I2,

where c0 is a constant to be fixed later.
Claim 1: For A > 0 to be chosen later, there exist constants C, c2 > 0 such that I1
as defined above satisfies

‖χ1I1‖ ≤ Cmax
{
F

1
2 (t)e−tP (AF (t))

F
1
2 (t)e−c2F (t)

}
‖u0‖.

Proof of Claim 1. From the resolvent and propagator continuation properties (3.2),
the integrand in χ1I1 is holomorphic in {−1 < Im ξ < 0} ∪ neighΩ. Observe that
since λ2 ≤ F (t), and

λ

F
1
2 (t)

≤ 1,

for |Re ξ| � F (t) and Im ξ bounded, we have the estimate

(λ− ξ/F
1
2 (t))2 = λ2 − 2λξ

F
1
2 (t)

+
ξ2

F (t)

∼ ξ2

F (t)
� |ξ|,

and the integrand is rapidly decaying as |Re ξ| → ∞ in R. Hence we can deform the
contour in ξ to

Γ =
{
ξ ∈ C : Im ξ =

{
C1, |Re ξ| ≤ C2

P (|Re ξ|), |Re ξ| ≥ C2.

}
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Let A > 0 be a parameter to be fixed later. We further break I1 into integrals
where Re ξ is larger than or smaller than AF (t):

χ1I1 = χ1

∫ t

0

(∫
Γ∩{|Re ξ|≤AF (t)}

+
∫

Γ∩{|Re ξ|≥AF (t)}

)∫
|λ|≤F

1
2 (t)

(·)dλdξds

=: χ1J1 + χ1J2.

For J1, if t ≥ 2, since P (|Re ξ|) is monotone decreasing, we have

Im ξ ≥ P (AF (t)),

and on the support of Ã(s), we have t− s ≥ t− 1. Hence if k > N + 1,

‖χ1J1‖ ≤ C

∫
Γ∩{|Re ξ|≤AF (t)}

∫
|λ|≤F

1
2 (t)

e−(t−1)P (AF (t)) 〈ξ〉−k
G(|Re ξ|)

·
∣∣∣∣e−c0(λ−ξ/F

1
2 (t))2

∣∣∣∣ dλdξ‖u0‖

≤ CAF (t)e−tP (AF (t))‖u0‖.

For J2, we observe that, again since |λ| ≤ F
1
2 (t), for A large enough and |Re ξ| ≥

AF (t),

Re (λ− ξ/F
1
2 (t))2 = λ2 − 2λRe ξ

F
1
2 (t)

+
( Re ξ)2 − ( Im ξ)2

F (t)

≥ C−1(λ2 + ( Re ξ)2/F (t)).

Hence,

‖χ1J2‖ ≤ C

∫
Γ∩{|Re ξ|≥AF (t)}

∫
|λ|≤F

1
2 (t)

〈ξ〉−k
G(|Re ξ|)∣∣∣∣e−c0(λ−ξ/F

1
2 (t))2

∣∣∣∣ dλdξ‖u0‖

≤ C

∫
|η|≥F

1
2 (t)

F
1
2 (t)e−c1η2

dη‖u0‖

≤ CF
1
2 (t)e−c2F (t)‖u0‖.

�

Claim 2: We now claim there exists a constant C > 0 such that

‖χ1I2‖ ≤ Cmax

{
C(e−F (t) + e−F

1
2 (t)/3)

C(F (t)−k/2 + e−F (t)/C)

}
‖u0‖.

Proof of Claim 2. Now since Ã(s) is only supported in [1/3, 2/3], the integrand in the
definition of I2(t) is independent of s for s ≥ 2/3. Hence if we set

J(τ) =
∫ 1

s=0

∫
Im ξ=−1/2

|λ|≥F1/2(t)

Ã(s)ei(τ−s)ξ(1− iξ)−k(ξ −B)−1

·(c0/π)
1
2 e−c0(λ−ξ/F

1
2 (t))2V (s)dλdξds,
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we have J(τ) ≡ I2(τ) for τ ≥ 1. Observe

(Dτ −B)J(τ) =
∫ 1

s=0

∫
Im ξ=−1/2

|λ|≥F1/2(t)

Ã(s)ei(τ−s)ξ(1− iξ)−k

·(c0/π)
1
2 e−c0(λ−ξ/F

1
2 (t))2V (s)dλdξds

=: K(τ).

Hence

J(t) = eitBJ(0) +
∫ t

0

ei(t−s)BK(s)ds.

Again, by the subunitarity of the propagator, we need to estimate ‖χ1J(0)‖ and∫ t

0
‖χ1K(s)‖ds.
For J(0), we first consider λ ≥ F

1
2 (t). Since k > N + 1, we can deform the

ξ-contour to

Γ′ = Γ− ∪ Γ+

where

Γ− = {Re ξ ≤ F (t)/A, Im ξ = −1/2}
∪{Re ξ = F (t)/A, −F 1

2 (t) ≤ Im ξ ≤ −1/2}
and

Γ+ = {Re ξ ≥ F (t)/A, Im ξ = −F 1
2 (t)}.

If ξ ∈ Γ−, we have

Re (λ− ξ/F
1
2 (t))2 ≥ λ2/C,

so ∫
ξ∈Γ−

∫
λ≥F

1
2 (t)

〈ξ〉−k
G(|Re ξ|) · e−c0(λ−ξ/F

1
2 (t))2V (s)dλdξ ≤ Ce−F (t).

For ξ ∈ Γ+, we have

|e−isξ| = e−F
1
2 (t)/3,

and since the remaining integrand in ‖χ1J(0)‖ is integrable, the contribution to
‖χ1J(0)‖ coming from λ ≥ F

1
2 (t) is bounded by

C(e−F (t) + e−F
1
2 (t)/3)‖u0‖.

The contribution to ‖χ1J(0)‖ coming from λ ≤ −F 1
2 (t) is handled similarly to obtain

the same bound.
For s ∈ [1, t], since k > N + 1, we can deform the ξ-contour in the definition of K

to Im ξ = F
1
2 (t). Then for this range of s,

‖χ1K(s)‖ ≤ C

∫
η

e−(s−2/3)F
1
2 (t) 〈η〉−k

dη‖u0‖,

and hence ∫ t

1

‖χ1K(s)‖ds ≤ CF
1
2 (t)−1e−F

1
2 (t)/3.
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We have yet to estimate
∫ 1

0
‖χ1K(s)‖ds. For this we use Plancherel’s formula to

write (∫ 1

0

‖χ1K(s)‖ds
)2

≤
∫ ∞

−∞
‖χ1K(s)‖2ds

=
∫ ∞

−∞

∥∥∥∥∥(1− iξ)−k̂̃AV (ξ)
∫
|λ|≥F

1
2 (t)

e−c0(λ−ξ/F
1
2 (t))2dλ

∥∥∥∥∥
2

dξ.(3.5)

If we estimate this integral by again considering regions where |ξ| ≤ F (t)/A and
|ξ| ≥ F (t)/A respectively, we see (3.5) is majorized by

C(e−F (t)/C + F (t)−k)
∫ ∞

−∞

∥∥∥̂̃AV (ξ)
∥∥∥2

dξ

= C(e−F (t)/C + F (t)−k)
∫ ∞

−∞
‖ÃV (s)‖2ds

≤ C(e−F (t)/C + F (t)−k)‖u0‖2.

�

To finish the proof of Theorem 3, we combine all of the above estimates to get

‖χ1U(t)‖ ≤ Cmax


F (t)−k/2

e−F
1
2 (t)/3 + e−F (t)/C ,

F
1
2 (t)e−F

1
2 (t)/3,

F
1
2 (t)e−tP (AF (t)) + F

1
2 (t)e−F

1
2 (t)

 ‖u0‖.

Optimizing these estimates with respect to F recovers (3.3), which then yields (3.4).
�
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[15] B. R. Văınberg, Asymptotic methods in equations of mathematical physics, Gordon & Breach
Science Publishers, New York (1989), ISBN 2-88124-664-8. Translated from the Russian by E.

Primrose.
[16] G. Vodev, Local energy decay of solutions to the wave equation for nontrapping metrics, Ark.

Mat. 42 (2004), no. 2, 379–397.

Department of Mathematics, Massachusetts Institute of Technology, 77 Mass. Ave.,

Cambridge, MA 02130, USA
E-mail address: hans@math.mit.edu


