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FIRST CONIVEAU NOTCH OF THE DWORK FAMILY AND ITS
MIRROR

Andre Chatzistamatiou

Abstract. If Xλ is a smooth member of the Dwork family over a perfect field k, and
Yλ is its mirror variety, then the motives of Xλ and Yλ are equal up to effective motives

that are in coniveau ≥ 1. If k is a finite field, this provides a motivic explanation for
Wan’s congruence between the zeta functions of Xλ and Yλ.

Introduction

Let k be a field. We consider the Dwork family of hypersurfaces Xλ in Pn defined
by the equation

n∑
i=0

Xn+1
i + λX0 . . . Xn = 0

with the parameter λ ∈ k. The variety Xλ is a Calabi-Yau manifold when Xλ is
smooth. On each member Xλ there is a group action by the kernel G of the character
µn+1

n+1 −→ µn+1, (ζi) 7→
∏

i ζi, given by

G×Xλ −→ Xλ, (ζ0, . . . , ζn) · (x0 : · · · : xn) = (ζ0x0, . . . , ζnxn).

The quotient Xλ/G is a hypersurface with trivial canonical bundle in a toric Fano
variety and a singular mirror of Xλ [B]. If Yλ is a crepant resolution of Xλ/G then
(Xλ, Yλ) provides an example of a mirror pair. Since the birational geometry of Yλ is
independent of the choice of the resolution a natural question arises: to compare the
birational motives of Xλ and Yλ. For a finite field k = Fq the number of Fqm -rational
points modulo qm is a birational invariant and D. Wan asked to compare the number
of rational points of a mirror pair [W]. In the case of the Dwork family he proved a
mirror congruence formula [W, Theorem 1.1]:

#Xλ(Fqm) = #Yλ(Fqm) mod qm

for every positive integer m. Fu and Wan studied more general mirror pairs which
come from quotient constructions and obtained under certain assumptions on the
action of G (see Theorem 3.7) a congruence formula [FW]:

(0.0.1) #X(Fqm) = #(X/G)(Fqm) mod qm.

The same formula is proved in [BBE, Corollary 6.12] with different assumptions.
The purpose of this paper is twofold. The first theorem compares the motives of

Xλ and Yλ when Xλ is a member of the Dwork family, and provides Wan’s congruence
formula as a consequence. We also explain what can be expected for general quotient
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constructions in §3. In the second theorem we prove a congruence formula for a
quotient singularity X/G and a resolution of singularities Y −→ X/G:

#(X/G)(Fqm) = #Y (Fqm) mod qm.

Thus 0.0.1 is sufficient in order to get #X(Fqm) = #Y (Fqm) modulo qm.
We state now our theorems and several consequences. By a motive we understand

a pair (X, P ) with X a smooth projective variety and P ∈ CHdim X(X × X) ⊗ Q
a projector. The morphisms are correspondences in rational coefficients. Note that
we work with effective motives only. The Lefschetz motive is denoted by Q(−1) :=
(P1, P1× p) with p ∈ P1(k). For Xλ the cycle P = 1/|G|

∑
g∈G Γ(g), where Γ denotes

the graph, is a projector.

Theorem. Let k be a perfect field, and n ≥ 2. We assume that char(k) - n + 1 if
the characteristic of k is positive. Let Xλ be a smooth member of the Dwork family.
Then there are effective motives N,N ′ such that

(Xλ, id) ∼= (Xλ, P )⊕N ⊗Q(−1) and (Yλ, id) ∼= (Xλ, P )⊕N ′ ⊗Q(−1).

For a finite field k = Fq the eigenvalues of the geometric Frobenius acting on
H∗

ét(N ⊗ Q(−1)) = H∗
ét(N) ⊗ Ql(−1) lie in q · Z̄, and by using Grothendieck’s trace

formula this implies Wan’s theorem [W, Theorem 1.1]. For k = C the theorem of
Arapura-Kang on the functoriality of the coniveau filtration N∗ allows us to conclude
that

gr0N∗(H∗(Xλ, Q)) ∼= gr0N∗(H∗(Yλ, Q))
as Hodge structures (see Corollary 2.4).

We now describe our method. We use birational motives in order to reduce to a
statement for zero cycles over C: CH0(Xλ) = P ◦ CH0(Xλ), i.e. P acts as identity.
To prove this we consider, additionally to G, the action of the symmetric group Sn+1

acting via permutation of the homogeneous coordinates. The transpositions act as −1
on H0(Xλ, ωXλ

) and the quotients Xλ/H for suitable subgroups H of G o Sn+1 can
be shown to be Q-Fano varieties. By the theorem of Zhang [Z] these are rationally
chain connected, which yields sufficiently many relations for the zero cycles on Xλ to
prove the claim.

Theorem. Let X be a smooth projective Fq-variety with an action of a finite group
G. Let π : X −→ X/G be the quotient, and f : Y −→ X/G be a birational map, where
Y is a smooth projective variety. Then

#Y (Fq) = #(X/G)(Fq) mod q.

For the proof we use the action of the geometric Frobenius F on étale cohomology.
Suppose that Z ⊂ X/G is the set where f is not an isomorphism, then F acts on the
cohomology with support in Z with eigenvalues in qZ̄. This is proved by reduction to
the case π−1(Z) ⊂ X via a trace map argument. Counting points with Grothendieck’s
trace formula yields the result.
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1. Zero cycles and the first notch of the coniveau

1.1. Notation. Let k be a field. By a motive we understand a pair (X, P ) with X
a smooth projective variety over k and P ∈ Hom(X, X) a projector in the algebra of
correspondences. The correspondences are defined to be

Hom(X, Y ) = ⊕iCHdim Xi(Xi, Y ),

where Xi are the connected components of X. Here and in the following we use Chow
groups with Q coefficients. Note that we work with effective motives only.

We simply write X = (X, idX) for the motive associated with X. The motives
form a category Mk with morphism groups

Hom((X, P ), (Y,Q)) = Q ◦Hom(X, Y ) ◦ P ⊂ Hom(X, Y ).

The sum and the product inM are defined by disjoint union and product:

(X, P )⊕ (Y, Q) = (X ∪ Y, P + Q)

(X, P )⊗ (Y, Q) = (X × Y, P ×Q)

We denote by Q(−1) the Lefschetz motive, i.e. P1 = Q(0) ⊕ Q(−1). We set
Q(a) := Q(−1)⊗−a for a < 0 and Q(0) := Spec(k). If X is connected then

Hom((X, P )⊗Q(a), (Y, Q)⊗Q(b)) = P ◦ CHdim X−a+b(X × Y ) ◦Q.

If M is a motive, we define

CHi(M) := Hom(Q(−i),M), CHi(M) := Hom(M, Q(−i))

for i ≥ 0 and CHi(M) = 0 = CHi(M) for i < 0. We have

(1.1.1) CHi(M ⊗Q(a)) = CHi+a(M), CHi(M ⊗Q(a)) = CHi+a(M)

for all i ≥ 0 and a ≤ 0. Note that for a motive M = (X, P ) with X connected of
dimension n the equality CHi(M) = CHn−i(M) in general doesn’t hold.

If k ⊂ L is an extension of fields then (X, P ) 7→ (X ×k L, P ×k L) defines a functor

(1.1.2) ×k L :Mk −→ML.

The following Proposition is a consequence of the theory of birational motives [KS]
due to B. Kahn and R. Sujatha. We include the proof for the convenience of the
reader.

Proposition 1.2. Let k be a perfect field and X be connected.
(i) A motive M = (X, P ) can be written as M ∼= N ⊗ Q(−1) with some motive

N if and only if CH0(M ×k L) = 0 for some field extension L of the function
field k(X) of X.

(ii) There exists an isomorphism M ∼= N ⊗Q(a) with some motive N and a < 0
if and only if CHi(M ×k L) = 0 for all i < −a and all field extensions k ⊂ L.

Proof. (i) If M ∼= N ⊗ Q(−1) then M ×k L ∼= (N ×k L) ⊗ Q(−1) and therefore
CH0(M ×k L) = 0 by 1.1.1.

Suppose now that CH0(M ×k L) = 0. By the same arguments as in [BS, Proposi-
tion 1] we have

(1.2.1) P ∈ image
(

CHdim D(X ×D)
(id×ı)∗−−−−−→ CHdim X(X ×X)

)
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for some effective (not necessarily irreducible) Divisor ı : D −→ X. For the convenience
of the reader we recall the proof. It is well-known that

CH0(X ×k k(X)) −→ CH0(X ×k L)

is injective, and therefore CH0(M ×k L) = 0 implies CH0(M ×k k(X)) = 0. Let τ be
the composite

τ : CHdim X(X ×X) −→ lim−→
U⊂X

CHdim X(X × U) = CHdim X(X × k(X)),

where the limit is over all open subsets U ⊂ X. It is easy to see that the equality
0 = (P ×k k(X)) ◦ τ(∆X) = τ(P ) holds, which shows 1.2.1.

Let Y −→ D be an alteration such that Y is regular (and thus smooth), and denote
by f : Y −→ D

ı−→ X the composite. We have P = (idX × f)∗(Z) for a suitable
cycle Z ∈ CHdim Y (X × Y ). Define Q ∈ End(Y ) by Q = Z ◦ P ◦ Γ(f)t where
Γ(f)t ∈ CHdim X(Y × X) is the graph of f . The equality Γ(f)t ◦ Z = P implies
Q2 = Q. It is easy to check that

(Y, Q)⊗Q(−1)
P◦Γ(f)t

−−−−−→ (X, P ) (X, P ) Z◦P−−−→ (Y, Q)⊗Q(−1)

are inverse to each other, so that (Y,Q)⊗Q(−1) ∼= (X, P ) as claimed.
(ii) By induction on a and using (i). �

1.3. Motives associated with morphism. Let π : X −→ Z be a finite surjective
morphism of degree d, where X is connected, smooth and projective, but Z may be
singular. The cycle X×Z X ⊂ X×X gives a projector P = 1/d · [X×Z X] ∈ End(X)
and we write (X, π) := (X, P ) for the corresponding motive.

If π : X −→ Y is a surjective morphism between connected, smooth and pro-
jective varieties of the same dimension, then the graph Γ(π) of π gives morphisms
Γ(π) ∈ Hom(Y,X) and Γ(π)t ∈ Hom(X, Y ). Let d be the degree of π, since Γ(π)t ◦
Γ(π) = d · idY we get an isomorphism Y ∼= (X, 1/d · Γ(π) ◦ Γ(π)t). Thus

(Y, Q) ∼= (X, 1/d · Γ(π) ◦Q ◦ Γ(π)t)

for every projector Q.

Proposition 1.4. Let k be a perfect field. In the diagram

X

π

��
Z Y

f
oo

we assume that X, Y are smooth, connected and projective varieties of the same di-
mension, the morphism π is finite and surjective, and f is birational. The following
holds:

(i) The motive (X, π) is a direct summand in Y .
(ii) If X = (X, π)⊕N ′ ⊗Q(−1) for some motive N ′, then

Y ∼= (X, π)⊕N ⊗Q(−1)

for some motive N .
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Proof. (i) We write S for the unique irreducible component of X ×Z Y of dimension
dim X. Choose an alteration g : W −→ S with W regular, W is smooth since k is
perfect.

Via g1 := pr1 ◦ g (resp. g2 := pr2 ◦ g) the motives X, (X, π) (resp. Y ) are direct
summands of W , we write PX , P(X,π), PY for the corresponding projectors. The
inclusion (X, π) factors through Y if and only if P(X,π) ◦ PY = PY ◦ P(X,π) = P(X,π)

in End(W ). We have

deg(g)2 deg(π)2 · PY ◦ P(X,π) = Γ(g2) ◦ Γ(g2)t ◦ Γ(g1) ◦ [X ×Z X] ◦ Γ(g1)t

= deg(g) · Γ(g2) ◦ [S] ◦ [X ×Z X] ◦ Γ(g1)t

= deg(g) · [W ×Z X] ◦ [X ×Z X] ◦ Γ(g1)t

= deg(g) deg(π) · Γ(g1) ◦ [X ×Z X] ◦ [X ×Z X] ◦ Γ(g1)t

= deg(g)2 deg(π)2 · P(X,π)

That P(X,π) ◦ PY = P(X,π) can be proved in the same way. Note that

(X, π)
Γ(g1)−−−→W

Γ(g2)
t

−−−−→ Y

does not depend on the choice of W , i.e. (X, π) is in a natural way a direct summand
in Y. Indeed, if h : W ′ −→W then

Γ(g2 ◦ h)t ◦ Γ(g1 ◦ h) = Γ(g2)t ◦ Γ(h)t ◦ Γ(h) ◦ Γ(g1) = Γ(g2)t ◦ Γ(g1),

and for another choice W ′′ we may find W ′ dominating W and W ′′.
(ii) Write Y ∼= (X, π) ⊕M . Let L ⊃ k be a field extension, we have Y ×k L ∼=

(X×k L, π×k L)⊕M ×k L. The map S×k L −→ X×k L is birational and X is smooth,
thus

CH0(S ×k L) ∼= CH0(X ×k L) ∼= CH0(X ×k L, π ×k L).

The pushforward CH0(S ×k L) −→ CH0(Y ×k L) is surjective, and therefore

CH0(Y ×k L) = CH0(X ×k L, π ×k L)

and CH0(M×k L) = 0. According to Proposition 1.2 this shows M ∼= N⊗Q(−1). �

1.5. Coniveau filtration. Let k = C, we work with the singular cohomology in
rational coefficients Hi(X) := Hi(X, Q) for i ≥ 0. The coniveau filtration N∗Hi(X)
is defined to be

NpHi(X) :=
⋃
S

ker
(
Hi(X) −→ Hi(X − S)

)
,

where S runs through all algebraic subsets (maybe reducible) of codimension ≥ p.
The coniveau filtration is a filtration of Hodge structures and therefore the graduated
pieces Grp

N := NpHi(X)/Np+1Hi(X) inherit a Hodge structure.
By the work of Arapura and Kang [AK, Theorem 1.1] the coniveau filtration is

preserved (up to shift) by pushforwards, exterior products and pullbacks. Using
resolution of singularities it follows that

(1.5.1) Grp
N : (X, P ) 7→ image(P : ⊕iGrp

NHi(X) −→ ⊕iGrp
NHi(X))
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is a functor from motives to Hodge structures (for all p ≥ 0). Note, however, that
there is no Kuenneth formula for Grp

N ; even for p = 0 the surjection⊕
s+t=i

Gr0NHs(X)⊗Gr0NHt(Y ) −→ Gr0NHi(X × Y )

is not injective in general. For the fiber product with P1 we have

NpHi(X × P1) = NpHi(X)⊕Np−1Hi−2(X)(−1)

and therefore

Grp
N (M ⊗Q(−1)) = Grp−1

N (M)(−1) if p > 0

Gr0N (M ⊗Q(−1)) = 0
(1.5.2)

for all motives M .

2. Application: the Dwork family and its mirror

2.1. Let k be a field. We consider the hypersurfaces Xλ in Pn
k defined by the

equation

(2.1.1)
n∑

i=0

Xn+1
i + λ ·X0 · · ·Xn = 0

with λ ∈ k, and we assume that n + 1 is prime to the characteristic of k.
Let G ⊂ (µn+1)n+1/∆(µn+1) (∆(µn) ∼= µn+1 diagonally embedded) be the kernel

of the character (ζ0, . . . , ζn+1) 7→ ζ0 · · · · · ζn+1, then G acts on Xλ in the obvious way.
We denote by π : Xλ −→ Xλ/G the quotient map.

As explained in section 1.3 we get a natural map

CH0(Xλ) −→ CH0(Xλ, π).

Recall that we use the notation from section 1.1. In particular all Chow groups have
coefficients in Q.

Lemma 2.2. Let k be a field. We assume that char(k) - n + 1 if char(k) > 0.
If n ≥ 2 and Xλ is smooth, then the map

CH0(Xλ) −→ CH0(Xλ, π)

is an isomorphism.

Proof. The projector for (Xλ, π) ⊂ Xλ is 1
|G|

∑
g∈G Γ(g). Therefore the statement is

equivalent to ∑
g∈G

g∗(a) = |G| · a

for every a ∈ CH0(Xλ).
1. case: k = C. For n = 2 the quotient map π : Xλ −→ Xλ/G is an isogeny of

elliptic curves, and therefore the statement is true.
Consider µn+1

∼= H ⊂ G with ζ 7→ (ζ, ζ−1, 1, . . . , 1), and τ ∈ Aut(Xλ) defined by
τ∗(X0) = X1, τ

∗(X1) = X0, and τ∗(Xi) = Xi otherwise. We have H o Z/2 · τ ⊂
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Aut(Xλ) and claim that Xλ/(H o Z/2 · τ) is rational. Indeed, for the open set
Uλ = {Xn 6= 0} ⊂ Xλ we compute

Uλ/(H o Z/2τ) ∼= Spec(k[σ1, x2, . . . , xn−1, v]/I) ∼= Spec(k[x2, . . . , xn−1, v]),

with I = (σ1 +xn+1
2 + · · ·+xn+1

n−1 +λ ·v ·x2 . . . xn−1). Here, the coordinates are defined
to be xi := Xi/Xn, v = x0 · x1, and σ1 = xn+1

0 + xn+1
1 . Since rational varieties are

rationally chain connected we conclude that

(2.2.1)
∑

g∈HoZ/2τ

Γ(g) · a = 2(n + 1) · deg(a) · [p]

for every a ∈ CH0(Xλ) and some closed point p ∈ Xλ∩{X0 = X1 = 0} (p exists since
n > 2).

Next, if ζ ∈ µn+1
∼= H then (ζ, τ) ∈ H o Z/2 · τ has order 2, and we consider

the quotient q : Xλ −→ Xλ/(ζ, τ) by the action of (ζ, τ). We claim that Xλ/(ζ, τ) is
rationally chain connected.

The fixpoint set F is
F = {X0 − ζX1 = 0} if n is odd,

F = {X0 − ζX1 = 0} ∪ {[1 : −ζ−1 : 0 : · · · : 0]} if n is even.

Let H = {X0 − ζX1 = 0} ⊂ F be the hyperplane section. One verifies that H is
smooth if and only if Xλ is smooth, and for every point x ∈ H there are coordinates
y, x1, . . . , xn−2 such that y is a local equation for H with (ζ, τ)∗y = −y and the xi

are invariant. Thus y2, x1, . . . , xn−2 are local coordinates for the quotient which is
therefore smooth in the points q(H). So that Xλ/(ζ, τ) is smooth if n is odd, and
Xλ/(ζ, τ) has an isolated quotient singularity in q([1 : −ζ−1 : 0 : · · · : 0]) if n is even.

In both cases, 2KXλ/(ζ,τ) is Cartier and 2KXλ/(ζ,τ)
∼= O(−q(H)) (the isomor-

phism comes from an invariant form in H0(Xλ, ω⊗2
Xλ

) = H0(Xλ, ω⊗2
Xλ

)(ζ,τ)). We have
q∗(O(q(H))) = O(2H) and therefore O(q(H)) is ample. If n is odd then the Theorem
of Campana, Kollár, Miyaoka, Mori ([C],[KMM]) implies that Xλ/(ζ, τ) is rationally
chain connected. If n is even, then Xλ/(ζ, τ) is a Q-Fano variety with log terminal
singularities and we may use the Theorem of Zhang [Z] to prove the claim.

We conclude that

(2.2.2) a + Γ((ζ, τ))(a) = 2 deg(a)[p]

for every a ∈ CH0(Xλ) and p ∈ Xλ ∩ {X0 = X1 = 0}. Using 2.2.1 and 2.2.2 we see∑
g∈H

Γ(g)(a) =
∑

g∈HoZ/2τ

Γ(g)(a)−
∑

ζ∈µn+1

Γ((ζ, τ))(a)

= 2(n + 1) deg(a)[p]−
∑

ζ∈µn+1

(2 deg(a)[p]− a) = (n + 1)a.
(2.2.3)

Of course, for the subgroups µn+1
∼= Hi ⊂ G defined by ζ 7→ (1, . . . , 1, ζ, ζ−1, 1, . . . , 1)

where ζ is put in the i-th position, the same conclusion 2.2.3 holds. Now, the equality∑
g∈G

Γ(g) =

 ∑
g∈H0

Γ(g)

 ◦ · · · ◦
 ∑

g∈Hn−2

Γ(g)


proves the claim.
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2. case: char(k) = 0. It is a well-known fact that if k0 ⊂ k is a subfield and
X = X0 ×k0 k then the pullback map

(2.2.4) CH0(X0) −→ CH0(X)

is injective (without the assumption on char(k)). The variety Xλ is defined over
Q(λ) ⊂ k, and every zero cycle can be defined over a subfield k0 ⊂ k which is finitely
generated over Q(λ). By fixing an embedding σ : k0 −→ C, we reduce to the case
k = C.

3. case: char(k) = p 6= 0. Again, since 2.2.4 is injective, we may assume that k
is algebraically closed. Let W be the Witt vectors of k; W is a complete discrete
valuation ring with residue field k and quotient field K with char(K) = 0. Choose
a lift λ̃ ∈ W of λ, and let Xλ,W ⊂ Pn

W be the variety
∑n

i=0 Xn+1
i + λ̃X0 · · ·Xn = 0.

The specialization map

sp : CH0(Xλ,W ⊗W K) −→ CH0(Xλ)

from [F, §20.3] is surjective, because W is complete (and therefore Xλ,W (W ) −→ Xλ(k)
is surjective). Since char(k) - n + 1 we have

µn+1(k)
∼=←− µn+1(W )

∼=−→ µn+1(K),

and the same statement holds for G. Now the compatibility of sp with pushforwards
[F, Proposition 20.3] proves the claim. �

Theorem 2.3. Let k be a perfect field. We assume char(k) - n + 1 if char(k) > 0.
Let Xλ be a smooth member of the Dwork family for n ≥ 2. If π : Xλ −→ Xλ/G is the
quotient of the G-action (see 2.1) and Yλ −→ Xλ/G is a resolution of singularities,
then

Xλ
∼= (Xλ, π)⊕N ′

λ ⊗Q(−1), Yλ
∼= (Xλ, π)⊕Nλ ⊗Q(−1)

for some motives N ′
λ and Nλ.

Proof. By construction of (Xλ, π) in 1.3 we have Xλ
∼= (Xλ, π)⊕Mλ with some motive

Mλ. In view of Lemma 2.2 we know that

CH0(Xλ ×k L) = CH0((Xλ ×k L, π ×k L)) = CH0((Xλ, π)×k L)

for all field extensions k ⊂ L, and thus CH0(Mλ ×k L) = 0. Proposition 1.2 implies
that Mλ

∼= N ′
λ ⊗Q(−1) for some N ′

λ, and Proposition 1.4 proves the claim. �

Corollary 2.4. Under the assumptions of Theorem 2.3.
(i) If k = C then there is an isomorphism of Hodge structures

Gr0NH∗(Xλ, Q) ∼= Gr0NH∗(Yλ, Q).

(ii) If k = Fq, the finite field with q elements, then for all m ≥ 1 :

#Xλ(Fqm) = #Yλ(Fqm) modulo qm.

Proof. (i) By 1.5.2.
(ii) If N is a motive (over Fq) then the eigenvalues of the Frobenius acting on

H∗
ét(N ⊗ Q(−1)) = H∗

ét(N) ⊗ Ql(−1) lie in q · Z̄. Now the claim follows from
Grothendieck’s trace formula. �
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3. Conjectures

3.1. For k = C the Hodge structure of a variety X can be recovered from the
associated motive. For an effective motive N we know hi,0(N ⊗Q(−1)) = 0 for all i,
so that if

(3.1.1) X ∼= X ′ ⊕N ′ ⊗Q(−1), Y ∼= X ′ ⊕N ⊗Q(−1),

then hi,0(X) = hi,0(Y ).

3.2. Now consider the setting

X

π

��
X/G Yoo

where X is a smooth projective variety with an action of a finite group G, and Y
is a resolution of singularities of the quotient X/G. Since X/G has only quotient
singularities we know that Hi(Y,OY ) = Hi(X/G,OX/G) for all i. The map OX/G −→
π∗OX is split by 1

|G|
∑

g∈G g∗ and we obtain

Hi(X,OX)G = Hi(X/G,OX/G) = Hi(Y,OY ), for all i.

Therefore 3.1.1 can only be expected if the following holds:

(3.2.1) Hi(X,OX) = Hi(X,OX)G.

3.3. On the other hand, the Bloch conjectures on a filtration of the Chow group
of zero cycles which is controlled by the Hodge structure (see [V, §23.2] for a precise
statement) predict

π : CH0(X)
∼=−→ CH0(X/G) = CH0(X, π)

whenever 3.2.1 holds, and thus X ∼= (X, π) ⊕ N ′ ⊗ Q(−1) (in the notation of 1.3).
Now, Proposition 1.4 yields 3.1.1 with X ′ = (X, π). So that the Bloch conjectures
imply the following conjecture.

Conjecture 3.4. Let X be a smooth projective variety over a field k of char(k) = 0,
and let G be a finite group acting on X with Hi(X,OX) = Hi(X,OX)G for all i. If Y
is a resolution of singularities of the quotient π : X −→ X/G, then there are (effective)
motives N,N ′ such that

X ∼= (X, π)⊕N ′ ⊗Q(−1), Y ∼= (X, π)⊕N ⊗Q(−1).

Unfortunately little is known concerning the Bloch conjecture.

3.5. Let us consider monomial deformations of the degree d Fermat hypersurface
in Pn, and G ⊂ µn+1

d . The condition 3.2.1 holds only for d ≤ n + 1 (or G = {1}).
Therefore there is no generalisation of Theorem 2.3 to degree d > n + 1. In the case
d < n + 1, Xλ and Yλ are rationally connected, and thus CH0(Xλ) = Q = CH0(Yλ).
We obtain

Xλ
∼= Q⊕N ′ ⊗Q(−1), Yλ

∼= Q⊕N ⊗Q(−1).
from Proposition 1.2.
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3.6. For a finite field k = Fq we don’t know the correct assumptions for Conjecture
3.4. However, the assertion implies a congruence formula for the number of rational
points:

(3.6.1) #X(Fq) ≡ #Y (Fq) mod q.

The work of Fu and Wan provides a congruence formula for the number of rational
points of X and X/G.

Theorem 3.7 ([FW]). Let X be a smooth projective variety over the finite field Fq.
Suppose X has a smooth projective lifting X over the Witt ring W = W (Fq) such that
the W -modules Hr(X ,Ωs

X/W ) are free. Let G be a finite group of W -automorphisms
acting on X. Suppose G acts trivially on Hi(X ,OX ) for all i. Then for any natural
number k, we have the congruence

#X(Fqk) ≡ #(X/G)(Fqk) (mod qk).

By extending the theory of Witt vector cohomology to singular varieties, Berthelot,
Bloch and Esnault were able to prove the following theorem.

Theorem 3.8 ([BBE, Corollary 6.12]). Let X be a proper scheme over Fq, and G a
finite group acting on X so that each orbit is contained in an affine open subset of
X. If |G| is prime to p, and if the action of G on Hi(X,OX) is trivial for all i, then

#X(Fq) ≡ #(X/G)(Fq) mod q.

In the next section we prove that

#Y (Fq) ≡ #(X/G)(Fq) mod q

if X is a smooth projective variety and Y is a resolution of singularities of X/G. So
that with the assumptions of 3.7 or 3.8 we obtain the congruence formula 3.6.1.

4. Congruence formula

4.1. In this section we fix a finite field k = Fq of characteristic p, and an algebraic
closure k̄ of k. For a separated scheme X of finite type over k we work with the
étale cohomology groups Hi(Xk̄, Q`) (resp. étale cohomology groups with support
Hi

Zk̄
(Xk̄, Q`) for Z ⊂ X) with ` a prime number 6= p, and Xk̄ = X ×k k̄. They

are finite dimensional Q`-vector spaces, and the Galois group Gk = Gal(k̄/k) acts
continuously on them.

We denote by F ∈ Gk the geometric Frobenius, F acts on Hi(Xk̄, Q`) with eigen-
values that are algebraic integers. If X is proper then we have Grothendieck’s trace
formula

#X(Fq) =
∑

i

(−1)iTr(F,Hi(Xk̄, Q`)).
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4.2. Let V be a finite dimensional Q`-vector space, and F : V −→ V a linear map.
Fix an algebraic closure Q̄` of Q`. The vector space V̄ = V ⊗Q`

Q̄` decomposes into
the generalised eigenspaces of F :

V̄ =
⊕
λ∈Q̄`

V̄λ,

i.e. V̄λ is the maximal subspace such that F acts with eigenvalue λ. For every g ∈
GQ`

= Gal(Q̄`/Q`) we get g(V̄λ) = V̄g(λ), and we obtain a decomposition

V =
⊕

λ∈GQ`
\Q̄`

 ⊕
λ′∈GQ`

·λ

V̄λ

GQ`

,

where λ runs through all orbits of GQ`
in Q̄`, and λ′ through all conjugates of λ. We

write

Vλ =

 ⊕
λ′∈GQ`

·λ

V̄λ

GQ`

, V =
⊕

λ∈GQ`
\Q̄`

Vλ.

Let W be another finite dimensional Q`-vector space with a linear operation F : W −→
W . If φ : V −→W is a linear map which commutes with the action of F then

φ(Vλ) ⊂Wλ

for every λ ∈ GQ`
\Q̄`.

Now, we fix an integer q ∈ Z, and we assume that all eigenvalues of F are algebraic
integers, i.e. Vλ = 0 if λ 6∈ GQ`

\Z̄ where Z̄ ⊂ Q̄` is the integral closure of Z in Q̄`. We
note that the subset qZ̄ ⊂ Z̄ ⊂ Q̄` has an induced action by GQ`

, and we define the
slope < 1 resp. slope ≥ 1 part of V to be

V <1 :=
⊕

λ6∈GQ`
\qZ̄

Vλ, V ≥1 :=
⊕

λ∈GQ`
\qZ̄

Vλ.

We obtain a decomposition
V = V <1 ⊕ V ≥1

with F action on V <1 and V ≥1, and the decomposition is functorial for linear maps
that commute with the F -operation.

For étale cohomology and q = |k| we thus get for all i a functorial decomposition

Hi(Xk̄, Q`) = Hi(Xk̄, Q`)<1 ⊕Hi(Xk̄, Q`)≥1,

resp. Hi
Zk̄

(Xk̄, Q`) = Hi
Zk̄

(Xk̄, Q`)<1 ⊕Hi
Zk̄

(Xk̄, Q`)≥1.

Lemma 4.3. If X is smooth and Z ⊂ X is a closed subset of codimension ≥ 1 then

Hi
Zk̄

(Xk̄, Q`)<1 = 0 for all i.

Proof. [E1, Lemma 2.1],[E2, §2.1]. �

In other words all eigenvalues of the Frobenius on Hi
Zk̄

(Xk̄, Q`) lie in q · Z̄. It is
not difficult to extend this lemma to the case when X has quotient singularities.
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Lemma 4.4. Let X be a smooth and quasi-projective variety, and let G be a finite
group acting on X. If π : X −→ X/G is the quotient and Z ⊂ X/G is a closed subset
of codimension ≥ 1 then

Hi
Zk̄

((X/G)k̄, Q`)<1 = 0 for all i.

Proof. We write Y = π−1(Z) which is a closed subset of X of codimension ≥ 1. Note
that (X/G)k̄ = Xk̄/G, i.e. πk̄ : Xk̄ −→ (X/G)k̄ is the quotient for the G action on Xk̄.

The composite of Q` ⊂ πk̄∗Q` with∑
g∈G

g∗ : πk̄∗Q` −→ Q`

is multiplication by |G|. Since

Hi
Zk̄

((X/G)k̄, πk̄∗Q`) = Hi
Y (Xk̄, Q`)

we get
Hi

Zk̄
((X/G)k̄, Q`) ∼= Hi

Y (Xk̄, Q`)G,

and this map is compatible with the Frobenius action. Now, Lemma 4.3 implies the
statement. �

Theorem 4.5. Let X be a smooth projective Fq-variety with an action of a finite
group G. Let π : X −→ X/G be the quotient, and f : Y −→ X/G be a birational map,
where Y is a smooth projective variety. Then

#Y (Fq) = #(X/G)(Fq) mod q.

Proof. Let U be an open (dense) subset of X/G such that f−1(U)
∼=−→ U is an iso-

morphism. Write Z = (X/G)\U and Z ′ = Y \f−1(U). We consider the map of long
exact sequences

// Hi
Z′

k̄

(Yk̄, Q`) // Hi(Yk̄, Q`) // Hi(f−1(U)k̄, Q`) //

// Hi
Zk̄

((X/G)k̄, Q`) //

OO

Hi((X/G)k̄, Q`) //

OO

Hi(Uk̄, Q`)

OO

//

Here all maps commute with the action of the Frobenius. By using Lemma 4.4 we
get

Hi(Yk̄, Q`)<1
∼= // Hi(f−1(U)k̄, Q`)<1

Hi((X/G)k̄, Q`)<1
∼= //

OO

Hi(Uk̄, Q`)<1.

=

OO

This implies
Hi(Yk̄, Q`)<1 ∼= Hi((X/G)k̄, Q`)<1 for all i.

With Grothendieck’s trace formula we obtain

#Y (Fq)−#X/G(Fq) =
∑

i

(−1)i
(
Tr(F,Hi(Yk̄, Q`))≥1 − Tr(F,Hi((X/G)k̄, Q`))≥1

)
.

The right-hand side is a number in Z ∩ qZ̄ = qZ, which proves the congruence. �
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Remark 4.6. It seems that the fibre f−1(x) of a point x ∈ (X/G)(Fq) satisfies the
congruence

#f−1(x)(Fq) = 1 mod q.

Of course this would imply the statement of Theorem 4.5.
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