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ANALYTIFICATION IS THE LIMIT OF ALL TROPICALIZATIONS

Sam Payne

Abstract. We introduce extended tropicalizations for closed subvarieties of toric vari-
eties and show that the analytification of a quasprojective variety over a nonarchimedean

field is naturally homeomorphic to the inverse limit of the tropicalizations of its quasipro-

jective embeddings.

1. Introduction

Let K be an algebraically closed field that is complete with respect to a nontrivial
nonarchimedean valuation ν : K∗ → R. The usual tropicalization associates to a
closed subvariety X in the torus T = (K∗)m the underlying set Trop(X) of a finite
polyhedral complex in Rm of dimension dim X, which is the closure of the image of
X(K) under the coordinatewise valuation map. This construction is functorial; if
ϕ : T → T ′ is a map of tori, then the corresponding linear map Rm → Rn takes
Trop(X) onto Trop(X ′), where X ′ is the closure of ϕ(X).

Many varieties, including affine space Am and all projective varieties, have no
nonconstant invertible regular functions, and hence admit no nonconstant morphisms
to tori. However, all quasiprojective varieties have many closed embeddings in toric
varieties, and toric varieties have a natural stratification by orbit closures of fixed
dimension, whose locally closed pieces are disjoint unions of tori. Here we associate
to a closed subvariety X in a toric variety an extended tropicalization Trop(X) with
a natural stratification whose locally closed pieces are disjoint unions of the usual
tropicalizations of intersections of X with torus orbits. This extended tropicalization
construction is functorial with respect to torus-equivariant morphisms; the inverse
limit of all extended tropicalizations of all embeddings of X in toric varieties may
be thought of, roughly speaking, as an intrinsic tropicalization of X. Here we show
that such inverse limits, for affine and quasiprojective varieties, are naturally home-
omorphic to the nonarchimedean analytification of X, in the sense of Berkovich [3].
The nonarchimedean analytification of an affine variety can be described in terms of
multiplicative seminorms, as follows.

Recall that a multiplicative seminorm | | on a ring A is a map of multiplicative
monoids from A to R≥0 that takes zero to zero and satisfies the triangle inequality
|f + g| ≤ |f |+ |g|. If A is a K-algebra, then we say | | is compatible with ν if

|a| = exp(−ν(a)),

for a ∈ K.
Let X be an affine algebraic variety over K. The analytification Xan of X, in

the sense of Berkovich, is the set of multiplicative seminorms on the coordinate ring
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K[X] that are compatible with ν [2, Remark 3.4.2], equipped with the coarsest topol-
ogy such that, for every f ∈ K[X], the evaluation map sending a seminorm | | to
|f | is continuous [1, Section 2.4]. The purpose of this note is to present a natural
homeomorphism from Xan to the inverse limit of the tropicalizations of all affine em-
beddings of X, which we now describe in more detail, and to prove a similar result
for quasprojective varieties (see Theorem 4.2).

Extend ν to a map from K to the extended real line

R = R ∪∞

taking the zero element of K to ∞. The extended real line has the topology in which
the completed rays (a,∞], for a ∈ R, are a basis of neighborhoods for ∞, so the
map taking a to exp(−a) extends to a homeomorphism from R to R≥0. For positive
integers m, let Am = Spec K[x1, . . . , xm]. Associate to each point y = (y1, . . . , ym)
in Am(K) its tropicalization

Trop(y) = (ν(y1), . . . , ν(ym))

in Rm, and write Trop : Am(K)→ Rm for the extended map taking y to Trop(y).
Now Am carries a natural action of the torus Tm = Spec K[x±1

1 , . . . , x±1
m ], and if

ϕ : Am → An is an equivariant morphism with respect to some group morphism
from Tm to Tn then the tropicalization of ϕ(y) depends only on Trop(y), and the
induced map from Rm to Rn is continuous.

For each affine embedding ι : X ↪→ Am, let the tropicalization of X with respect
to ι be

Trop(X, ι) = {Trop(x) | x ∈ X(K)},

the closure of the image of X(K) in Rm. If  : X ↪→ An is another embedding and
ϕ : Am → An is an equivariant morphism such that  = ϕ ◦ ι, then Trop(ϕ) maps
Trop(X, ι) into Trop(X, ). We write

lim←−Trop(X, ι)

for the inverse limit over all affine embeddings ι of X and all such maps Trop(ϕ), in
the category of topological spaces.

We give a natural homeomorphism from Xan to lim←−Trop(X, ι) as follows. We
follow the usual notational convention, writing x for a point in Xan and | |x for
the corresponding seminorm on K[X]. Let ι : X ↪→ Am be an embedding given
by y 7→ (f1(y), . . . , fm(y)) for some generators f1, . . . , fm of K[X]. Then there is a
natural continuous map πι from Xan to Rm given by

πι(x) = (− log |f1|x, . . . ,− log |fm|x),

where we define − log 0 =∞. Furthermore, if  is an embedding of X in An and ϕ is
an equivariant morphism from Am to An such that  = ϕ◦ ι, then π = Trop(ϕ)◦πι.
Hence there is an induced map lim←−πι from Xan to the inverse limit of the spaces
Rm(ι) over all affine embeddings ι : X ↪→ Am(ι).

Theorem 1.1. Let X be an affine variety over K. Then lim←−πι maps Xan homeo-
morphically onto lim←−Trop(X, ι).
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In particular, Xan is an inverse limit of spaces with stratifications whose locally closed
pieces are finite polyhedral complexes. See Sections 2 and 3 for details on the structure
of Trop(X, ι).

Theorem 1.1 has been known in some form to nonarchimedean analytic geome-
ters, but we have not found this homeomorphism in the literature. Some related
ideas appeared in Berkovich’s work on local contractibility of analytic spaces, in the
language of pluri-stable formal schemes and their skeletons [4, 6], and in Thuillier’s
work on analytifications of toric varieties and toroidal embeddings [26]. Kontsevich
and Soibelman have identified the analytification with an inverse limit of “Clemens
polytopes” of simple normal crossing models over the valuation ring, using theorems
on existence of semistable reductions [20]. Similar inverse limit constructions with
simple normal crossing resolutions appear in work of Boucksom, Favre, and Jonsson
on valuations and singularities in several complex variables [10]. Arguments close
to the spirit of this paper also appear in Gubler’s elegant study of tropicalization of
nonarchimedean analytic spaces [15].

We hope that the elementary algebraic presentation here will help open the ideas
and results of analytic geometry to tropical geometers. Relations to the basic tools of
nonarchimdean analytic geometry, as developed for instance in [9], should be useful
for the development of rigorous algebraic foundations for tropical geometry, and may
help explain recent results on the topology and geometry of tropicalizations of alge-
braic varieties, including theorems on singular cohomology [16, 17] and j-invariants
of elliptic curves [18, 19, 23].

2. Tropicalizations of affine embeddings

We begin by recalling some of the basic definitions and properties of tropicalization.
See [22, Section 2] for details and further references.

The usual tropicalization map Trop takes a point y = (y1, . . . , ym) in the torus
Tm(K) to its vector of valuations

Trop(y) = (ν(y1), . . . , ν(ym))

in Rm. If X is a closed subvariety of Tm, then Trop(X) is defined to be the closure of
the image of X(K) under Trop, which is the underlying set of an integral G-rational
polyhedral complex of pure dimension equal to the dimension of X, where G is the
image of K∗ under ν. In other words, the polyhedral complex can be chosen so that
each polyhedron is cut out by affine linear inequalities with linear coefficients in Z
and constants in G. Since K is algebraically closed, Trop(X(K)) is exactly the set
of G-rational points in Trop(X). Here we use an extended tropicalization map from
Am(K) to Rm, following well-known ideas of Mikhalkin [21], Speyer and Sturmfels
[25], and others. In Section 3, we generalize this extended tropicalization map to
arbitrary toric varieties.

As explained in the introduction, we extend the valuation ν to a map from K to
R by setting ν(0) = ∞. We extend Trop similarly; if y = (y1, . . . , ym) is a point in
Am(K), then we define Trop(y) to be (ν(y1), . . . , ν(ym)) in Rm. Now Rm is not a
linear space in any usual sense. However, Rm is the disjoint union of the linear spaces

RI = {(v1, . . . , vm) ∈ Rm | vi is finite if and only if i ∈ I},
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for I ⊂ {1, . . . ,m}, each of which is locally closed in Rm. Note that RI is in the
closure of RJ if and only if I is a subset of J , and these linear spaces fit together to
give a natural stratification

Rm
0 ⊂ Rm

1 ⊂ · · · ⊂ Rm
m = Rm,

where Rm
i is the union of those RI such that the cardinality of I is at most i. Similarly,

Am is the disjoint union of the locally closed subvarieties

T I = {(y1, . . . , ym) ∈ Am | yi is nonzero if and only if i ∈ I},

and the extended tropicalization map is the disjoint union of the usual tropicalization
maps from T I to RI . If X is a closed subvariety of Am, then these stratifications
induce a natural stratification of Trop(X), which is discussed in more detail and
greater generality in Section 3.

We begin the proof of Theorem 1.1 by showing that Trop(X, ι) is the image of πι.

Lemma 2.1. The natural projection πm from the analytification of Am to Rm is
proper.

Proof. The map πm is a product of m copies of π1, so it will suffice to show that
π1 is proper. Now π1 extends to a continuous map from the analytification of P1

to R ∪ {−∞}, and this map is proper because the analytification of P1 is compact.
Therefore π1 is the restriction of a proper map to the preimage of R, and hence is
proper. �

Proposition 2.2. For any embedding ι : X ↪→ Am, the image of the induced map

πι : Xan −→ Rm

is exactly Trop(X, ι).

Proof. The projection πι is proper since it is the restriction of the proper map πm to
the closed subset Xan, and X(K) is dense in Xan. Therefore, the image πι(Xan) is
exactly the closure of the set of tropicalizations of K-points in X, which is Trop(X, ι).

�

Proof of Theorem 1.1. The topology on lim←−Trop(X, ι) is the coarsest such that the
restrictions of the coordinate projections on Rm(ι) are continuous, for all embeddings ι
of X. It follows that the topology on Xan is the coarsest such that lim←−πι is continuous.
Therefore, to prove that lim←−πι is a homeomorphism onto lim←−Trop(X, ι), it will suffice
to show that it is bijective.

We first show that lim←−πι is injective. Suppose lim←−πι(x) = lim←−πι(x′). We must
show that |f |x = |f |x′ for any f in the coordinate ring K[X]. Choose any generating
set f1, . . . , fm for K[X], with f1 = f , and let ι be the induced embedding of X.
Then πι(x) = πι(x′) by hypothesis, and projection to the first coordinate shows that
|f |x = |f |x′ , as required.

It remains to show that lim←−πι is surjective. Let (yι) be a point in lim←−Trop(X, ι).
Define a point x ∈ Xan, as follows. For each f ∈ K[X], choose a generating set
f1, . . . , fm for K[X] with f1 = f , and let ι : X ↪→ Am be the corresponding embed-
ding. Then define |f |x to be the exponential of the negative of the first coordinate of
yι ∈ Rm. If  is another such embedding, given by a generating set g1, . . . , gn with
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g1 = f then ι× embeds X in Am+n, and there is an automorphism of ι× that trans-
poses the first and (m + 1)th coordinates. Since (yι) is an inverse system, projecting
to Am and An shows that the first coordinates of yι and y are equal, so | |x is well-
defined. It is straightforward to check the multiplicative property |f · g|x = |f |x · |g|x
and the triangle inequality |f + g|x ≤ |f |x + |g|x by considering any affine embedding
of X defined by a generating set for K[X] that contains both f and g. So | |x is a
multiplicative seminorm that is compatible with ν, and the image of x under lim←−πι

is (yι), by construction. Therefore, lim←−πι is surjective, and the theorem follows. �

3. Tropicalizations of toric embeddings

In this section, we generalize the extended tropicalizations for embeddings of a
variety in affine space to embeddings in arbitrary toric varieties. This construction is
applied in Section 4 to study the analytifications of quasiprojective varieties.

Let N ∼= Zn be a lattice, and let ∆ be a fan in NR = N ⊗Z R, with Y = Y (∆)
the corresponding toric variety. Let M = Hom(N, Z) be the lattice dual to N , which
is the lattice of characters of the dense torus T ⊂ Y . See [13] for standard notation
and background for toric varieties. We construct a space Trop(Y ) with a functorial
tropicalization map

Y (K)→ Trop(Y )
as follows. For each cone σ ∈ ∆, let N(σ) = NR/span(σ). As a set, Trop(Y ) is a
disjoint union of linear spaces

Trop(Y ) =
∐
σ∈∆

N(σ).

Now Y is a disjoint union of tori Tσ, where Tσ is the torus whose lattice of one
parameter subgroups is the image of N in N(σ). In other words, Tσ is the unique
quotient of the dense torus T that acts simply transitively on the orbit corresponding
to σ. Then the tropicalization map from Y (K) to Trop(Y ) is the disjoint union of
the ordinary tropicalization maps from Tσ(K) to N(σ).

We now describe the topology on Trop(Y ), considering first the affine case. Let Uσ

be an affine toric variety. Recall that the coordinate ring of Uσ is the semigroup ring
K[Sσ], where Sσ = σ∨∩M is the multiplicative monoid of characters of T that extend
to regular functions on Uσ. The preimage of R under a monoid homomorphism from
Sσ to R is τ⊥ ∩ Sσ, for some face τ � σ. Therefore, the disjoint union

∐
τ�σ N(τ)

is naturally identified with Hom(Sσ,R), where v ∈ N(τ) corresponds to the monoid
homomorphism φv : Sσ → R given by

φv(u) =
{
〈u, v〉 if u ∈ τ⊥

∞ otherwise.

This gives a natural identification

Trop(Uσ) = Hom(Sσ,R),

and we give Trop(Uσ) the induced topology, as a subspace of RSσ .

Remark 3.1. The monoid Sσ is finitely generated. Any choice of generators gives
an embedding of Hom(Sσ,R) in Rm, and Trop(Uσ) carries the subspace topology.
Equivalently, a choice of generators for Sσ gives a closed embedding of Uσ in Am,
and Trop(Uσ) is the tropicalization of this embedding.
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Suppose the toric variety is affine, and hence isomorphic to some Uσ. The tropi-
calization map from Uσ(K) to Trop(Uσ) can be interpreted in terms of these Hom
spaces as follows. The K-points of Uσ correspond naturally and bijectively, through
evaluation maps, to homomorphisms from Sσ to the multiplicative monoid of K. If
y is point in Uσ(K), composing the evaluation map evy with the extended valuation
ν : K → R gives a monoid homomorphism Trop(y) from Sσ to R. The preimage
of R under this map is the intersection of Sσ with τ⊥, where τ is the face of σ cor-
responding to the orbit that contains y, and the induced map (τ⊥ ∩M) → R is the
ordinary tropicalization map for the closed embedding of X ∩Tτ in Tτ . Furthermore,
there is a natural continuous and proper map from Uan

σ to Trop(Uσ) that takes a
point y to the monoid homomorphism u 7→ − log |χu|y.

We now consider the case where the toric variety Y (∆) is not necessarily affine.
If σ ∈ ∆ is a cone and τ is a face of σ, then Hom(Sτ ,R) is canonically identified
with the topological submonoid of Hom(Sσ,R) consisting of those maps for which
the image of τ⊥ ∩M is contained in R, and we define Trop(Y ) to be the topological
space defined by gluing along these identifications. The natural maps from Uan

σ to
Trop(Uσ) glue together to give a continuous and proper map from Y an to Trop(Y ).

Let m be the dimension of Y . There is also a natural stratification

Trop(Y )0 ⊂ · · · ⊂ Trop(Y )m = Trop(Y ),

where Trop(Y )i is the union of the vector spaces N(σ) of dimension at most i, which
are exactly those N(σ) such that dim(σ) ≥ m− i.

Example 3.2. Suppose X = Am is affine space. Then Trop(X) = Hom(Nm,R),
by definition, which is naturally identified with Rm. In the stratification above,
Trop(X)i is the union of the coordinate subspaces RI = Hom(NI ,R) for subsets
I ⊂ {1, . . . ,m} of cardinality at most i. In particular, this definition of tropicalization
of toric varieties agrees with the definition of tropicalization of affine space in Section 2.

Remark 3.3. Roughly speaking, for any τ � σ, the tropicalization map may be
thought of as a generalized moment map that is independent of polarization, with a
stratification that corresponds to the stratification of a polytope P by the unions of
its faces of fixed dimension. Suppose Y is projective and L is an ample T -equivariant
line bundle on Y . Then for each maximal cone σ ∈ ∆ there is a unique character
uσ ∈ M such that L|Uσ

is equivariantly isomorphic to O(div χuσ ). The algebraic
moment map µ from Y (K) to MR sends a point y in the dense torus T to

µ(y) =
∑

σ |χuσ (y)| · uσ∑
σ |χuσ (y)|

.

Then µ(y) depends only on Trop(y), and µ extends to a homeomorphism from
Trop(Y ) onto the moment polytope P = conv{uσ}, and Trop(Y )i is exactly the
preimage of the union of the i-dimensional faces of P . Compactifications of amoebas
in moment polytopes were introduced in [14], and have been studied in many sub-
sequent papers. The extended tropicalization map is more convenient than moment
maps in some contexts due to its covariant functorial properties, independence of
polarization, and the integral structures on the vector spaces N(σ).

Remark 3.4. It is sometimes helpful to think of the topology on Trop(Y ) locally
near a point v in N(σ). Roughly speaking, a sequence of points in N(τ) converges
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to v if their projected images converge to v in N(σ) and they move toward infinity
in the cone of directions specified by σ. More precisely, the topology on Trop(Y ) is
determined by the following basis. Choose a finite set of generators u1, . . . , ur for the
monoid Sσ, and note that ui can be evaluated on N(τ) provided that ui is in τ⊥. For
each open set U ⊂ N(σ) and positive number n, let C(U, n) be the truncated cylinder

C(U, n) =
⋃
τ�σ

{
w ∈ N(τ) | π(w) ∈ U and 〈ui, w〉 > n for ui ∈ τ⊥ r σ⊥

}
,

where π : N(τ) → N(σ) is the canonical projection. We claim that these truncated
cylinders are a basis for the topology on Trop(Y ). To see this, note that Trop(Uσ)
is an open neighborhood of any point v in N(σ). The choice of generators for Sσ

determines an embedding of Trop(Uσ) in Rr, and the ith coordinate of v is finite
if and only if ui is in σ⊥. Then a subset S of Trop(Y ) is a neighborhood of v if
and only if it contains every point whose ith coordinate is sufficiently close to the
ith coordinate of v, for ui in σ⊥, and whose other coordinates are sufficiently large.
This is the case if and only if S contains some truncated cylinder C(U, n), where U
contains v.

Remark 3.5. One can also describe the topological space Trop(Y ) globally, as a
quotient of an open subset of Rm, by tropicalizing Cox’s construction of toric varieties
as quotients of open subsets of affine spaces [11], as follows. First, consider the case
where the rays of ∆ span NR. Let ∆(1) be the set of rays of ∆, and let σ(1) be
the subset consisting of rays of σ, for each cone σ ∈ ∆. Let ∆′ be the fan in R∆(1)

whose maximal cones are of the form Rσ(1)
≥0 , for maximal cones σ in ∆, with Y ′ the

corresponding invariant open subvariety of A∆(1). The natural projection R∆(1) →
NR taking a standard basis vector to the primitive generator of the corresponding ray
induces a map of toric varieties ϕ : Y ′ → Y . We claim that Trop(ϕ) is surjective and
Trop(Y ) carries the quotient topology. Say v is a point in N(σ) ⊂ Trop(Y ). Then
R∆(1)rσ(1) surjects onto N(σ), since the rays of ∆ span NR. It remains to show that
Trop(Y ) carries the quotient topology.

Let S be a subset of Trop(Y ) containing v such that ϕ−1(S) is open, and let
v′ be a preimage of v in R∆(1)rσ(1). To show that Trop(Y ) carries the quotient
topology, we must show that S is a neighborhood of v. Now ϕ−1(S) contains a
basic open neighborhood C(U ′, n′) of v′. Linear projection maps U ′ onto an open
subset U ⊂ N(σ), and S contains C(U, n), for n sufficiently large. Therefore S is a
neighborhood of v, as required.

If the rays of ∆ do not span NR, then let ∆0 be the fan given by ∆ in the
span of ∆(1), with Y0 the corresponding toric variety. Any choice of splitting NR ∼=
span(∆(1))×Rk induces identifications Y ∼= Y0×Gk

m and Trop(Y ) ∼= Trop(Y0)×Rk,
making Trop(Y ) a quotient of an open subset of R∆(1) × Rk.

Tropicalization of toric varieties is functorial with respect to arbitrary equivariant
morphisms, such as inclusions of invariant subvarieties. To see this functoriality, it
is convenient to work with extended monoids Sσ = Sσ ∪ ∞, where u + ∞ = ∞
for all u, and pointed monoid homomorphisms that take ∞ to ∞. Any monoid
homomorphism from Sσ to R extends uniquely to a pointed morphism on Sσ, so there
is a natural identification Hom(Sσ,R) = Trop(Uσ). Suppose Uτ is an affine toric
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variety with dense torus T ′, and M ′ is the lattice of characters of T ′. If ϕ : Uτ → Uσ

is an equivariant morphism then pulling back regular functions gives a monoid map
ϕ∗ : Sσ → Sτ , where ϕ∗(u) is defined to be ∞ if the pullback of the corresponding
regular function vanishes on Uτ . This map of monoids induces a continuous map of
Hom spaces

Trop(ϕ) : Trop(Uτ )→ Trop(Uσ),
taking a monoid homomorphism φv : Sτ → R to φv ◦ ϕ∗. Now, if ϕ′ : Y ′ → Y is
an equivariant map of toric varieties, then each invariant affine open subvariety of Y ′

maps into some invariant affine open subvariety of Y , and the induced tropicalization
maps for the restrictions of ϕ′ to invariant affine opens glue together to give a canonical
map from Trop(Y ′) to Trop(Y ).

We now generalize this tropicalization construction to closed subvarieties of toric
varieties.

Definition 3.6. Let X be a variety over K, and let ι : X ↪→ Y (∆) be a closed
embedding. Then the tropicalization Trop(X, ι) is the closure of the image of X(K)
in Trop(Y ).

When the embedding is fixed, write simply Trop(X) for the tropicalization of X ⊂ Y .
Basic results about tropicalizations of subvarieties of tori extend in a straightfor-

ward way to these extended tropicalizations of subvarieties of toric varieties. For
instance, if  : X → Y (∆) is a toric embedding, then Xan is covered by the analytifi-
cations of the embedded affine spaces X ∩Uσ, and the corresponding projections glue
to give a proper continuous map π : Xan → Trop(X, ). We now generalize the basic
results linking tropicalization to initial forms and degenerations to these extended
tropicalizations.

Let R be the valuation ring in K, with maximal ideal m and residue field k = R/m.
Recall that to each point v ∈ N(σ) we associate the tilted group ring R[M ]v, whose
elements are Laurent polynomials f = a1x

u1 + · · ·+ arx
ur such that ν(ai) ≥ 〈ui, v〉.

The initial form inv(f) is the image of f in k[M ]v = R[M ]v⊗R k. If X ⊂ T is a closed
subvariety, then the tropical degeneration Xv is the k-subvariety of T cut out by the
initial forms of all Laurent polynomials in I(X)∩R[M ]v. See [22] for further details.

Proposition 3.7. Let σ be a cone in ∆, and let v be a G-rational point in N(σ).
Then the following are equivalent:

(1) The extended tropicalization Trop(X) contains v.
(2) The ordinary tropicalization Trop(X ∩ Tσ) contains v.
(3) There is a point x ∈ X(K) such that Trop(x) = v.
(4) The tropical degeneration (X ∩ Tσ)v is nonempty.
(5) For every f in I(X ∩Tσ)∩R[M ]v, the initial form inv(f) is not a monomial.

Proof. The equivalence of (2)–(5) is standard; see [22] and [24]. And (3) implies (1)
by definition. We now show that (1) implies (2).

Suppose v is in the extended tropicalization Trop(X). The projection from Xan to
Trop(X) is proper with dense image, and hence surjective, so we can choose a point
x in Xan whose image in Trop(X) is equal to v. Then the multiplicative seminorm
|f |x vanishes for any function f ∈ K[X ∩ Uσ] that vanishes on X ∩ Tσ. So x is in
the analytification (X ∩ Tσ)an ⊂ Xan. Therefore, v is in the image of (X ∩ Tσ)an and
hence must be in Trop(X ∩ Tσ), as required. �
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Corollary 3.8. If V is a T -invariant subvariety of Y , then

Trop(X) ∩Trop(V ) = Trop(X ∩ V ).

4. Analytification of quasiprojective varieties

Let X be a quasiprojective variety over K.

Definition 4.1. A quasiprojective toric embedding ι : X ↪→ Y is a closed embedding
of X in a quasiprojective toric variety.

A morphism of quasiprojective toric embeddings from ι to  : X ↪→ Y ′ is an equivariant
map ϕ : Y ′ → Y such that ϕ ◦  = ι. Such a morphism induces a natural map of
tropicalizations

Trop(ϕ) : Trop(X, )→ Trop(X, ι),

making Trop a functor from toric embeddings to topological spaces. Recall that there
are natural proper and continuous maps πι : Xan → Trop(X, ι), compatible with the
tropicalizations of equivariant morphisms.

Theorem 4.2. Let X be a quasiprojective variety over K. Then lim←−πι maps Xan

homeomorphically onto lim←−Trop(X, ι), where the limit is taken over all quasiprojec-
tive toric embeddings of X.

The proof of Theorem 4.2 is similar to the proof of Theorem 1.1, given the follow-
ing lemma which says, roughly speaking, that a quasiprojective variety has enough
quasiprojective toric embeddings.

Lemma 4.3. Let X be a projective variety, with V ⊂ X a closed subscheme and
U ⊂ X the complement of an effective ample divisor that contains V . Then, for any
generators f1, . . . , fr for K[U ], there is a closed embedding ι : X ↪→ Pm such that

(1) The open subvariety U is the preimage of Am.
(2) The function fi is the pullback of xi ∈ K[Am].
(3) The closed subvariety V is the preimage of a coordinate linear subspace.

Proof. Let D be an effective ample divisor whose support is exactly X r U . Choose
a sufficiently large integer n such that nD is very ample, the rational functions
f1, . . . , fr, extend to regular sections of O(nD), and IV ⊗O(nD) is globally generated,
where IV is the ideal sheaf of V . Let ι : X ↪→ Pm be the embedding corresponding to
a generating set {s0, . . . , sm} for the space of global sections of O(kD), where s0 = 1,
si = fi for 1 ≤ i ≤ r, and some subset of the remaining sections generate IV ⊗O(nD).
Then U is the preimage of the invariant affine open Am where s0 does not vanish, fi

is the pullback of xi, and V is the preimage of the coordinate subspace cut out by
the si that generate IV ⊗O(nD), and the lemma follows. �

Note that if ι is an embedding of X in which V is the preimage of a coordinate linear
subspace, then the complements of the coordinate hyperplanes containing V are an
affine open cover of the quasiprojective variety X r V . We use this cover in the
following proof of Theorem 4.2.
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Proof of Theorem 4.2. Let X be a quasiprojective variety. Choose a projective com-
pactification X ⊃ X, and let V = X r X. Let U ⊂ X be the complement of an
effective ample divisor on X that contains V .

By Lemma 4.3, there is a closed embedding ι : X → Pm such that U is the
preimage of Am and V is the preimage of a coordinate subspace. Then ι restricts to
a closed embedding of X in an invariant open Y ⊂ Pm that contains Am. We claim
that πι maps Uan bijectively onto the preimage U of Trop(U, ι) in lim←−Trop(X, ).
The theorem follows from this claim, as we now explain. First, the topology on
the analytification is the coarsest such that lim←−π is continuous, so it will suffice
to show that Xan maps bijectively onto lim←−Trop(X, ). To see surjectivity, we can
replace U by the complement U0 of any coordinate hyperplane containing V , and the
tropicalizations of these affine open subsets cover Trop(X, ι). Hence if Uan surjects
onto U then Xan surjects onto lim←−Trop(X, ). Similarly, to see injectivity, if any
two points in Xan have the same image in lim←−Trop(X, ) then they have the same
image in the tropicalization of one of these affine open subsets U0. Then both of these
points are in Uan

0 and hence they must be equal. It remains to show that Uan maps
bijectively onto U .

First, we show that Uan injects into U . Let x and x′ be points in Uan with the
same image in U . By Lemma 4.3, for any function f in the coordinate ring K[U ]
we can choose a toric embedding ι of X such that U is the preimage of Am and f
is the pullback of a coordinate linear function. Then |f |x depends only on πι(x). In
particular, if πι(x) = πι(x′) for every ι, then |f |x = |f |x′ for every f ∈ K[U ], and
hence x = x′. So Uan injects into U , as claimed.

Finally, we show that Uan surjects onto U . Let y be a point in U . For any
f ∈ K[U ], choose an embedding of X in an invariant open subset of Pm such that
U is the preimage of Am and f is the pullback of x1. There is a point x in Uan

defined by setting |f |x equal to the exponential of the negative of the first coordinate
of yι ∈ Rm. For any two such embeddings ι : X ↪→ Y and  : X ↪→ Y ′, we can
take the product ι ×  : X → Y × Y ′, and yι× projects to both yι and y in the
inverse system, and it follows that | |x is well-defined. By construction, x is a point
in Uan that maps to y. Therefore, Uan surjects onto U as claimed, and the theorem
follows. �

5. Fields with trivial valuation

We now consider tropicalizations and analytifications for varieties over an alge-
braically closed field k equipped with the trivial valuation ν(k∗) ≡ 0. The geometry
in this case remains interesting; for instance, if k = C then the singular cohomology
of the analytification of a complex variety X with respect to the trivial valuation on
C is naturally isomorphic to the weight zero part of the mixed Hodge structure on
H∗(X(C), Q) [5, Theorem 1.1(c)]. The techniques and results for fields with nontriv-
ial nonarchimedean valuations extend in a straightforward to fields with the trivial
valuation, as follows.

Let k be an algebraically closed field equipped with the trivial valuation, and let X
be a closed subvariety of the torus Tm over k. Let v be a point in Rm. By definition,
the tilted group ring k[T ]v consists of Laurent polynomials f = a1x

u1 + · · · + arx
ur
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with ai ∈ k∗ such that 〈ui, v〉 is nonnegative for all i, and the initial form inv(f) is
the sum of those aix

ui such that 〈ui, v〉 is zero, for f ∈ k[T ]v.
Suppose v is rational and nonzero, and ρ is the ray spanned by v. Then k[T ]v is

the coordinate ring of the affine toric variety Uρ corresponding to ρ. If f is in k[T ]v,
then inv(f) is canonically identified with the restriction of f to the invariant divisor
Dρ in Uρ. In particular, by the Nullstellensatz, if X is a closed subvariety of T then
the tropical degeneration Xv, which is cut out by the initial forms of all functions f
in I(X) ∩ k[T ]v, is nonempty if and only if the closure of X in Uρ meets Dρ.

Definition 5.1. The tropicalization Trop(X) is the set of v in NR such that Xv is
nonempty.

This definition agrees with the definition of tropicalization over fields with nontrivial
valuation, by Proposition 3.7, and is the underlying set of a rational fan [8]. The
standard argument shows that Trop(X) is the set of v such that inv(f) is not a
monomial for every f in the ideal of X. Just as for affine varieties over fields with
nontrivial valuations, the analytification Xan is the set of multiplicative seminorms
on the coordinate ring k[X] that are uniformly equal to one on k∗, equipped with the
coarsest topology such that x 7→ |f |x is continuous for every f ∈ k[X]. Evaluation
of seminorms on the restrictions of characters induces a proper continuous map π :
Xan → NR.

Proposition 5.2. The image π(Xan) is exactly Trop(X).

Proof. Let x be a point in the analytification Xan. The usual proof of the ultrametric
inequality for nonarchimedean norms shows that |f + g|x is equal to the maximum of
|f |x and |g|x if |f |x 6= |g|x. Now, suppose f = a1x

u1 + · · ·+ arx
ur is in I(X)∩ k[T ]v.

Since f is in the ideal of X, |f |x is zero, but the seminorm of each monomial is
positive, so there must be at least two monomials in f of maximal norm. It follows
that the initial form inπ(x)(f) is not a monomial, and hence π(x) is in Trop(X).

It remains to show that Trop(X) is contained in the image of π. Since π is proper
and its image is invariant under multiplication by positive scalars, and since Trop(X)
is the underlying set of a rational fan, it will suffice to show that any rational ray in
Trop(X) is spanned by a point in the image of π. Let ρ be a rational ray in Trop(X).
Then the closure of X in Uρ intersects Dρ. Let ν be a valuation centered in X ∩Dρ.
The order of vanishing of a monomial xu along Dρ is 〈u, vρ〉, so ν(xu) is positive if
and only if 〈u, vρ〉 is positive. It follows that the image of the multiplicative seminorm
exp(−ν) ∈ Xan spans ρ, as required. �

We now consider extended tropicalizations of subvarieties of toric varieties over
fields with the trivial valuation.

Definition 5.3. Let ι : X ↪→ Y (∆) be a closed embedding in a toric variety over k.
Then the extended tropicalization Trop(X, ι) is the disjoint union of the tropicaliza-
tions Trop(X ∩ Tσ), for σ ∈ ∆.

Let K be an algebraically closed extension of k which is complete with respect to an
extension of the trivial valuation on k. Then, by Propositions 3.7 and 6.1, Trop(X, ι)
is equal to the extended tropicalization of the base change Trop(XK , ιK). If X is not
necessarily affine, the analytification Xan is constructed by gluing the analytifications
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of its affine open subvarieties in the canonical way, and there is a natural continuous
and proper map πι : Xan → Trop(X, ι). In the affine case, this projection takes
x ∈ Uan

σ to the monoid homomorphism [u 7→ − log |χu|x], for u in σ∨ ∩M .

Theorem 5.4. Let X be an affine (resp. quasiprojective) variety over k. Then lim←−πι

maps Xan homeomorphically onto lim←−Trop(X, ι), where the limit is taken over all
affine embeddings ι : X ↪→ Am (resp. quasiprojective toric embeddings ι : X ↪→
Y (∆)).

Proof. Similar to the proofs of Theorems 1.1 and 4.2, since the image of Xan in Rm

(resp. Trop(Y )) is exactly Trop(X, ι). �

6. Appendix: Invariance of tropicalization under field extensions

Here we show that tropicalization is invariant under extensions of valued fields.
This is straightforward in the case where the base field has a nontrivial valuation,
but we have not been able to find a reference in the case where the base field has the
trivial valuation. Here we give a brief unified treatment of the general case. In this
appendix, since we consider only tropicalizations and not analytifications, we do not
require the fields k and K to be complete with respect to their valuations.

Let k be an algebraically closed field with a valuation that may or may not be
trivial. Let K be an algebraically closed extension of k with a valuation that extends
the given valuation on k.

Proposition 6.1. Let X be a subvariety of T over k. Then Trop(X) is equal to
Trop(XK).

It is straightforward to see that Trop(XK) is contained in Trop(X), as follows. Sup-
pose v is in Trop(XK). Then the initial form inv(f) is not a monomial, for every
function f in the ideal of XK . Now the ideal of X is contained in the ideal of XK ,
so it follows that v is in Trop(X). If the valuation on k is nontrivial, then the reverse
containment is also easy, since the image of X(k) in NR is contained in the image of
X(K).

We now show the reverse containment in the hypersurface case.

Lemma 6.2. Let X be a hypersurface in T over k. Then Trop(X) is contained in
Trop(XK).

Proof. Since Trop(XK′) is contained in Trop(XK) for any extension of valued fields
K ′ over K, we may assume that the valuation on K is nontrivial. Let f = a1x

u1 +
· · · + arx

ur be a defining equation for X with coefficients in k. Then Trop(X) is
contained in the corner locus of the piecewise linear function Ψf on NR defined by

Ψf (w) = min{〈u1, w〉+ ν(a1), . . . , 〈ur, w〉+ ν(ar)};

if v is not in this corner locus and Ψf (v) is equal to 〈ui, v〉 + ν(ai), then the initial

form of another defining equation inv

(
f

aixui

)
is equal to one, so v is not in Trop(X).

Standard arguments show that the image of X(K) is dense in the corner locus of Ψf

[12, Theorem 2.1.1], so this corner locus is contained in Trop(XK), and the lemma
follows. �
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We now prove Proposition 6.1 by reducing to the hypersurface case, using a general
projection of tori in the sense of [22, Section 5]; a similar method of reduction was
used by Bieri and Groves [7].

Proof of Proposition 6.1. Both Trop(X) and Trop(XK) are underlying sets of finite
polyhedral complexes of pure dimension dim X. After choosing a polyhedral complex
on each and subdividing, we may assume that Trop(XK) is a subcomplex of Trop(X).
Then we can choose a general rational projection φ : NR → N ′

R to a vector space of
dimension dim X + 1 corresponding to a surjection of lattices N → N ′ such that the
image of each maximal cell in Trop(X) has codimension one in N ′

R and the images of
any two distinct cells intersect in codimension at least two. Since Trop(X) contains
Trop(XK), as noted above, it follows that Trop(X) is equal to Trop(XK) if and only
if φ(Trop(X)) is contained in φ(Trop(XK)).

The map of vector spaces φ corresponds to a split surjection of tori ϕ : T → T ′, and
φ(Trop(XK)) is equal to Trop(X ′), where X ′ is the closure of ϕ(X) [22, Corollary 4.5].
Now φ(Trop(X)) is contained in Trop(X ′), since inv(ϕ∗f) is equal to inφ(v)(f), for
f ∈ k[T ′] and v ∈ NR. And X ′ is a hypersurface, so Trop(X ′) is equal to Trop(X ′

K), by
Lemma 6.2. It follows that φ(Trop(X)) is contained in φ(Trop(XK)), as required. �
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[22] S. Payne, Fibers of tropicalization (2007). To appear in Math. Z., arXiv:0705.1732v1.

[23] D. Speyer, Uniformizing tropical curves I: genus zero and one (2007). Preprint,
arXiv:0711.2677v1.

[24] D. Speyer and B. Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411.

[25] , Tropical mathematics (2004). Preprint, arXiv:math/0408099v1.
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