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SUBELLIPTIC BOURGAIN–BREZIS ESTIMATES ON GROUPS

Sagun Chanillo and Jean Van Schaftingen

Abstract. We show that divergence-free L1 vector fields on a nilpotent homogeneous
group of homogeneous dimension Q are in the dual space of functions whose gradient is

in LQ. This was previously obtained on Rn by Bourgain and Brezis.

1. Introduction

On Rn, the Sobolev embedding theorem states that W1,q(Rn) ⊂ L
nq

n−q (Rn) when
q < n. When q = n, the embedding of W1,n(Rn) in L∞(Rn) that is suggested
by homogeneity arguments of the critical Sobolev space is known to fail. However,
maps in the critical Sobolev space have many properties in common with bounded
or continuous maps. An example of such a property was obtained by Bourgain and
Brezis, who showed that divergence-free vector fields see W1,n functions as if they
were bounded functions [1, 2]; that is, if F : Rn → Rn is a divergence-free vector
field, one has

(1.1)
∣∣∣∫

Rn

ϕ · F
∣∣∣ ≤ C‖F‖L1(Rn)‖∇ϕ‖Ln(Rn) .

A striking consequence of this fact is that if U is the solution

−∆U = F ,

given by convolution with the Newton kernel, then ∇U ∈ Ln/(n−1)(Rn), whereas
without the condition on the divergence, the best result that can be obtained is that
∇U belongs to weak Ln/(n−1), the Marcinkiewicz space Ln/(n−1),∞(Rn). The proof of
Bourgain and Brezis relies on a Littlewood–Paley decomposition, and yields in fact a
necessary and sufficient condition on the divergence of an L1 vector field for this vector
field to induce a linear functional on the homogeneous Sobolev space Ẇ1,n(Rn): F ∈
L1(Rn;Rn), one has F ∈ Ẇ−1,n/(n−1)(Rn) if and only if divF ∈ Ẇ−2,n/(n−1)(Rn).

These estimates exhibit a remarkable phenomenon for critical Sobolev spaces in
the Euclidean space. This leads to the question whether these estimates are a spe-
cial feature of the Euclidean space together with the Sobolev space Ẇ1,n(Rn) and
divergence–free vector fields, or if they are a special case of a more general property
of critical Sobolev spaces. It is already known that similar estimates hold on other
critical Sobolev spaces [12] — whereas it is not a property of the set of bounded mean
oscillation functions [14] — and that the divergence–free vector fields can be replaced
by higher–order differential conditions [2, 13, 14]. The estimates also do not rely on
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a global Euclidean space, as they hold on cubes [2], can be transported on smooth
domains [3], and could similarly be transported on Riemannian manifolds.

A remaining question is about whether these estimates rely on the local structure
of the Euclidean space. In this paper, we give an answer to this question by showing
that these estimates still hold on nilpotent homogeneous groups.

A nilpotent homogeneous group G is a connected and simply connected Lie group
such that the Lie algebra g of left-invariant vector fields is a graded, nilpotent and
stratified Lie algebra, that is

(1) g = V1 ⊕ V2 ⊕ · · · ⊕ Vp,
(2) [Vi, Vj ] ⊂ Vi+j for i+ j ≤ p and [Vi, Vj ] = {0} if i+ j > p,
(3) V1 generates g by Lie brackets.

While the dimension of G as a manifold is n =
∑p

j=1mj , where mj = dimVj , the
homogeneous dimension Q =

∑p
j=1 jmj plays an essential role. In particular when

q < Q, it was shown that [4, 5, 9]

S1,q(G) = {u ∈ Lq(G) : Yiu ∈ Lq(G) for 1 ≤ i ≤ m} ⊂ L
Qq

Q−q (G) ,

where {Yi}m
i=1 is a basis of V1 and the measure used to define Lq(G) is the left- and

right-invariant Haar measure µ on G.
In this paper, we show that functions in Ṡ1,Q(G) are seen like bounded functions

by divergence-free L1 vector fields. Before defining these, we define the bundle TbG by
restricting the vectors to be in V1. The vector-field F ∈ L1(G;TbG) is divergence-free
if given F =

∑m
i=1 FiYi, ∫

G

Fψ dµ =
m∑

i=1

∫
G

FiYiψ dµ = 0 ,

for every compactly supported smooth function ψ ∈ C∞
c (G). We finally use the

notation ∇bu = (Y1u, . . . , Ymu). Our main result is:

Theorem 1. If ϕ ∈ C∞
c (G,T ∗b G) is a section of the cotangent bundle and the vector

field F ∈ L1(G;TbG) is divergence-free, then∣∣∣∫
G

〈ϕ, F 〉dµ
∣∣∣ ≤ C‖F‖L1(G)‖∇bϕ‖LQ(G) .

The proof uses the strategy developed by the second author to give an elementary
proof of (1.1) based on the Morrey–Sobolev embedding [12]. That proof relied on
splitting the integral on hyperplanes, and using Hölder continuity of the restriction of
ϕ on hyperplanes. One could then split ϕ into one part which is bounded and another
whose gradient is bounded. The estimate on the latter relied on the divergence-free
condition. One concluded then by Hölder’s inequality.

In the setting of nilpotent homogeneous groups, hyperplanes are replaced by cosets
of codimension 1 normal subgroups. While on Rn the splitting of ϕ on hyperplanes
only used derivatives of ϕ in directions parallel to the hyperplane, on a nilpotent
homogeneous group using only the directions of V1 parallel to the normal subgroups
is not sufficient to have the right estimates for the splitting. In order to circum-
vent this problem, our spliting relies on information about all the derivatives of ϕ
in some neighbourhood of the normal subgroup. The splitting estimates are then
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obtained with Jerison’s machinery for analysis on nilpotent homogeneous groups [8],
and depend now on some maximal function associated to ϕ.

As a consequence of Theorem 1, we give a regularity result for the subelliptic
Laplacian ∆b =

∑m
i=1 Y

2
i .

Theorem 2. If F ∈ L1(G,TbG) is divergence-free, then the problem

−∆bU = F

has a solution U ∈ Ṡ1,Q/(Q−1) satisfying the estimate

‖∇bU‖LQ/(Q−1) ≤ C‖F‖L1(G) .

We also show that the slicing method of proof keeps all its flexibility in the nilpotent
homogeneous group setting, and can handle fractional spaces, L1–divergence fields,
and higher-order conditions.

As mentioned above, Bourgain and Brezis have obtained stronger results on Rn:
they have proved that if F ∈ L1(Rn;Rn), one has F ∈ Ẇ−1,n/(n−1)(Rn) if and only
if divF ∈ Ẇ−2,n/(n−1)(Rn). In view of the results of this paper, we ask the question
whether such a strong result also extends to nilpotent homogeneous groups.

Open problem 1. Let F ∈ L1(G;TbG) be a vector field. Does one have F ∈
Ṡ−1,Q/(Q−1)(G;TbG) if and only if divb F ∈ Ṡ−2,Q/(Q−1)(G)?

The rest of this paper is organized as follows. In section 2, we state and prove
Lemma 2.1 about the approximation of a function u ∈ Ṡ1,Q(G) on a normal subgroup
Gi of G. This lemma is the main new ingredient for the proof of Theorem 1, which
is the object of section 3. In a short section 4, we show how the combination of
Theorem 1 with classical regularity estimates on nilpotent homogeneous groups leads
to Theorem 2. In the last section 5, we give generalizations of Theorem 1 in several
directions: L1–divergence vector fields, critical fractional Sobolev spaces, and higher
order conditions.

2. Approximation on normal subgroups

In order to prove Theorem 1, we slice G into cosets of codimension 1 normal
subgroups that are constructed as follows. Fix 1 ≤ i ≤ m, let gi be the linear space
spanned by {Yj}j 6=i and by V`, 2 ≤ ` ≤ p, and let Gi be the image of gi by the
exponential map. Since g is graded, gi is an ideal of g, and Gi is a normal subgroup
of G. Since G is simply-connected, one has G/Gi

∼= R. The Haar measure ν on Gi is
normalized so that, for every open set U ⊂ G,

µ(U) =
∫
R

ν(Gi ∩ e−tYiU) dt .

Lemma 2.1. There exists C > 0 such that, for every u ∈ C∞(G), λ > 0 and
1 ≤ i ≤ m, there exists uλ ∈ C∞(G) such that

‖u− uλ‖L∞(Gi) ≤ Cλ
1
QM(I)(0) ,(2.1)

‖∇buλ‖L∞(G) ≤ Cλ
1
Q−1M(I)(0) ,(2.2)
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where

I(t) =
(∫

Gi

|∇bu(etYih)|Q dν(h)
) 1

Q

and M(I) is the Hardy–Littlewood maximal function of I.

The proof of this Lemma relies on several tools developed by Jerison for the analysis
on Lie groups [8]. First, let R denote the composition by the inverse: Ru(g) = u(g−1).
If Y is a vector field, then the vector field Y R is defined by Y Ru = RYRu, where
Rg = g−1. If Y is a left-invariant vector field on G, then Y R is a right-invariant
vector field on G. The group convolution on G is defined by

(u ∗ v)(g) =
∫

G

u(gh−1)v(h) dµ(h) =
∫

G

u(h)v(h−1g) dµ(h) .

From the associative law, if Y is a left-invariant vector field, one has

Y (u ∗ v) = u ∗ Y v ,
and

(2.3) (Y u) ∗ v = −u ∗ Y Rv .

One can define dilations on G. First define its derivative at the identity dτ : g → g
by dτx = τ ix on Vi, for 1 ≤ i ≤ p. One checks that dτ is in an automorphism
of g as a Lie algebra. Therefore, the dilation δτ : G → G can be defined as the
group automorphism such that the differential of δτ at the identity is dτ . Note that
µ(δτA) = τQµ(A). For η : G→ R, one further defines

Iτη(g) =
1
τQ

η(δτ−1g) ,

so that, if η ∈ L1(G), ∫
G

η dµ =
∫

G

Iτη dµ .

The dilation also allows to define balls. Take the unit ball B(e, 1) around the identity
e to be the image of an euclidean ball on g by the exponential, and define B(g, λ) =
gδλB(e, 1).

The adjoint representation Ad: G → GL(g) is defined as follows: Ad(h) is the
derivative of the automorphism g 7→ hgh−1. One has

[Ad(h)Y ]u(g) =
∂

∂t
u(ghetY h−1)

∣∣∣
t=0

.

Moreover, for every Y ∈ V1,

Ad(δτh)Y = τ−1δτ Ad(h)Y .

Since g is nilpotent, one also has

Ad(eX)Y = Y + [X,Y ] +
1
2
[X, [X,Y ]] + · · ·

+
1

(p− 1)!
[X, [X, . . . [X, [X,Y ]] . . . ]] .

Finally, we need to transform some derivatives into derivatives with respect to
right-invariant vector fields .
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Lemma 2.2 (Jerison [8]). There exist differential operators D(k) such that for every
η ∈ C∞

c (G),

∂

∂τ
Iτη =

m∑
k=1

Y R
k IτD

(k)η .

For every Y ∈ g there exist differential operators D(k)
j such that for every η ∈ C∞

c (G),

δtY Iτη =
p∑

j=1

m∑
k=1

tj

τ j−1
Y R

k IτD
(k)
j η .

Proof. The first statement is exactly (b) of Lemma 3.1′ in Jerison’s paper [8]. For the
second statement, let Y =

∑p
i=1 Y

j with Y j ∈ Vj . Part (a) in the same Lemma 3.1′

[8] states that

Y jη =
m∑

k=1

Y R
k D

(k)
j η ,

for some differential operators D(k)
j . Since

Iτ (Y jη) = τ jY jIτη and IτY
R
k D

(k)
i η = τY R

k IτD
(k)
i η ,

our statement follows immediately. �

Proof of Lemma 2.1. Choose η ∈ C∞
c (G) such that

∫
G
η dµ = 1. For every g ∈ Gi

and t ∈ R, define
uλ(getYi) = (u ∗ I√λ2+t2η)(g)

Let us first check (2.1). We need to estimate |uλ(g)− u(g)| for g ∈ Gi. One has
clearly

uλ(g)− u(g) =
∫ λ

0

∂

∂τ

[
u ∗ Iτη

]
(g) dτ =

∫ λ

0

[
u ∗ ∂

∂τ
Iτη

]
(g) dτ .

Therefore,

uλ(g)− u(g) =
m∑

k=1

∫ λ

0

[
u ∗ (Y R

k Iτη
(k))

]
(g) dτ

= −
m∑

k=1

∫ λ

0

[
(Yku) ∗ (Iτη(k))

]
(g) dτ ,

where η(k) = D(k)η was provided by Lemma 2.2, and (2.3) justified the integration
by parts. Therefore, for some C,K <∞,

|uλ(g)− u(g)| =
∣∣∣∣ m∑
k=1

∫ λ

0

∫
G

Yku(h)Iτη(k)(h−1g) dµ(h) dτ
∣∣∣∣

≤ C

∫ λ

0

1
τQ

(∫
B(g,Kτ)

|∇bu(h)|dh
)

dτ .
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Now note that B(g,Kτ) ∩ etYiGi = ∅ when |t| ≥ κτ , for some κ <∞; therefore

|uλ(g)− u(g)| ≤ C

∫ λ

0

1
τQ

∫
]−κτ,κτ [

∫
Gi∩e−tY B(g,Kτ)

|∇bu(etYih)|dν(h) dtdτ .

Since ν(e−tY B(g,Kτ) ∩Gi) ≤ CτQ−1, we obtain, by Hölder’s inequality,

|uλ(g)− u(g)| ≤ C ′
∫ λ

0

τ
1
Q−1 1

2κτ

∫
]−κτ,κτ [

(∫
Gi

|∇bu(etYih)|Q dν(h)
) 1

Q

dtdτ

= QC ′λ
1
QM(I)(0) .

Now we prove (2.2). First one notes that for g ∈ Gi, t ∈ R,

(2.4) Yiuλ(getYi) = t√
λ2+t2

(u ∗ ∂
∂τ Iτη|τ=

√
λ2+t2)(g) ,

which can be estimated as above:

|Yiuλ(getYi)| ≤ C
t

(λ2 + t2)1−
1

2Q

M(I)(0) ≤ Cλ
1
Q−1M(I)(0).

Now, assume j 6= i. Since Gi is normal, etYiesYje−tYi ∈ Gi for every s ∈ R, whence
uλ(getYiesYj ) = (u ∗ I√λ2+t2η)(ge

tYiesYje−tYi) and

Yjuλ(getYi) = (Ad(etYi)Yj)(u ∗ I√λ2+t2η)(g)

=
(
u ∗ (Ad(etYi)Yj)I√λ2+t2η

)
(g)

=
(
u ∗ ( 1

t δt Ad(eYi)Yj)I√λ2+t2η
)
(g) .

By Lemma 2.2, this can be rewritten as

Yjuλ(getYi) =
p∑

j=1

m∑
k=1

u ∗ tj−1

(λ2 + t2)
j−1
2

Y R
k I√λ2+t2D

(k)
j η

= −
p∑

j=1

m∑
k=1

tj−1

(λ2 + t2)
j−1
2

Yku ∗ I√λ2+t2D
(k)
j η .

(2.5)

where ηk
j = D

(k)
j η is given by Lemma 2.2. Estimating each term as previously, one

obtains

|Yjuλ(getYi)| ≤ C

p∑
j=1

tj−1

(λ2 + t2)
j
2−

1
2Q

M(I)(0) ≤ C ′λ
1
Q−1M(I)(0) . �

3. Proof of the estimate

Lemma 2.1 brings us in position to prove Theorem 1:

Proof of Theorem 1. Decomposing ϕ and F as ϕi = 〈ϕ, Yi〉 and F =
∑m

i=1 FiYi, one
has ∫

G

〈ϕ, F 〉dµ =
m∑

i=1

∫
G

ϕiFi dµ .

Fixing now 1 ≤ i ≤ m, one has,∫
G

ϕiFi dµ =
∫
R

∫
Gi

Fi(etYih)ϕi(etYih) dν(h) dt .
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Let us estimate the inner integral. For simplicity, first assume that t = 0. For every
λ > 0, one has ∫

Gi

Fiϕ
i dν =

∫
Gi

Fi(ϕi − ϕi
λ) dν +

∫
Gi

Fiϕ
i
λ dν ,

where ϕi
λ is given by Lemma 2.1. On the one hand, one has∫

Gi

Fi (ϕi − ϕi
λ) dν ≤ ‖Fi‖L1(Gi)‖ϕ

i − ϕi
λ‖L∞(Gi)

≤ Cλ
1
Q ‖Fi‖L1(Gi)M(I)(0) .

(3.1)

On the other hand,∫
Gi

Fiϕ
i
λ dν =

∫
Gi

∫ 0

−∞

∂

∂s

[
Fi(hesYi)ϕi

λ(hesYi)
]
dsdν(h)

=
∫

Gi

∫ 0

−∞
Yi

[
Fi(hesYi)ϕi

λ(hesYi)
]
dsdν(h)

=
∫ 0

−∞

∫
Gi

[
FiYiϕ

i
λ + ϕi

λYiFi

]
(hesYi) dν(h) ds .

Since YiFi = −
∑

j 6=i YjFj , this becomes∫
Gi

Fi(h)ϕi
λ(h) dν(h) =

∫ 0

−∞

∫
Gi

[
FiYiϕ

i
λ −

∑
j 6=i

ϕi
λYiFi

]
(hesYi) dν(h) ds .

Since Yj ∈ gi when j 6= i, and since ν is right-invariant on h, integration by parts on
Gi yields ∫

Gi

Fi(h)ϕi
λ(h) dν(h) =

m∑
j=1

∫ 0

−∞

∫
Gi

[
FjYjϕ

i
λ

]
(hesYi) dν(h) ds .

We have thus the bound∣∣∣∫
Gi

Fi(h)ϕi
λ(h) dν(h)

∣∣∣ ≤ ‖F‖L1(G)‖∇bϕ
i
λ‖L∞(G)

≤ Cλ
1
Q−1‖F‖L1(G)M(I)(0) .

(3.2)

Choosing now

(3.3) λ =
‖F‖L1(G)

‖Fi‖L1(Gi)
,

one obtains by (3.1) and (3.2)∣∣∣∫
Gi

Fiϕ
i dν

∣∣∣ ≤ C‖F‖
1
Q

L1(G)‖Fi‖
1− 1

Q

L1(Gi)
M(I)(0) .

By translation of this inequality we obtain, for every t ∈ R,∣∣∣∫
Gi

Fi(etYih)ϕi(etYih) dν(h)
∣∣∣ ≤ C‖F‖

1
Q

L1(G)‖Fi‖
1− 1

Q

L1(etYiGi)
M(I)(t) .
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Integrating this inequality on R, one obtains by Hölder’s inequality∣∣∣∫
G

Fiϕ
i dµ

∣∣∣ ≤ ∫ ∞

−∞

∣∣∣∫
Gi

Fi(etYih)ϕi(etYih) dν(h)
∣∣∣ dt

≤ C‖F‖
1
Q

L1(G)

(∫ ∞

−∞
‖Fi‖L1(etYiGi) dt

)1− 1
Q

(∫ ∞

−∞

[
M(I)(t)

]Q dt
) 1

Q

≤ C ′‖F‖L1(G)‖∇bϕ
i‖LQ(G) ,

since by the maximal function theorem (see e.g. [10]), there exists C ′′ <∞ such that

‖M(I)‖LQ(R) ≤ C ′′‖I‖LQ(R) . �

4. Elliptic regularity

Theorem 2 follows from Theorem 1 and the theory of regularity on nilpotent ho-
mogeneous groups.

Proof of Theorem 2. By Theorem 1, one can write Fi =
∑m

k=1 Ykhki, with

‖hki‖LQ/(Q−1)(G) ≤ C‖F‖L1(G) .

Therefore,

YjUi = YjG ∗
m∑

k=1

Ykhkj =
m∑

k=1

YjYk(G ∗ hij)

where G is the fundamental solution of −∆b. By the analogue of the Calderón–
Zygmund inequality for nilpotent homogeneous groups [4, 9, 5],

‖YjYk(G ∗ hij)‖LQ/(Q−1)(G) ≤ C
m∑

k=1

‖hkj‖LQ/(Q−1)(G) ≤ C ′‖F‖L1(G) .

This concludes the proof. �

5. Further inequalities

5.1. L1–divergence. Theorem 1 can be extended to the case where the divergence
of F is in L1:

Theorem 3. If ϕ ∈ C∞
c (G,T ∗G) is a section of the cotangent bundle and the vector

field F ∈ L1(G;TbG) and divb F = f ∈ L1(G) in the weak sense, i.e.∫
G

Fψ dν = −
∫

G

fψ dν

then ∣∣∣∫
G

〈ϕ, F 〉dµ
∣∣∣ ≤ C(‖F‖L1(G)‖∇bϕ‖LQ(G) + ‖divb F‖L1(G)‖ϕ‖LQ(G)) .

This version of the inequality is more stable. It can thus be localized by multipli-
cation by cutoff functions. In particular, that under the assumptions of Theorem 1 ,
if G is a multiply connected Lie group, one has the inequality∫

G

〈ϕ, F 〉 ≤ C‖F‖L1(G)(‖ϕ‖LQ(G) + ‖∇bϕ‖LQ(G)) .
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Sketch of the proof of Theorem 3. The proof follows the strategy of the proof of The-
orem 1 and requires the following refinement in Lemma 2.1:

‖uλ‖L∞(G) ≤ Cλ
1
Q−1M(J)(0) ,

where

J(t) =
(∫

Gi

|u(etYih)|Q dν(h)
) 1

Q

.

One obtains in place of (3.2)∣∣∣∫
Gi

Fi(h)ϕi
λ(h) dν(h)

∣∣∣≤ Cλ
1
Q−1

(
‖F‖L1(G)M(I)(0) + ‖divb F‖L1(G)M(J)(0)

)
.

Choosing again λ given by (3.3), one has∣∣∣∫
Gi

Fi(h)ϕi(h) dν(h)
∣∣∣

≤ C‖Fi‖
1− 1

Q

L1(Gi)

(
‖F‖

1
Q

L1(G)M(I)(0) +
‖divb F‖L1(G)

‖F‖(Q−1)/Q
L1(G)

M(J)(0)
)
.

One concludes then as in the proof of Theorem 1. �

5.2. Fractional spaces. In Theorem 1, we can also replace ‖∇bϕ‖LQ(G) by a frac-
tional Sobolev–Slobodetskĭı norm. In order to define the latter, the group G is en-
dowed by a norm function ρ : G→ R+ such that

ρ(δτg) = τρ(g) ,

ρ(gh) ≤ c(ρ(g) + ρ(h)) ,

ρ(g−1) ≤ cρ(g) ,

for some constant c > 0 (see e.g. [10, Chapter XIII, 5.1.3]). One can choose for
example

ρ(g) = inf{λ > 0 : g ∈ B(e, λ)} .

Definition 5.1. Let u ∈ L1
loc(G) and 0 < α < 1. We say that u ∈ Ṡα,q(G) if

‖u‖q

Ṡα,q
=

∫
G

∫
G

|u(h)− u(g)|q

ρ(g−1h)Q+αq
dµ(g) dµ(h) < +∞ .

The generalization of Theorem 1 to fractional spaces is

Theorem 4. Let α ∈]0, 1[ and p ≥ 1 be such that αq = Q. There exists Cα,q > 0
such that if ϕ ∈ C∞

c (G,T ∗G) is a section of the cotangent bundle and the vector field
F ∈ L1(G;TbG) is divergence-free, then∣∣∣∫

G

〈ϕ, F 〉dµ
∣∣∣ ≤ Cα,q‖F‖L1(G)‖ϕ‖Ṡα,q(G) .

The new ingredient needed to prove Theorem 4 is
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Lemma 5.2. Let α ∈]0, 1[ and q ≥ 1. If αq > Q− 1, there exists Cα,q > 0 such that,
for every u ∈ C∞

c (G), λ > 0, and 1 ≤ i ≤ m, there exists uλ ∈ C∞(G) such that

‖u− uλ‖L∞(Gi) ≤ Cα,qλ
α−Q−1

q M(Iα,q)(0) ,(5.1)

‖∇buλ‖L∞(G) ≤ Cα,qλ
α−Q−1

q −1M(Iα,q)(0) ,(5.2)

where

Iα,q(t) =
(∫

Gi

∫
G

|u(etYih)− u(g)|q

ρ(g−1h)Q+αq
dµ(g) dν(h)

) 1
q

.

Proof. Define uλ as in Lemma 2.1. In order to check (5.1), we estimate uλ(g)− u(g)
for g ∈ Gi. One has clearly

uλ(g)− u(g) =
∫ λ

0

∂

∂τ

[
u ∗ Iτη

]
(g) dτ =

∫ λ

0

[
u ∗ ∂

∂τ
Iτη

]
(g) dτ .

One writes now
∂

∂τ
Iτη =

1
τ
Iτ η̃ ,

where

η̃ =
∂

∂τ
Iτη

∣∣∣
τ=1

.

Note that ∫
G

η̃ dµ =
d

dτ

∫
G

Iτη dµ =
d

dτ
1 = 0 .

This brings us to

uλ(g)− u(g) =
∫ λ

0

∫
G

u(h)
1
τ
Iτ η̃(h−1g) dµ(h) dτ

=
∫ λ

0

∫
G

1
µ(B(g, τ))

∫
B(g,τ)

[u(h)− u(k)]

1
τ
Iτ η̃(h−1g) dµ(k) dµ(h) dτ .

Thus, for some K > 0,

|uλ(g)− u(g)|

≤ C

∫ λ

0

1
τ2Q+1

(∫
B(g,Kτ)

∫
B(g,τ)

|u(h)− u(k)|dµ(k) dµ(h)
)

dτ

≤ C ′
∫ λ

0

τα+ Q
q

τ2Q+1

(∫
B(g,Kτ)

∫
B(g,τ)

|u(h)− u(k)|
ρ(k−1h)

Q
q +α

dµ(k) dµ(h)
)

dτ .

Now note that B(g,Kτ) ∩ etYiGi = ∅ when |t| ≥ κτ , for some κ <∞. Therefore

|uλ(g)− u(g)| ≤ C

∫ λ

0

τα+ Q
q

τ2Q+1

∫
]−κτ,κτ [

∫
Gi∩e−tYiB(g,Kτ)∫

B(g,τ)

|u(h)− u(k)|
ρ(k−1h)

Q
q +α

dµ(k) dν(h) dtdτ .
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Since ν(e−tY B(g,Kτ) ∩Gi) ≤ CτQ−1, we obtain, by Hölder’s inequality,

|uλ(g)− u(g)| ≤ C ′
∫ λ

0

τα+ Q
q +(2Q−1)(1− 1

q )

τ2Q

1
2κτ∫

]−κτ,κτ [

(∫
Gi

∫
B(g,τ)

|u(h)− u(k)|q

ρ(k−1h)Q+αq
dµ(k) dν(h)

) 1
q

dtdτ

= C ′′λα−Q−1
q M(Iα,q)(0) .

(The condition αq > Q − 1 was used to integrate τα−Q−1
q −1.) The proof of (5.2) is

similar. �

The method above also works if we define the Sobolev spaces of fractional order
using the Triebel–Lizorkin definition [7, 6].

5.3. Higher order conditions. In the Euclidean case, estimates similar to Theo-
rem 1 still hold when the condition on the divergence is replaced by a condition on
higher-order derivatives [11]. The same ideas apply to nilpotent homogeneous groups.

We consider sections given by maps F : G →
⊗k

TbG, where
⊗k is the tensor

product. These sections can be identified as differential operators of order k, given
by

Fu(g) =
∑

i1,...,ik∈{1,...,m}

Fi1···ik
(g) (Yi1 · · ·Yik

u)(g) .

We shall call such sections k–order differential operators. Now we consider
⊗k

T ∗b G =
(
⊗k

TbG)∗, and Sym(
⊗k

T ∗b G), the vector subspace of
⊗k

T ∗b G consisting of tensors
which are invariant under the action of the symmetric group Sk.

Theorem 5. Let k ≥ 1, F ∈ L1(G;
⊗k

TbG) and ϕ ∈ C∞
c (G,Sym(

⊗k
T ∗b G)). If for

every ψ ∈ C∞
c (G), ∫

G

Fψ dµ = 0 ,

then, ∣∣∣∫
G

〈ϕ, F 〉dµ
∣∣∣ ≤ Ck‖F‖L1(G)‖∇bϕ‖LQ(G) .

A restriction appears in the statement of Theorem 5: for every g ∈ G, ϕ(g) should
be a symmetric k–linear form. On Rn this restriction is not really restrictive, since
all vector fields commute, so that every k–order differential operator is symmetric.
This is not any more the case on a noncommutative group, hence the question arises
whether the restriction to symmetric k–linear forms is essential. In the particular
setting of the three-dimensional Heisenberg group this gives:

Open problem 2. Consider the Heisenberg group H1, which is a three-dimensional
nilpotent homogeneous group such that X = Y1, Y = Y2 and T = [X,Y ]. Assume
that Fi ∈ L1(H1), for 1 ≤ i ≤ 4. If

TF1 +X2F2 + Y 2F3 + (XY + Y X)F4 = 0,

then, by Theorem 5, Fi ∈ Ṡ−1,4/3(H1), for i = 2, 3, 4. Does one also have F1 ∈
Ṡ−1,4/3(H1)?
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The next Lemma is the essential step in the proof of Theorem 5.

Lemma 5.3. If k ≥ 1, (Fi1···ik
)1≤il≤m ∈ L1(G) and

(5.3)
∑

i1,...,ik∈{1,...,m}

Yi1 . . . Yik
Fi1...ik

= 0 ,

then for every u ∈ C∞
c (G),∣∣∣∫

G

F1···1u dµ
∣∣∣ ≤ Ck‖F‖L1‖∇bu‖ .

Proof of Theorem 5. Since k–linear symmetric forms ω of the form

ω(X1, . . . , Xk) = X∗(X1) · · ·X∗(Xk),

for Xi ∈ g and X∗ ∈ g∗ generate the finite-dimensional space Sym(
⊗k

g∗), it is suffi-
cient to prove a similar estimate for every ϕ(g;X1, . . . , Xk) = u(g)X∗(X1) · · ·X∗(Xk).
Without loss of generality, we can assume that the kernel of X∗ is spanned by
Y2, . . . , Ym, and that X∗(Y1) = 1. Writing F as

F =
∑

i1,...,ik∈{1,...,m}

Fi1···ik
Yi1 · · ·Yik

,

with Fi1···ik
∈ L1(G), one obtains∫

G

〈ϕ, F 〉dµ =
∫

G

uF1···1 dµ .

The functions Fi1···ik
satisfy the assumptions of Lemma 5.3, which yields the conclu-

sion. �

We now have to prove Lemma 5.3. The main ingredient is an improvement of
Lemma 2.1 in which the decay of higher-order derivatives of uλ is controlled.

Lemma 5.4. There exists C > 0 such that, for every u ∈ C∞
c (G), λ > 0, and

1 ≤ i ≤ m, there exists uλ ∈ C∞(G) such that for every t ∈ R

‖u− uλ‖L∞(Gi) ≤ Cλ
1
QM(I)(0) ,(5.4)

‖∇k
buλ‖L∞(GietYi ) ≤

Ck(√
λ2 + t2

)k− 1
Q

M(I)(0) .(5.5)

Proof of Lemma 5.4. Define uλ as in the proof of Lemma 2.1. One still has (5.4).
Now let us prove (5.5). Let i1, . . . , ik ∈ {1, . . . ,m}. One has

Yi1 · · ·Yik
uλ(getYi) = (u ∗ ηt

i1···ik
)(g) ,

where ηt
i1···il

is defined recursively by ηt = I√λ2+t2η and

ηt
i1···il+1

=

{
∂
∂tη

t
i2···il+1

if i1 = i,
[Ad(etYi)Yi1 ]η

t
i2···il+1

if i1 6= i.
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We now claim that for every l ≥ 0 and i1, . . . , il ∈ {1, . . . ,m}, there exists q ≥ 1,
η
(j)
r ∈ C∞

c (G) and θr ∈ C∞(R+), with 1 ≤ r ≤ q and 1 ≤ j ≤ m such that

(5.6) ηt
i1···il

=
∑

0≤r≤q
1≤j≤m

θr(t)I√λ2+t2Y
R
j η(j)

p ,

where

θ(k)
r (t) ≤ Ci1···il,r,k

(λ2 + t2)
r+k
2

.

Note that the constants Ci1···il,r,k are independent of t and λ.
Indeed, for l = 1, (5.6) follows respectively from (2.4) together with Lemma 2.2,

and from (2.5). Assume now that (5.6) holds for l ≥ 1. One has in particular

ηt
i2···il+1

=
∑

0≤r≤q
1≤j≤m

θrI√λ2+t2Y
R
j η(j)

p .

If i1 = i, one has, by Lemma 2.2,

ηt
i1i2···il+1

=
∂

∂t

∑
0≤r≤q
1≤j≤m

θr(t)I√λ2+t2Y
R
j η(j)

r

=
∑

0≤r≤q
1≤j≤m

θ′r(t)I√λ2+t2Y
R
j η(j)

r +
∑

0≤p≤q
1≤j≤m

θr(t)
∂

∂t
I√λ2+t2Y

R
j η(j)

r

=
∑

0≤r≤q
1≤j≤m

θ′r(t)I√λ2+t2Y
R
j η(j)

r +
∑

0≤r≤q
1≤k≤m

θr(t)
t

λ2 + t2
I√λ2+t2Y

R
k η̃(k)

r ,

where
η̃(k)

r = D(k)
∑

1≤j≤m

Y R
j η(j)

r ,

from which (5.6) follows. If i1 6= i, by Lemma 2.2 again

ηt
i1i2···il+1

= 1
t [δt Ad(eYi)Yi1 ]

∑
0≤r≤q
1≤j≤m

θr(t)I√λ2+t2Y
R
j η(j)

r

=
∑

0≤r≤q
1≤j≤m

θr(t)I√λ2+t2Y
R
j η̃(j)

r ,

where

η̃(j)
r =

∑
1≤k≤m
1≤s≤p

ts−1

(λ2 + t2)
s
2
D

(j)
i1
Y R

k ηk
r .

Thus (5.6) is established, and brings us in position to conclude as in the proof of
Lemma 2.1 that

|Xi1 · · ·Xijuλ(getYi)| = |(u ∗ ηt
i1···ik

)(g)| ≤ C(λ2 + t2)
1

2Q−
k
2M(I)(0) . �

We end this section by the proof of Lemma 5.3.
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Proof of Lemma 5.3. As in the proof of Theorem 1, we need to estimate∫
G1

F1···1uλ dν

were uλ is now given by Lemma 5.4 instead of Lemma 2.1. One has∫
G1

F1···1uλ dν =
∫

G1

∫ 0

−∞
F1···1(hesY1)

∂k

∂sk

[ sk−1

(k − 1)!
uλ(hesY1)

]
dsdν(h)

+ (−1)k

∫
G1

∫ 0

−∞

sk

k!
uλ(hesY1)

∂k

∂sk
F1···1(hesY1) dsdν(h) .

The first term gives∫
G1

∫ 0

−∞
F1···1(hesY1)

∂k

∂sk

[ sk−1

(k − 1)!
uλ(hesY1)

]
dsdν(h)

=
k∑

l=0

(
k

l

) ∫
G1

∫ 0

−∞
F1···1(hesY1)

sl−1

(l − 1)!
Y l

1uλ(hesY1) dsdν(h) .

By Lemma 5.4, one has∫
G1

∫ 0

−∞
F1···1(hesY1)

sl−1

(l − 1)!
Y l

1uλ(hesY1) dsdν(h)

≤ C

∫ 0

−∞
‖F1...1‖L1(esY1G1)

sl−1

(λ2 + s2)
l
2−

1
2Q

M(I)(0) ds

≤ C ′λ
1
Q−1‖F1···1‖L1(G)M(I)(0) .

For the other term, by the assumption (5.3), one has∫
G1

∫ 0

−∞

sk−1

(k − 1)!
uλ(hesY1)

∂k

∂sk
F1···1(hesY1) dsdν(h)

= −
∑

(i1,··· ,ik) 6=(1,...,1)

∫
G1

∫ 0

−∞

sk−1

(k − 1)!
uλ(hesY1)

Yi1 . . . Yik
Fi1...ik

(hesY1) dν(h) ds .

One has then∫
G1

∫ 0

−∞

sk−1

(k − 1)!
uλ(hesY1)Yi1 . . . Yik

Fi1...ik
(hesY1) dν(h) ds

= (−1)k

∫
G1

∫ 0

−∞
Fi1...ik

(hesY1)Ŷik
. . . Ŷi1

[ sk−1

(k − 1)!
uλ

]
(hesY1) dν(h) ds ,

where Ŷj = ∂
∂s + Y1 if j = 1 and Ŷj = Yj otherwise. One obtains then as previously∣∣∣∫

G1

∫ 0

−∞
Fi1...ik

(hesY1)Ŷik
. . . Ŷi1

[ sk−1

(k − 1)!
uλ

]
(hesY1) dν(h) ds

∣∣∣
≤ C‖F‖L1(G)M(I)(0)λ

1
Q−1 .

The proof ends as the proof of Theorem 1. �
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