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ON CERTAIN ENUMERATION PROBLEMS IN
TWO-DIMENSIONAL TOPOLOGY

Vladimir Turaev

Abstract. We announce a solution to several enumeration problems in topology of

surfaces. This includes an enumeration of homotopy classes of sections of locally trivial
fiber bundles over surfaces and a computation of non-abelian 1-cohomology of surfaces.

Introduction

We announce a solution to several enumeration problems in two-dimensional topol-
ogy. One problem deals with an arbitrary locally trivial fiber bundle p : E → W over
a closed connected oriented surface W . The bundle p may have sections, i.e., contin-
uous mappings s : W → E such that ps = idW . If the fiber F of p is path-connected
and the group π1(F ) is finite, then the number of sections of p, considered up to
homotopy and a natural action of π2(F ), is finite. We give a formula computing
this number in terms of certain 2-dimensional cohomology classes associated with
irreducible complex linear representations of π1(F ). This yields, in particular, the
following solution to the existence problem for sections: the bundle p has a section
if and only if the integer number produced by our formula is non-zero. Note that
the integer in question is always non-negative and is computable provided one has
an efficient description of both the set of equivalence classes of irreducible represen-
tations of π1(F ) and the action of π1(W ) on this set determined by p. As a specific
application, note the following theorem: in the case where the group π1(F ) is abelian
(and finite), the bundle p : E → W has a section if and only if the induced homomor-
phism p∗ : H2(E) → H2(W ) is surjective. In particular, if p : E → W is a principal
H-bundle, where H is a connected topological group with finite fundamental group,
then p is trivial if and only if p∗(H2(E)) = H2(W ).

The enumeration problem for the sections of E → W can be reformulated in terms
of sections of the induced homomorphism π1(E) → π1(W ). This generalizes to the
following question. Given a group epimorphism G′ → G with finite kernel Γ and
a homomorphism g : π1(W ) → G, calculate the number of lifts of g to G′. The
finiteness of Γ ensures that this number is finite (possibly, zero). Our main result
computes this number in terms of 2-dimensional cohomology classes associated with
irreducible representations of Γ. This encompasses the problem of finding whether or
not g lifts to G′.

Other enumeration problems considered here deal with counting principal fiber
bundles over W and with a computation of non-abelian 1-cohomology of W .

Throughout this paper, we fix two (discrete) groups G, G′ and an epimorphism
q : G′ → G with finite kernel Γ = Ker q. The symbol W denotes a closed connected
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oriented surface of positive genus with fundamental group π. My work on this paper
was partially supported by the NSF grant DMS-0707078.

1. Enumeration of homomorphisms

By a (linear) representation of Γ, we mean a homomorphism Γ → GLn(C) with
n = 1, 2, . . .. Two representations ρ : Γ → GLn(C) and ρ′ : Γ → GLn′(C) are
equivalent if n = n′ and there is a matrix M ∈ GLn(C) such that ρ′(h) = M−1ρ(h)M
for all h ∈ Γ. A representation Γ → GLn(C) is irreducible if the only linear subspaces
of Cn preserved under the induced action of Γ are 0 and Cn. The set of equivalence
classes of irreducible representations of Γ is denoted Irr(Γ).

Since Γ = Ker q is a normal subgroup of G′, the group G′ acts on Γ by conjugations.
The induced action of G′ on Irr(Γ) is trivial on Γ ⊂ G′ and therefore induces an action
of G = G′/Γ on Irr(Γ). Given an irreducible representation ρ : Γ → GLn(C), let
Gρ ⊂ G be the stabilizer of the equivalence class of ρ under this action of G on Irr(Γ).
Thus, Gρ consists of all α ∈ G such that for some α̃ ∈ q−1(α), the representation
Γ → GLn(C), h 7→ ρ(α̃−1 h α̃) is equivalent to ρ. Note that if the latter condition
holds for some α̃ ∈ q−1(α), then it holds for all α̃ ∈ q−1(α). The subgroup Gρ of G
depends only on the equivalence class of ρ.

The representation ρ determines a cohomology class ζρ ∈ H2(Gρ; C∗) as follows.
For each α ∈ Gρ, pick α̃ ∈ q−1(α) ⊂ G′. Then there is a matrix Mα ∈ GLn(C) such
that

ρ(α̃−1 h α̃) = M−1
α ρ(h) Mα

for all h ∈ Γ. The irreducibility of ρ implies that Mα is unique up to multiplication by
an element of C∗; we fix Mα for all α ∈ Gρ. For any α, β ∈ Gρ, we have α̃β

−1
α̃ β̃ ∈ Γ.

It is easy to check that there is a unique ζα,β ∈ C∗ such that

(1.1) ζα,β Mα Mβ = Mαβ ρ(α̃β
−1

α̃ β̃) .

The family {ζα,β}α,β turns out to be a 2-cocycle on Gρ. Its cohomology class ζρ ∈
H2(Gρ; C∗) depends only on the equivalence class of ρ and not on the choice of {Mα}α

or {α̃}α. (The definitions of Gρ and ζρ do not use the finiteness of Γ.)
Given a homomorphism g : π = π1(W ) → G, a lift of g to G′ is a homomorphism

g′ : π → G′ such that qg′ = g. The set (possibly empty) of all such lifts is denoted
by Homg(π,G′). Since π is finitely generated and Γ is finite, the set Homg(π,G′) is
finite. The number of its elements is bounded from above by |Γ|b, where b is the first
Betti number of W and the vertical bars stand for the cardinality of a set. We now
compute |Homg(π,G′)| in terms of representations of Γ. Note that the finiteness of Γ
guarantees that the set Irr(Γ) is finite.

Theorem 1.1. Let g : π = π1(W ) → G be a group homomorphism. Then

(1.2) |Homg(π,G′)| = |Γ|
∑

ρ∈Irr(Γ), Gρ⊃ g(π)

(
|Γ|

dim ρ

)−χ(W )

g∗(ζρ)([W ]),

where ρ ranges over the equivalence classes of irreducible (complex) representations of
Γ such that Gρ ⊃ g(π), and g∗(ζρ)([W ]) ∈ C∗ is the evaluation of g∗(ζρ) ∈ H2(π; C∗)
on the fundamental class [W ] ∈ H2(W ) = H2(π) of W .
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Here and below the unspecified group of coefficients in homology is Z. The coho-
mology class g∗(ζρ) is well-defined because g(π) ⊂ Gρ. The addition on the right-hand
side of (1.2) is the addition in C. The sum on the right-hand side of (1.2) is always
non-empty because the trivial one-dimensional representation ρ0 : Γ → {1} ∈ C∗ =
GL1(C) satisfies Gρ0 = G ⊃ g(π) and g∗(ζρ0)([W ]) = 1.

Note a few cases where Formula (1.2) is known or may be directly deduced from
the known results. If g = 1, then Homg(π,G′) = Hom(π,Γ). In this case Gρ ⊃ g(π)
and g∗(ζρ)([W ]) = 1 for all irreducible representations ρ of Γ. Formula (1.2) is then
equivalent to the well-known Frobenius-Mednykh formula

(1.3) |Hom(π,Γ)| = |Γ|
∑

ρ∈Irr(Γ)

(
|Γ|

dim ρ

)−χ(W )

.

For W = S2, this formula is equivalent to the classical equality
∑

ρ(dim ρ)2 = |Γ|.
For W = S1 × S1, Formula (1.3) was first established by Frobenius [Fr]. The general
case of (1.3) is due to Mednykh [Me], see also [FQ] and [Jo].

If G′ = Γ × G and q : G′ → G is the projection, then (1.2) directly follows from
(1.3) since in this case Homg(π,G′) = Hom(π,Γ) and ζρ is trivial for all ρ.

If Γ = Ker q is central in G′, then Formula (1.2) is essentially obvious. In this case
Gρ = G and dim ρ = 1 for all ρ, while ζρ is the image of the standard cohomology
class ζ ∈ H2(G; Γ) determined by q under the coefficient homomorphism H2(G; Γ) →
H2(G; C∗) induced by ρ : Γ → C∗. Formula (1.2) can be deduced then from the
following easy assertions: g has a lift to G′ if and only if g∗(ζ) = 1; if there are such
lifts, then their number is equal to |Γ|2−χ(W ).

A proof of Theorem 1.1 in the full generality uses the techniques of topological
quantum field theory and will be given elsewhere. Note that Formula (1.3) extends
to surfaces with boundary and to non-orientable surfaces, see [Jo], [Sn]. Theorem 1.1
admits similar extensions, but we shall not discuss them here.

We keep the assumptions of Theorem 1.1 and establish several corollaries. Observe
that

g∗(ζρ)([W ]) = (ζρ|g(π))(g∗([W ])) ,

where ζρ|g(π) ∈ H2(g(π); C∗) is the restriction of ζρ ∈ H2(Gρ; C∗) to g(π) and

g∗ : H2(W ) = H2(π) → H2(g(π))

is the homomorphism induced by g. Formula (1.2) can be rewritten as

(1.4) |Homg(π,G′)| = |Γ|
∑

ρ∈Irr(Γ), Gρ⊃ g(π)

(|Γ|/dim ρ)−χ(W ) (ζρ|g(π))(g∗([W ])) .

This implies the following claim.

Corollary 1.2. The number |Homg(π,G′)| is determined by the homomorphism q :
G′ → G, the genus of W , the group g(π) ⊂ G, and the homology class g∗([W ]) ∈
H2(g(π)).

Note the following special case of (1.4).

Corollary 1.3. If g : π → G is an epimorphism, then

(1.5) |Homg(π,G′)| = |Γ|
∑

ρ∈Irr(Γ), Gρ=G

(|Γ|/dim ρ)−χ(W ) ζρ(g∗([W ])) .
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To proceed, we need the following property of ζρ. Consider the group G′
ρ =

q−1(Gρ) ⊂ G′. Taking determinant on both sides of (1.1), one easily obtains that

(1.6) q∗((dim ρ) ζρ) = 0 ,

where q∗ : H2(Gρ; C∗) → H2(G′
ρ; C∗) is the homomorphism induced by q. This

implies that the values of ζρ on the image of the homomorphism q∗ : H2(G′
ρ) →

H2(Gρ) are roots of unity of order dim ρ. The finiteness of Γ implies that the image
of q∗ is a subgroup of finite order in H2(Gρ). Hence the values of ζρ on all elements of
H2(Gρ) are roots of unity and, in particular, have absolute value 1. Now, comparing
(1.4) with (1.3) termwise, we obtain the following inequality.

Corollary 1.4. For any homomorphism g : π = π1(W ) → G,

(1.7) |Homg(π,G′)| ≤ |Hom(π,Γ)| .
This inequality is an equality if and only if g(π) ⊂ Gρ and g∗(ζρ)([W ]) = 1 for all
irreducible representations ρ of Γ.

The inequality (1.7) does not hold for arbitrary groups π. For example, let G′ = S3,
the group of permutations of the set {1, 2, 3}, and let q : G′ → Z/2Z be the surjection
sending all transpositions to 1 (mod 2). Clearly, Γ = Ker q = Z/3Z. Let π be the
group with m ≥ 1 generators x1, . . ., xm and defining relations x2

1 = x2
2 = · · · = x2

m. A
homomorphism π → Γ has to send all the generators x1, . . ., xm to the same element.
Therefore, |Homg(π,Γ)| = 3. On the other hand, the homomorphism π → Z/2Z
sending x1, . . ., xm to 1 (mod 2) admits at least 3m lifts to G′ sending x1, . . ., xm to
arbitrary transpositions.

A section of a group homomorphism p : π′ → π is a homomorphism s : π → π′

such that ps = idπ. The set of sections of p is denoted by S∗(p).

Corollary 1.5. Let p : π′ → π = π1(W ) be a group epimorphism with finite kernel
Φ. Then

|S∗(p)| = |Φ|
∑

ρ∈Irr(Φ), πρ=π

(|Φ|/dim ρ)−χ(W ) ζρ([W ]) .

This is obtained from Theorem 1.1 by setting G = π, G′ = π′, Γ = Φ, q = p, and
g = id : π → π. Corollary 1.4 implies that |S∗(p)| ≤ |Hom(π,Φ)|. This inequality is
an equality if and only if πρ = π and ζρ([W ]) = 1 for all irreducible representations
ρ of Φ. The results of the next section imply that the number |S∗(p)| is divisible by
|Φ| |Z(Φ)|2d−2, where Z(Φ) is the center of Φ and d is the genus of W .

2. The functions {vk}k

The aim of this section is to deduce from Theorem 1.1 the following claim.

Theorem 2.1. Let g : π = π1(W ) → G be a group homomorphism. Then the number
|Homg(π,G′)| is divisible by |Γ| |Z(Γ)|2d−2, where Z(Γ) is the center of Γ and d is the
genus of W .

Observe first that for each k = 1, 2, . . ., the epimorphism q : G′ → G determines a
function vk : H2(G) → C by

vk(h) =
∑

ρ∈Irr(Γ), dim ρ=k, Gρ=G

ζρ(h) ∈ C ,
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where h ∈ H2(G). It is well known that the dimension of any irreducible represen-
tation of Γ divides |Γ/Z(Γ)| and is smaller than or equal to |Γ/Z(Γ)|1/2. Therefore
vk = 0 if k does not divide |Γ/Z(Γ)| or k > |Γ/Z(Γ)|1/2.

We can rewrite Formula (1.5) in terms of the functions v1, v2, . . .: for any epimor-
phism g : π = π1(W ) → G,

(2.1) |Homg(π,G′)| = |Γ|
∑
k≥1

vk(g∗([W ])) (|Γ|/k)−χ(W ) .

The next lemma summarizes the properties of the functions {vk}k.

Lemma 2.2. For k = 1, 2, . . ., let Nk be the number of equivalence classes of irre-
ducible k-dimensional complex representations ρ of Γ such that Gρ = G. Let Q be the
image of the homomorphism q∗ : H2(G′) → H2(G). Then

(a) For all k, the function vk takes only integer values and is zero outside Q.
Moreover, all values of vk lie in the set {−Nk,−Nk + 1, . . . , Nk − 1, Nk};

(b) For all h ∈ Q, we have v1(h) = N1 = |Γ/[Γ, G′]|;
(c) For all k, we have vk(0) = Nk.

Proof. (a) It is well known that for any h ∈ H2(G) there are a closed connected
oriented surface Σ and a homomorphism g : π1(Σ) → G such that g∗([Σ]) = h. We
say that the pair (Σ, g) realizes h. Pick a representation ρ of Γ such that Gρ 6= G.
Adding to Σ a handle and mapping its meridian to 1 ∈ G and its longitude to any
element of G−Gρ, we obtain a realization of h by a surface Σ′ and a homomorphism
π1(Σ′) → G whose image meets G−Gρ. Repeating this process, we can realize h by
a surface Σ+ with fundamental group π and a homomorphism g : π → G such that
g(π) ⊂ Gρ only when Gρ = G. Formula (1.4) implies then that

(2.2) |Homg(π,G′)| = |Γ|2d−1
∑
k≥1

vk(h) k2−2d,

where d is the genus of Σ+. Any surface of bigger genus admits a degree one map
to Σ+. Such a map induces a surjection of fundamental groups. We can apply (2.2)
to the composition of this surjection with g. This implies that

∑
k≥1 vk(h) k2−2n ∈ Q

for all n ≥ d. By linear algebra, vk(h) ∈ Q for all k.
By the remarks made before the statement of Corollary 1.4, for any irreducible

representation ρ of Γ with Gρ = G and any h ∈ H2(G), the number ζρ(h) ∈ C is a
root of unity. Thus, vk(h) is a sum of Nk roots of unity. Hence, vk(h) is an algebraic
integer. Therefore vk(h) ∈ Z and |vk(h)| ≤ Nk.

If h /∈ Q, then a homomorphism g realizing h as above cannot lift to G′. Formula
(2.2) and the argument after this formula show that

∑
k≥1 vk(h) k2−2n = 0 for all

sufficiently big natural numbers n. This gives a non-degenerate system of linear
equations on {vk(h)}k. Therefore vk(h) = 0 for all k.

(b) By definition, v1(h) =
∑

ρ ζρ(h), where ρ runs over all homomorphisms Γ → C∗

such that Gρ = G. Formula (1.6) and the inclusion h ∈ Q imply that ζρ(h) = 1.
Therefore v1(h) = N1 is simply the number of such ρ. The condition Gρ = G holds
if and only if ρ(aha−1h−1) = 1 for all a ∈ G′, h ∈ Γ. The latter holds if and only if
ρ([Γ, G′]) = 1. Thus, N1 = |Γ/[Γ, G′]|.

(c) The equality vk(0) = Nk follows from the equality ζρ(0) = 1 for all irreducible
representations ρ of Γ. �
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As an exercise, the reader may verify that vk(−h) = vk(h) and vk(h+kh′) = vk(h)
for all h ∈ H2(G) and h′ ∈ Q.

Proof of Theorem 2.1. Replacing G and G′ by g(π) and q−1(g(π)), respectively,
we can reduce ourselves to the case where g is an epimorphism. In this case Theorem
2.1 follows from Formula (2.1), Lemma 2.2(a), and the fact that vk = 0 if k does not
divide |Γ/Z(Γ)| = |Γ|/|Z(Γ)|.

3. The homological obstruction to lifting

Consider in more detail the question of the existence of lifts to G′ for a given
homomorphism g : π = π1(W ) → G. Replacing G and G′ by g(π) and q−1(g(π)),
respectively, we can reduce ourselves to the case where g is an epimorphism. Then
Formula (2.1) computes |Homg(π,G′)| in terms of the numbers {vk(h)}k, where h =
g∗([W ]) ∈ H2(G). Thus, g lifts to G′ if and only if the right-hand side of (2.1) is
non-zero.

Another approach to the same question stems from homological considerations. If
an epimorphism g : π → G lifts to G′, then the homology class g∗([Σ]) ∈ H2(G)
necessarily lies in the image of the homomorphism q∗ : H2(G′) → H2(G). If the latter
condition is satisfied, then we say that the homological obstruction to the lifting of g
to G′ vanishes. In general, the vanishing of the homological obstruction may not imply
that g lifts to G′. The next two theorems show that there are no further obstructions
if the group Γ = Ker q is abelian or the genus of W is big enough.

In the sequel, the symbol [Γ, G′] denotes the subgroup of Γ generated by the com-
mutators of elements of Γ with elements of G′.

Theorem 3.1. Suppose that the group Γ is abelian. An epimorphism g : π =
π1(W ) → G lifts to G′ if and only if the homological obstruction to the lifting vanishes.
Moreover, if g lifts to G′, then

(3.1) |Homg(π,G′)| = |Γ|b |[Γ, G′]|−1 ,

where b = 2− χ(W ) is the first Betti number of W .

Proof. Assume that the homological obstruction in question vanishes so that h =
g∗([W ]) ∈ Im q∗. By Lemma 2.2(b), we have v1(h) = |Γ/[Γ, G′]|. Since Γ is abelian,
all irreducible representations of Γ are one-dimensional. So, vk(h) = 0 for k ≥ 2.
Now, the claim of the theorem directly follows from (2.1). �

Formula (3.1) can be rewritten as

(3.2) |Homg(π,G′)| = |Hom(π,Γ)| × |[Γ, G′]|−1 .

This formula does not directly extend to groups π distinct from the fundamental
groups of closed oriented surfaces. For instance, if π is a free group of rank n,
then the left-hand and right-hand sides of (3.2) are equal respectively to |Γ|n and
|Γ|n |[Γ, G′]|−1. These numbers are equal if and only if [Γ, G′] = 1, i.e., if and only if
Γ lies in the center of G′.

Theorem 3.2. Suppose that the first Betti number b = 2− χ(W ) of W satisfies

(3.3) b > log2(|[Γ, G′]| − 1) .
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An epimorphism g : π = π1(W ) → G lifts to G′ if and only if the homological
obstruction to the lifting vanishes. Moreover, if g lifts to G′, then

(3.4) |Homg(π,G′)| ≥ |Γ|b |[Γ, G′]|−1 × (1− |[Γ, G′]| − 1
2b

) .

It is understood that if [Γ, G′] = 1, then the condition (3.3) is empty.

Proof. For k = 1, 2, . . ., denote by Mk the number of equivalence classes of irreducible
k-dimensional representations of Γ. It is clear that

∑
k≥1 Mkk2 = |Γ|.

Pick any h ∈ H2(G). Let Nk be the same number as in Lemma 2.2. The inequality
|vk(h)| ≤ Nk established in Lemma 2.2 and the obvious inequality Nk ≤ Mk imply
that for any integer n < 2,∑

k≥1

vk(h) kn ≥ v1(h)−
∑
k≥2

|vk(h)| kn ≥ v1(h)−
∑
k≥2

Mk kn

= v1(h)−
∑
k≥2

Mkk2 kn−2 ≥ v1(h)− (
∑
k≥2

Mkk2)2n−2

= v1(h)− 2n−2 (|Γ| −M1) ≥ v1(h)− 2n−2 (|Γ| −N1) .

If h ∈ Im q∗, then v1(h) = N1 = |Γ/[Γ, G′]| by Lemma 2.2. This gives∑
k≥1

vk(h) kn ≥ |Γ/[Γ, G′]|
(

1− |[Γ, G′]| − 1
22−n

)
.

Setting n = χ(W ) = 2− b and combining with (2.1), we obtain (3.4). �

4. Geometric applications of Theorem 1.1

Enumeration of principal fiber bundles. Let P = P(W,Γ) be the set of isomor-
phism classes of principal Γ-bundles over W . Recall that a homomorphism g : π → Γ
determines a principal Γ-bundle ξg over W , and every principal Γ-bundle over W is
isomorphic to ξg for some g. Two homomorphisms g1, g2 : π → Γ determine isomor-
phic principal Γ-bundles over W if and only if g1 = hg2h

−1 for some h ∈ Γ. Therefore
P = Hom(π,Γ)/Γ, where Γ acts on Hom(π,Γ) by conjugation. The stabilizer of
g ∈ Hom(π,Γ) under this action is the group {h ∈ Γ |hgh−1 = g} isomorphic to the
group of automorphisms Aut(ξg) of ξg. Combining these facts, we obtain

|Hom(π,Γ)| =
∑
ξ∈P

|Γ|
|Aut(ξ)|

.

The Frobenius-Mednykh formula (1.3) implies therefore that

(4.1)
∑

ξ∈P(W ; Γ)

1
|Aut(ξ)|

=
∑

ρ∈Irr(Γ)

(
|Γ|

dim ρ

)−χ(W )

.

Theorem 1.1 yields a relative version of (4.1) as follows. Fix a principal G-bundle ξ
over W . By a lift of ξ to a principal G′-bundle, we mean a pair (a principal G′-bundle
ξ′ over W , an isomorphism of G-bundles f : ξ′/Γ ∼= ξ). Here ξ′/Γ is the principal
G-bundle over W obtained by factorizing the total space of ξ′ by Γ. An isomorphism
(ξ′1, f1) ≈ (ξ′2, f2) of two such lifts of ξ is an isomorphism of principal G′-bundles
ξ′1 → ξ′2 such that the induced isomorphism of principal G-bundles ξ′1/Γ → ξ′2/Γ
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composed with f2 : ξ′2/Γ → ξ gives f1. In particular, an automorphism of a lift (ξ′, f)
of ξ is an automorphism of ξ′ inducing the identity on ξ′/Γ. Such automorphisms
form a group denoted by Autξ(ξ′). The set of isomorphism classes of lifts of ξ to
principal G′-bundles is denoted by P(ξ).

Fix a homomorphism g : π → G such that ξ = ξg. It is clear that every homomor-
phism g′ ∈ Homg(π,G′) determines a lift of ξ to a principal G′-bundle, and every such
lift arises from some g′ ∈ Homg(π,G′). Two homomorphisms g′1, g

′
2 ∈ Homg(π,G′)

determine isomorphic lifts of ξ if and only if g′1 = hg′2h
−1 for some h ∈ Γ. Therefore

P(ξ) = Homg(π,G′)/Γ ,

where Γ acts on Homg(π,G′) by conjugation. The stabilizer of any homomorphism
g′ ∈ Homg(π,G′) under this action is the group {h ∈ Γ |hg′h−1 = g′} isomorphic to
Autξ(ξg′). Combining these facts, we obtain

(4.2) |Homg(π,G′)| =
∑

ξ′∈P(ξ)

|Γ|
|Autξ(ξ′)|

.

Theorem 1.1 implies that

(4.3)
∑

ξ′∈P(ξ)

1
|Autξ(ξ′)|

=
∑

ρ∈Irr(Γ), Gρ⊃ g(π)

(
|Γ|

dim ρ

)−χ(W )

g∗(ζρ)([W ]) .

Formula (4.2) and Theorem 2.1 imply that
∑

ξ′∈P(ξ) 1/|Autξ(ξ′)| is an integer
divisible by |Z(Γ)|2d−2, where d is the genus of W . Corollary 1.4 gives∑

ξ′∈P(ξ)

1/|Autξ(ξ′)| ≤ |Γ|−1 |Hom(π,Γ)| .

Formula (4.3) implies that ξ lifts to a principal G′-bundle if and only if the right
hand side of (4.3) is non-zero. Theorems 3.1 and 3.2 show that in the case where
Γ is abelian or the genus of W is big enough, ξ lifts to a principal G′-bundle if and
only if the homology class g∗([W ]) ∈ H2(g(π)) lies in the image of the homomorphism
q∗ : H2(q−1(g(π))) → H2(g(π)).

Enumeration of sections. Theorem 1.1 may be used to count homotopy classes of
sections of locally trivial fiber bundles over the surface W . Let p : E → W be a locally
trivial fiber bundle with fiber F . A section of p is a continuous mapping s : W → E
such that ps = idW . Two sections of p are homotopic if they can be deformed into
each other in the class of sections of p. We say that two sections W → E are obtained
from each other by bubbling if they coincide on the complement of a small open disc
D ⊂ W . The restrictions of such two sections on the closed disc D ⊂ W form then
a mapping S2 → E, a “bubble”. Two sections of p are bubble equivalent if they
may be obtained from each other by a finite sequence of bubblings. Decomposing a
deformation of a section into local deformations, one easily observes that homotopic
sections are bubble equivalent. (If π2(F ) = 0, then the converse is also true so that
the bubble equivalence is just the homotopy.) Denote the set of bubble equivalence
classes of sections of p by S(p). We shall count the elements of this set with certain
weights, see Formula (4.6) below.

The definition of S(p) has a pointed version as follows. Fix a base point e ∈ E and
set w = p(e) ∈ W . A section s : W → E of p is pointed if s(w) = e. Two pointed
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sections of p are homotopic if they can be deformed into each other in the class of
pointed sections of p. The definitions of the bubbling and the bubbling equivalence
extend to pointed sections in the obvious way with the only difference that the disk
D in the definition of a bubbling should lie in W −{w}. As above, homotopic pointed
sections are bubble equivalent, and the converse is true if π2(F ) = 0. We denote the
set of bubble equivalence classes of pointed sections of p by S∗(p).

Suppose from now on that the fiber F = p−1(w) of p is path-connected. Set
π = π1(W,w), π′ = π1(E, e), and Φ = π1(F, e). The exact homotopy sequence of
p shows that the homomorphism p# : π′ → π is surjective and Ker p# = Φ. By
Section 1, every irreducible representation ρ of Φ determines a subgroup πρ of π and
a cohomology class ζρ ∈ H2(πρ; C∗).

For any pointed section s : W → E of p, the induced homomorphism s# : π → π′

is a section of p#. It is clear that s# is preserved under the bubblings of s. It is easy
to check that the resulting mapping

(4.4) S∗(p) → S∗(p#) , s 7→ s#

is a bijection. Thus, |S∗(p)| = |S∗(p)|. Corollary 1.5 implies the following claim.

Theorem 4.1. If Φ is finite, then

(4.5) |S∗(p)| = |Φ|
∑

ρ∈Irr(Φ), πρ=π

(|Φ|/dim ρ)−χ(W ) ζρ([W ]) .

We now rewrite (4.5) in terms of non-pointed sections of p. Since F is path-
connected, any section of p is homotopic to a pointed section. This shows that the
natural mapping S∗(p) → S(p) is surjective. This mapping may be described in
terms of an action of Φ on S∗(p) as follows. The group Φ acts on the set S∗(p#) by
conjugation. This defines an action of Φ on S∗(p) via the bijection (4.4). It is easy
to see that the orbits of the latter action are precisely the preimages of elements of
S(p) under the natural mapping S∗(p) → S(p). Thus, S(p) = S∗(p)/Φ. For s ∈ S(p),
let Aut(s) ⊂ Φ be the stabilizer of an element of S∗(p) projecting to s. The group
Aut(s) is well defined up to conjugation in Φ. If Φ is finite, then

|S∗(p)| =
∑

s∈S(p)

|Φ|
|Aut(s)|

.

Formula (4.5) may now be rewritten as

(4.6)
∑

s∈S(p)

1
|Aut(s)|

=
∑

ρ∈Irr(Φ), πρ=π

(|Φ|/dim ρ)−χ(W ) ζρ([W ]) .

Theorem 2.1 and Corollary 1.4 imply that
∑

s∈S(p) 1/|Aut(s)| is an integer divisible
by |Z(Φ)|2d−2, where d is the genus of W , and∑

s∈S(p)

1/|Aut(s)| ≤ |Φ|−1 |Hom(π,Φ)| .

Corollary 4.2. Under the assumptions of Theorem 4.1 the bundle p : E → W has a
section if and only if ∑

ρ∈Irr(Φ), πρ=π

(dim ρ)χ(W ) ζρ([W ]) 6= 0 .
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Note that the left-hand side of this formula is a non-negative rational number for
all p, as it follows from Theorem 4.1. In the case where Φ is abelian or the genus of
W is bigger than (1/2) log2(|[Φ, π′]|−1), Theorems 3.1 and 3.2 imply that the bundle
p has a section if and only if the induced homomorphism p∗ : H2(E) → H2(W ) is
surjective.

In the case of a trivial fiber bundle, Theorem 4.1 amounts to computing the number
of pointed homotopy classes of maps W → F . In this case, all the cohomology classes
ζρ are trivial and Theorem 4.1 follows from the equality |S∗(p)| = |S∗(p)| and the
Frobenius-Mednykh formula (1.3).

Enumeration of lifts of maps. Given an arbitrary locally trivial fiber bundle p :
E → X and a map f from the surface W to X, one may be interested in counting
the number of homotopy classes of lifts of f to E. By a lift of f to E, we mean a
mapping f ′ : W → E such that pf ′ = f . For X = W and f = idW , we recover the
setting of the previous subsection. All definitions and results given there extend to
arbitrary p, f with the obvious changes. The key observation is that the lifts of f to
E bijectively correspond to the sections of the induced fiber bundle f∗(p) over W .

Non-abelian cohomology of surfaces. Theorem 1.1 yields interesting information
about 1-dimensional non-abelian cohomology of the fundamental groups of surfaces.
We begin by recalling the definition of the 1-dimensional non-abelian cohomology of
an arbitrary group π, cf. [Se]. Fix a left action of π on a group Φ, i.e., a homomorphism
π → AutΦ. A map α : π → Φ is a cocycle if α(ab) = α(a) a(α(b)) for all a, b ∈ π.
Here a(α(b)) ∈ Φ is obtained by the action of a on α(b). For example, the mapping
π → {1} ⊂ Φ is a cocycle. The set of all cocycles π → Φ is denoted by Z1(π; Φ). The
group Φ acts on Z1(π; Φ) by

(ϕα)(a) = ϕ α(a) (aϕ)−1

for all ϕ ∈ Φ, α ∈ Z1(π; Φ), and a ∈ π. The quotient set of this action is denoted
by H1(π; Φ) and called the (nonabelian) cohomology of π with coefficients in Φ. For
h ∈ H1(π; Φ), let Aut(h) ⊂ Φ be the stabilizer of any cocycle representing h. The
group Aut(h) is well defined up to conjugation in Φ.

If π is finitely generated and Φ is finite, then both sets Z1(π; Φ) and H1(π; Φ) are
finite. Put

M(π; Φ) =
∑

h∈H1(π;Φ)

1
|Aut(h)|

∈ Q .

We view M(π; Φ) as the global measure of the set H1(π; Φ) counting its elements
with the weights 1/|Aut|. Since any h ∈ H1(π; Φ) can be represented by precisely
|Φ|/|Aut(h)| cocycles,

M(π; Φ) = |Φ|−1 |Z1(π; Φ)| .
The definitions of Section 1 can be adapted to this setting as follows. With an

irreducible representation ρ : Φ → GLn(C) of Φ we associate the group πρ ⊂ π con-
sisting of all a ∈ π such that the representation ϕ 7→ ρ(a−1ϕ) of Φ is equivalent to ρ.
This means that there is a matrix Ma ∈ GLn(C) such that ρ(a−1ϕ) = M−1

a ρ(ϕ) Ma

for all ϕ ∈ Φ. Then there is a family of non-zero complex numbers {ζa,b}a,b∈πρ such
that ζa,b Ma Mb = Mab for all a, b ∈ πρ. This family is a 2-cocycle representing a
well-defined cohomology class ζρ ∈ H2(πρ; C∗).
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Theorem 4.3. For any action of π = π1(W ) on a finite group Φ,

M(π; Φ) =
∑

ρ∈Irr(Φ), πρ=π

(|Φ|/dim ρ)−χ(W ) ζρ([W ]) .

Proof. Let π′ be the set of pairs (ϕ ∈ Φ, a ∈ π) with multiplication (ϕ, a)(ϕ′, a′) =
(ϕ (aϕ′), aa′). It is easy to check that π′ is a group. The formula p(ϕ, a) = a defines
an epimorphism p : π′ → π with kernel {(ϕ, 1)}ϕ∈Φ = Φ. Every cocycle α : π → Φ
defines a section sα of p by sα(a) = (α(a), a) for a ∈ π. The formula α 7→ sα

establishes a bijection between the set Z1(π; Φ) and the set S∗(p) of the sections of
p. Therefore

(4.7) M(π; Φ) = |Φ|−1 |Z1(π; Φ)| = |Φ|−1 |S∗(p)| .

It remains to apply Corollary 1.5 and to observe that the definitions of πρ and ζρ

given in Section 1 are equivalent in the present setting to the definitions given before
the statement of the theorem. (The key point is that every a ∈ π has a canonical lift
(1, a) to π′ and

(1, a)−1(ϕ, 1)(1, a) = (a−1ϕ, 1)

for all ϕ ∈ Φ.) �

Formula (4.7) and the remarks after Corollary 1.5 imply that M(π; Φ) is an integer
divisible by |Z(Φ)|2d−2, where d is the genus of W , and

M(π; Φ) ≤ |Φ|−1 |Hom(π,Φ)| .

5. Miscellaneous algebra

We discuss miscellaneous algebraic notions and results related to Theorem 1.1.

Extremal homology classes. We call a homology class h ∈ H2(G) extremal (with
respect to the given epimorphism q : G′ → G) if ζρ(h) = 1 for all irreducible repre-
sentations ρ of Γ = Ker q such that Gρ = G. For example, the zero homology class
h = 0 is extremal. It is clear that the extremal homology classes form a subgroup
of H2(G).

For each k ≥ 1, the function vk introduced in Section 2 takes on all extremal
classes the same value which is the maximal value of vk. In particular, if h ∈ H2(G)
is extremal, then v1(h) = v1(0) > 0. By Lemma 2.2(a), all extremal homology classes
lie in Q = Im (q∗ : H2(G′) → H2(G)). Let a ∈ Z be the least common multiple of the
numbers dim ρ, where ρ runs over all irreducible representations of Γ. The properties
of ζρ imply that all elements of the group aQ ⊂ Q are extremal.

Quasi-epimorphisms. A homomorphism g : π → G is a quasi-epimorphism (with
respect to q : G′ → G) if

g(π) ∩ (G−Gρ) 6= ∅
for all irreducible representations ρ of Γ such that Gρ 6= G. In particular, all epimor-
phisms π → G are quasi-epimorphisms. If Gρ = G for all ρ, then all homomorphisms
π → G are quasi-epimorphisms.
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For a quasi-epimorphism g : π = π1(W ) → G, Theorem 1.1 yields the same formula
(1.5) as for an epimorphism. Therefore

|Homg(π,G′)| ≤ |Γ|
∑

ρ∈Irr(Γ), Gρ=G

(|Γ|/dim ρ)−χ(W ) .

This inequality is an equality if and only if g∗([W ]) ∈ H2(G) is an extremal homology
class.

The genus norm. As was already mentioned above, for any non-zero h ∈ H2(G),
there are a closed connected oriented surface Σ of positive genus and a homomorphism
g : π1(Σ) → G such that g∗([Σ]) = h. Let |h| ≥ 1 be the minimal genus of such Σ. By
definition, |0| = 0. Clearly, |h+h′| ≤ |h|+ |h′| for all h, h′ ∈ H2(G). Also, |−h| = |h|
and |h| = 0 if and only if h = 0. We call the mapping H2(G) → Z, h 7→ |h| the genus
norm.

The functions v1, v2, . . . from Section 2 may help to estimate the genus norm as
follows. Define a mapping v : H2(G)× Z → Q by

v(h, n) =
∑
k≥1

vk(h) k−2n ,

where h ∈ H2(G) and n ∈ Z.

Lemma 5.1. If Gρ = G for all irreducible representations ρ of Γ, then v(h, n) ≥ 0
for all h ∈ H2(G) and all n ≥ |h| − 1.

Proof. If h = 0, then v(h, n) > 0 for all n ∈ Z, as directly follows from Lemma 2.2(c).
Suppose that h 6= 0. Let Σ be a closed connected oriented surface of genus |h| ≥ 1
and let g : π1(Σ) → G be a homomorphism such that g∗([Σ]) = h. Theorem 1.1 and
the assumption Gρ = G for all ρ imply that

|Homg(π1(Σ), G′)| = |Γ|1−χ(Σ) v(h,−χ(Σ)
2

) = |Γ|2|h|−1 v(h, |h| − 1) .

Hence, v(h, |h| − 1) ≥ 0. Similarly v(h, n) ≥ 0 for all n ≥ |h|, cf. the argument after
(2.2). �

For h ∈ H2(G), denote by 〈h, q〉 the minimal non-negative integer such that
v(h, n) ≥ 0 for all n ≥ 〈h, q〉. Lemma 5.1 implies that such an integer exists and
|h| ≥ 〈h, q〉 + 1. Varying q in the class of group epimorphisms with target G and
finite kernel satisfying the conditions of Lemma 5.1, we obtain a family of estimates
from below for the genus norm on H2(G). The author does not know whether these
estimates may be non-trivial. Explicit examples and computations would be welcome.

6. A generalization of Theorem 1.1

Theorem 1.1 admits a generalization in which the lifts of g to G′ are counted with
weights determined by a 2-cocycle on G′. To state this generalization, we first extend
the definition of ζρ to projective representations of Γ.

Fix throughout this section a 2-cocycle θ = {θa,b ∈ C∗}a,b∈G′ on G′. A mapping
ρ : Γ → GLn(C) with n = 1, 2, . . . is a θ-representation of Γ if ρ(1) is the unit n× n
matrix and ρ(g) ρ(h) = θg,h ρ(gh) for all g, h ∈ Γ. For any matrix M ∈ GLn(C)
and a θ-representation ρ : Γ → GLn(C), the mapping M−1ρ M : Γ → GLn(C)
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sending h ∈ Γ to M−1ρ(h)M , is a θ-representation. We say that two θ-representations
ρ : Γ → GLn(C) and ρ′ : Γ → GLn′(C) are equivalent and write ρ ∼ ρ′ if n = n′ and
ρ′ = M−1ρ M for some M ∈ GLn(C). Clearly, ∼ is an equivalence relation on the set
of θ-representations of Γ. Denote by Rθ the corresponding set of equivalence classes.

The cocycle θ determines an action of G′ on Rθ as follows. Given a ∈ G′ and a
θ-representation ρ : Γ → GLn(C), consider the mapping aρ : Γ → GLn(C), whose
value on any h ∈ Γ is given by

aρ(h) =
θa−1,ha θh,a

θa,a−1 θ1,1
ρ(a−1ha) .

Lemma 6.1. The mapping aρ is a θ-representation of Γ. The formula (a, ρ) 7→ aρ
defines a left action of G′ on Rθ. This action induces a left action of G on Rθ.

Given a θ-representation ρ of Γ, denote by Gρ be the stabilizer of ρ, i.e., the
subgroup of G consisting of all α ∈ G such that aρ ∼ ρ for some (and then for all)
a ∈ q−1(α) ⊂ G′. The group Gρ depends only on the equivalence class of ρ.

Let ρ : Γ → GLn(C) be a θ-representation of Γ, which is irreducible in the sense
that the only linear subspaces of Cn preserved under the induced projective action
of Γ are 0 and Cn. We define a cohomology class ζρ ∈ H2(Gρ; C∗). Fix for each
α ∈ Gρ, an element α̃ of q−1(α). By definition of Gρ, for α ∈ Gρ, there is a matrix
Mα ∈ GLn(C) such that α̃ρ = M−1

α ρ Mα. The irreducibility of ρ implies that Mα is
unique up to multiplication by an element of C∗; we fix Mα for all α.

Lemma 6.2. For any α, β ∈ Gρ, there is a unique ζα,β ∈ C∗ such that

ζα,β Mα Mβ = θeα,eβ θ−1fαβ, fαβ
−1 eα eβ Mαβ ρ(α̃β

−1
α̃ β̃).

The family {ζα,β}α,β is a 2-cocycle on Gρ. Its cohomology class ζρ ∈ H2(Gρ; C∗)
depends only on the equivalence class of ρ and does not depend on the choice of the
matrices {Mα}α or the lifts {α̃}α.

There is a relationship between ζρ and the cohomology class of the cocycle θ. Con-
sider the group G′

ρ = q−1(Gρ) ⊂ G′ and let [θ]ρ ∈ H2(G′
ρ; C∗) denote the cohomology

class of the restriction of θ to G′
ρ. In generalization of (1.6), we have

(6.1) (dim ρ) q∗(ζρ) = (dim ρ) [θ]ρ

where q∗ : H2(Gρ; C∗) → H2(G′
ρ; C∗) is the homomorphism induced by q.

Theorem 6.3. Let θ = {θa,b ∈ C∗}a,b∈G′ be a 2-cocycle on G′ representing a coho-
mology class [θ] ∈ H2(G′; C∗). For any group homomorphism g : π = π1(W ) → G,∑

g′∈Homg(π,G′)

(g′)∗([θ])([W ]) = |Γ|
∑

ρ, Gρ⊃ g(π)

(|Γ|/dim ρ)−χ(W ) (g∗(ζρ)([W ]))−1 ,

where ρ ranges over the equivalence classes of irreducible θ-representations of Γ such
that Gρ ⊃ g(π).

Here (g′)∗([θ])([W ]) ∈ C∗ and g∗(ζρ)([W ]) ∈ C∗ are the evaluations of (g′)∗([θ]),
g∗(ζρ) ∈ H2(π; C∗) on [W ] ∈ H2(W ) = H2(π), respectively.
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Applying Theorem 6.3 to −W , we obtain∑
g′∈Homg(π,G′)

(g′)∗([θ])([−W ]) = |Γ|
∑

ρ, Gρ⊃ g(π)

(|Γ|/dim ρ)−χ(W ) g∗(ζρ)([W ]) .

For θ = 1, the left-hand side is equal to |Homg(π,G′)|, and we obtain Theorem 1.1.
For arbitrary θ and g = 1, Theorem 6.3 is contained in [Tu]. A proof of Theorem 6.3
in the general case will be given elsewhere.

Theorem 6.3 yields a generalization of other formulas obtained above. We state
generalizations of Formulas (4.3) and (4.6) using notation of Section 4. For a principal
G′-bundle ξ′ on W , set

θξ′ = (g′)∗([θ]) ∈ H2(π; C∗),
where [θ] ∈ H2(G′; C∗) is the cohomology class of θ and g′ : π → G′ is any homomor-
phism such that ξ′ = ξg′ . The cohomology class θξ′ does not depend on the choice of
g′ because the conjugations in G′ act trivially on H∗(G′; C∗). Theorem 6.3 implies
that for the principal G-bundle ξ over W determined by a homomorphism g : π → G,∑

ξ′∈P(ξ)

θξ′([W ])
|Autξ(ξ′)|

=
∑

ρ, Gρ⊃ g(π)

(
|Γ|

dim ρ

)−χ(W )

(g∗(ζρ)([W ]))−1 ,

where ρ ranges over the equivalence classes of irreducible θ-representations of Γ such
that Gρ ⊃ g(π). For G = 1, this formula boils down to∑

ξ′∈P

θξ′([W ])
|Aut(ξ′)|

=
∑

ρ

(
|Γ|

dim ρ

)−χ(W )

,

where ρ ranges over the equivalence classes of irreducible θ-representations of Γ.
To generalize (4.6), consider a locally trivial fiber bundle p : E → W and a co-

homology class Θ ∈ H2(E; C∗) whose evaluation on π2(E) is equal to 1. Such Θ is
necessarily induced from a unique element of H2(π1(E); C∗). We represent the latter
by a C∗-valued 2-cocycle θ on π1(E). Set π = π1(W ).

Theorem 6.4. If the fiber of p is path-connected and has a finite fundamental group
Φ, then ∑

s∈S(p)

s∗(Θ)([W ])
|Aut(s)|

=
∑

ρ, πρ=π

(|Φ|/dim ρ)−χ(W ) (ζρ([W ]))−1 ,

where ρ runs over the equivalence classes of irreducible θ-representations of Φ such
that πρ = π.

This follows from Theorem 6.3 using the arguments of Section 4. The assumption
Θ(π2(E)) = 1 ensures that s∗(Θ) ∈ H2(W ; C∗) is a bubble equivalence invariant of a
section s so that its evaluation on [W ] is well-defined.
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