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A REMARK ON SOLITON-POTENTIAL INTERACTIONS FOR
NONLINEAR SCHRÖDINGER EQUATIONS

Galina Perelman

Abstract. We study the interaction of small amplitude solitons with a repulsive po-

tential V for the nonlinear Schrödinger equation iψt = −ψxx + V (x)ψ + F (|ψ|2)ψ. We

show that in the case where the nonlinearity F (ξ) is L2 critical at zero, the incoming
soliton is splitted by V into two outgoing waves that radiate to zero as t→ +∞.

Introduction

In this note we consider the nonlinear Schrödinger equation

(1) iψt = −ψxx + V (x)ψ + F (|ψ|2)ψ, (t, x) ∈ R× R,

where V is a “repulsive” potential, rapidly decaying as |x| → ∞, and F is a smooth
function that satisfies F (ξ) = −ξ2 +O(ξ3), as ξ → 0.

The free NLS:

(2) iψt = −ψxx + F (|ψ|2)ψ

possesses solutions of special form - solitary waves (or, shortly, solitons):

eiΦϕ(x− b(t), E),

Φ = ωt+ γ +
1
2
vx, b(t) = vt+ c, E = ω +

v2

4
> 0,

where ω, γ, c, v ∈ R are constants and ϕ is the ground state, that is a smooth positive
even exponentially decreasing solution of the equation

(3) −ϕxx + Eϕ+ F (ϕ2)ϕ = 0.

In this note we shall be concerned with the solutions of (1) that behave as t → −∞
like a soliton eiΦϕ(x − b(t), E), v 6= 0, our goal being to understand the collision
between the soliton and the potential V and to determine what happens as t→ +∞.
We show that in the case of small amplitude solitons (E � 1 depending on v) the
interaction with the potential leads to the splitting of the incoming soliton into two
outgoing parts, that for large positive t propagate independently according to free
NLS flow (2) and radiate to zero as t → +∞. The splitting of the incoming soliton
is completely controlled by the linear flow e−itL, L = −∂2

x + V : in the interaction
region the effects of the nonlinearity F can be neglected, a small amplitude soliton
behaves as a slowly modulated plane wave e−iv2t/4+ivx/2 and splits into a reflected
and a transmitted parts accordingly to the linear scattering theory. For the first time
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this phenomenon was observed by J.Holmer, J.Marzuola, M.Zworski [3], [4] in the
context of the cubic NLS with an external delta potential:

iψt = −ψxx + qδ(x)ψ − |ψ|2ψ.
The radiation of the solution to zero in the post interaction region (t→ +∞) is due
to the L2 critical nature of the nonlinearity F .

The structure of this paper is briefly as follows. It consists of two sections. In the
first section we introduce some preliminary objects and state the main results. The
second one contains the complete proofs of the indicated results.

1. Background and statement of the results

1.1. Assumptions and preliminary facts. Consider the nonlinear Schrödinger
equation

(1.1) ψt = −ψxx + V (x)ψ + F (|ψ|2)ψ, (t, x) ∈ R× R

We assume the following.

Hypothesis H1. V (x) is a real smooth exponentially decaying function:
|(∂lV )(x)| ≤ Ce−γ|x|, l = 0, 1, γ > 0, and such that the operator L = −∂2

x + V has
no eigenvalues.

Hypothesis H2. F is a C∞ function, that satisfies: F (ξ) = −ξ2 +O(ξ3), as ξ → 0.

Under assumption (H2) equation (2), for E sufficiently small, has a unique positive
even smooth exponentially decreasing solution ϕ(x,E): ϕ(x,E) ∼ C(E)e−

√
E|x|, as

|x| → ∞. Moreover, as E → 0, ϕ(x,E) admits an asymptotic expansion of the
following form:

(1.2) ϕ(x,E) = ε1/2ϕ̂(εx, ε), ϕ̂(y, ε) =
∑
k=0

εkϕk(y), ε =
√
E,

ϕ0(y) =
31/4

ch 1/22y
, |ϕk(y)| ≤ Cke

−|y|.

The asymptotic expansion (1.2) holds in the sense:

|ϕ̂(y, ε)−
N∑

k=0

εkϕk(y)| ≤ CNε
N+1e−|y|,

and can be differentiated any number of times with respect to y.
Next we recall some standard estimates of the linear evolution e−itL that will be

used later. e−itL is an unitary group in L2 and since V is bounded, one has trivially

‖e−itLf‖Hk(R) ≤ C‖f‖Hk(R), k = 0, 1.

Furthermore, under assumption (H1), the following Strichartz estimates hold.

Proposition 1.1. Under assumption (H1) , one has for k = 0, 1:

‖e−itLf‖Lr
t (W k,p

x ) ≤ C‖f‖Hk ,

‖
∫ t

0

dse−i(t−s)LF (s)‖Lr
t (W k,p

x ) ≤ C‖F‖
La′

t (W k,b′
x )

,
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provided (r, p), (a, b) are admissible, i.e. 4 < r ≤ ∞ and 2
r + 1

p = 1
2 and the same for

(a, b).

By way of explanation we remark that these Strichartz inequalities can be deduced
in a standard way from the following dispersive estimates:

‖e−itLf‖W k,p ≤ |t|−
1
2+ 1

p ‖f‖W k,p′ , 2 ≤ p ≤ ∞, k = 0, 1,

see [2], [5], [6] for the proofs.
Next we introduce some notions related to the scattering problem for the operator

L. Let f(x, k), g(x, k) be Jost solutions corresponding to L, i.e solutions of the
equation (L− k2)u = 0, k ∈ R, with the following asymptotic behavior as x→ ±∞

(1.3) f(x, k) = eikx(1 +O(e−γx)), x→ +∞,

(1.4) g(x, k) = e−ikx(1 +O(eγx)), x→ −∞.

The solutions f, g are smooth function of x and k and the asymptotic representations
(1.3), (1.4) can be differentiated with respect to both variables.

Here and below we use γ as a general notation for the positive constants that may
change from line to line.

For k 6= 0, k ∈ R, f(x, k), f(x,−k) = f(x, k) and g(x, k), g(x,−k) = g(x, k) form
two basises in the space of the solutions that are related by the transition matrix
T (k): (

f(k)
f(−k)

)
= T (k)

(
g(−k)
g(k)

)
, T (k) =

(
a(k) b(k)
b(k) a(k)

)
, detT (k) = 1.

We denote by r(k)and s(k) the reflection and transmission coefficient:

r(k) =
b(k)
a(k)

, s(k) =
1

a(k)
, |r(k)|2 + |s(k)|2 = 1.

Throughout this paper we shall suppose that r 6≡ 0.

1.2. Main results.

Theorem 1.1. Let v 6= 0. Then for ε sufficiently small (depending on v) equation
(1.1) has a unique solution ψ(t) that satisfies as t→ −∞
(1.5)

‖ψ(t)− wv,ε(t)‖H1 = O(eγεt), wv,ε(x, t) = eiωt+ivx/2ϕ(x− vt, ε2), ω = −v
2

4
+ ε2.

If r(v/2) 6= 0 then ψ is global (ψ(t) ∈ C(R,H1)) and is purely dispersive as t→ +∞:
there exists ψ+ ∈ H1 such that

(1.6) ‖ψ(t)− e−itL0ψ+‖H1 → 0, t→ +∞.

Here L0 = −∂2
x.

A more detailed description of the solutions in the post-interaction region is given
by the following theorem.
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Theorem 1.2. Let v 6= 0 and such that r(v/2) 6= 0. Then for t ≥ T , T = ε−3/2 the
solution ψ(t) of (1.1) constructed in Theorem 1.1 admits the following representation:

ψ(x, t) = ψr(x, t) + ψl(x, t) + η(x, t),

ψr(x, t) = e−iv2t/4+ivx/2ε1/2z+(ε(x− vt), ε2t),

ψl(x, t) = e−iv2t/4−ivx/2ε1/2z−(ε(x+ vt), ε2t),
Here z±(y, τ) are the solutions of the L2 critical NLS:

iz±τ = −z±yy − |z±|4z±,

z±|τ=0 = α±ϕ0(y),

α+ = s(v/2), α− = r(v/2),
and the remainder η satisfies

‖η(t)‖L∞([T,∞),H1) + ‖η‖L6([T,∞),W 1,6) ≤ Cε1/2.

Remarks. 1. The powers ε−3/2 in the definition of T and ε1/2 in the estimate of
η are not optimal. One can replace them by ε−1−δ and ε1−δ respectively, with any
δ > 0.

2. Since |α±| < 1, ψr, ψl exist globally and scatter as t→∞.

2. Proofs

In this section we prove theorems 1.1, 1.2. Since free NLS (2) is invariant under
the transformation x→ −x it is sufficient to consider the case v > 0.

We split the analysis into two parts by considering separately the time interval
(−∞, T ], T = ε−3/2, where the interaction takes place, and the post-interaction
region [T,+∞) where the effects of the potential become negligible.

2.1. Cauchy problem with initial conditions at −∞. We are interested in the
solution of (1.1) with asymptotic behavior (1.5). In this subsection we prove the
existence of such a solution and analyse its behavior for times t ≤ T .

Proposition 2.1. There exist a unique solution ψ(t) of (1.1) such that

‖ψ(t)− wv,ε(t)‖H1 = O(eγεt), t→ −∞.

Moreover,
(i) ψ(t) ∈ C((−∞, T ],H1) and admits the estimates

(2.1) ‖ψ(t)− wv,ε(t)‖H1 ≤ C
eγεt

1 + eγεt
, ‖ψ(t)‖∞ ≤ Cε1/2, t ≤ T ;

(ii) at t = T , ψ has the following form

(2.2) ψ(x, T ) = eiωT (ψ0(x) + h0(x)),

ψ0(x) = α−ε
1/2e−ivx/2ϕ0(ε(x+X0)) + α+ε

1/2eivx/2ϕ0(ε(x−X0)), X0 = vT,

where the remainder h0 satisfies

(2.3) ‖h0‖H1 ≤ Cε1/2.
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Proof. We start by constructing a suitable approximate solution W (t) of (1.1),
(1.5). W (t) is obtained as a perturbation of the profile W 0(t) defined as follows.

W 0(x, t) = eiωtε1/2

(
ϕ(x− vt, ε2)g̃(x,−v/2) + r(v/2)ϕ(x+ vt, ε2)g̃(x, v/2)

+s(v/2)ϕ(x− vt, ε2)f̃(x, v/2)
)
.

Here f̃(x, k) = θ+(x)f(x, k), g̃(x, k) = θ−(x)g(x, k), θ± being the cut off function
that satisfy: θ± ∈ C∞(R), θ+ + θ− = 1, θ±(x) = 1, ±x ≥ 1.

It is easy to check that W 0(t) has the following properties. First, W 0 satisfies
estimates (2.1), (2.2), (2.3) stated in proposition 2.1. More precisely,

(2.4) ‖W 0(t)− wv,ε(t)‖H1 ≤ C
eγεt

1 + eγεt
, ‖∂l

xW
0(t)‖∞ ≤ Cε1/2, l = 0, 1, t ∈ R,

(2.5) ‖W 0(x, T )− eiωTψ0‖H1 ≤ Cε.

Second, W 0 solves equation (1.1) up to the error term

R0 ≡ −iW 0
t + LW0 + F (|W 0|2)W0

of the following structure:

R0 = R′0 +R′′0 , R′0 = eiωtε3/2ϕ′0(εvt)e(x),

‖R′′0 (t)‖H1 ≤ Cε2
eγεt

1 + eγεt
, t ∈ R.

Here e is an exponentially decaying function of x only. It is possible to give an explicit
expression for it but it is useless for our purposes.

We now construct W by adding to W 0 a correction W 1 that allows to get rid of
R′0 and thus to improve the approximation. Define W 1 as follows.

W 1(x, t) = eiωtε3/2 (ϕ′0(ε(x+ vt))θ−(x)− ϕ′0(ε(x− vt))θ+(x))H(x),

where H = −(L − v2/4 − i0)−1e. H is in C∞(R) and has the following asymptotic
behavior at infinity:

H(x) = C±e
±ivx/2(1 +O(e∓γx)), x→ ±∞.

A similar asymptotic representations holds for the derivatives ∂k
xH, k = 0, 1. This

implies, in particular, that

(2.6) ‖W 1(t)‖H1 ≤ Cε
eγεt

1 + eγεt
, ‖∂l

xW
0(t)‖∞ ≤ Cε3/2, l = 0, 1, t ∈ R.

Set
W = W 0 +W 1.

It is not difficult to check that W solves (1.1) up to the error R ≡ −iWt + LW +
F (|W |2)W that satisfies

(2.7) ‖R(t)‖H1 ≤ Cε2
eγεt

1 + eγεt
, t ∈ R.

We are in position now to prove the existence of exact solution which for t ∈
(−∞, T ] is close to W (t). We do it by applying a standard fixed point argument.
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More precisely, we seek a solution ψ(t) of (1.1) of the form ψ(t) = W (t)+χ(t), which
leads to the equation

(2.8) iχt = Lχ+N(χ) +R,

N(χ) = F (|W + χ|2)(W + χ)− F (|W |2)W.

For χ satisfying ‖χ‖H1 ≤ C, one has

(2.9) ‖N(χ)‖H1 ≤ C(ε2‖χ‖H1 + ‖χ‖5H1),

(2.10) ‖N(χ1)−N(χ2)‖H1 ≤ C‖χ1 − χ2‖H1(ε2 + ‖χ1‖4H1 + ‖χ2‖4H1).

We rewrite (2.8) as an integral equation

χ(t) = (Jχ)(t) ≡ −i
∫ t

−∞
dse−i(t−s)L(N(χ(s)) +R(s)).

and view J is a mapping in the space C((−∞, T ],H1)) equipped with the norm

‖|χ|‖ = sup
τ≤T

(1 + e−γετ )‖χ(τ)‖H1 .

It follows from (2.7), (2.9), (2.10) that

‖|Jχ|‖ ≤ K
(
ε1/2 + ε1/2‖|χ|‖+ ε−3/2‖|χ|‖5

)
,

‖|J(χ1)− J(χ2)|‖ ≤ K1‖|χ1 − χ2|‖
(
ε1/2 + ε−3/2(‖|χ1|‖4 + ‖|χ2|‖4)

)
,

with some constants K, K1. This means that J is a contraction of the ball ‖|χ|‖ ≤
2Kε1/2 into itself, provided ε is sufficiently small. Consequently, it has a unique fixed
point χ that satisfies

(2.11) ‖χ(t)‖H1 ≤ Cε1/2 eγεt

1 + eγεt
, t ≤ T.

Combining (2.4), (2.5), (2.6), (2.11) one obtains estimates (2.1), (2.3) of proposition
2.1.

To prove the uniqueness, one can use a similar fixed point argument, applying it
to the integral equation

χ̃ = −i
∫ t

−∞
dse−i(t−s)LÑ(χ̃(s)),

χ̃ = ψ − wv,ε, Ñ(χ̃) = F (|wv,ε + χ̃|2)(wv,ε + χ̃)− F (|wv,ε|2)wv,ε.

This completes the proof of proposition 2.1. �
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2.2. Post- interaction region t ≥ T . By proposition 1.1 we are left with the
following Cauchy problem:

(2.12) iψt = Lψ + F (|ψ|)ψ, t ≥ 0,

(2.13) ψ|t=0 = ψ0 + h0 ∈ H1,

ψ0 = α−e
−ivx/2ε1/2ϕ0(ε(x+X0)) + α+e

ivx/2ε1/2ϕ0(ε(x−X0))
‖h0‖H1 ≤ Cε1/2, X0 = vε−3/2.

The initial value problem for equation (2.12) is known to be locally well posed inH1

(see, for example, [1]). Thus, (2.12), (2.13) has a unique solution ψ(t) ∈ C([0, T ∗),H1)
with some T ∗ > 0 and either T ∗ = +∞ (the solution is global) or T ∗ <∞ and then
‖ψ(t)‖H1 → ∞ as t → T . Furthermore, the Strichartz estimates of proposition 1.1
(with r = a = 6) imply in a standard way that ψ ∈ L6([0, t1],W 1,6) for any t1 < T ∗

and if ψ(t) is global and uniformly bounded in H1 and has in addition a finite global
Strichartz norm ‖ψ‖L6(R+,W 1,6) then it scatters as t→ +∞: there exists a scattering
state ψ∞ ∈ H1 such that

(2.14) ‖ψ(t)− e−iLtψ∞‖H1 → 0, t→ +∞.

Observe also that using the linear scattering theory one can rewrite (2.14) in the form

‖ψ(t)− e−iL0tψ+‖H1 → 0, t→ +∞,

where ψ+ ∈ H1 is related to ψ∞ by means of the wave operator corresponding to the
pair L0, L. In light of this discussion the proof of theorem 1.1 is reduced to showing
that for all t1 < T ∗ one has a uniform bound

(2.15) ‖ψ(t)‖L∞([0,t1],H1) + ‖ψ‖L6([0,t1],W 1,6) ≤ C.

The rest of the subsection is devoted to the proof of this estimate. We start by
constructing a suitable approximate solution of (2.12), (2.13) which is built up in
terms of the following Cauchy problem for the L2 critical NLS:

izt = −zxx − |z|4z,
z|t=0 = αϕ0, α ∈ C, |α| < 1.

Applying the pseudo-conformal transformation, one can write z as

z(x, t) =
e

ix2
4(t+1)

(t+ 1)1/2
uα

(
x

t+ 1
,− 1

t+ 1

)
,

where uα solves
iuα

t = −uα
xx − |uα|4uα,

uα|t=−1 = αe−ix2/4ϕ0(x).
Since |α| < 1, uα(t) exists globally and is in C(R,S).

Next we introduce a modified profile uα,ε which is defined as a solution of the
Cauchy problem:

iuα,ε
t = −uα,ε

xx − |uα,ε|4uα,ε,

uα,ε|t=0 = θ

(
|x|ε
v

)
uα(x, 0).

Here θ ∈ C∞0 (R) is a cut off function: 0 ≤ θ(ξ) ≤ 1, θ(ξ) =
{

1, |ξ| ≤ 1
4

0, |ξ| ≥ 1
2

.
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Clearly, uα,ε ∈ C(R,S), uniformly with respect to ε sufficiently small, and satisfies
for any N

(2.16) ‖uα,ε(τ)− uα(τ)‖Σ1 ≤ CNε
N , −1 ≤ τ ≤ 0.

Here ‖f‖Σ1 = ‖xf‖H1 + ‖f‖H2 .
The approximate solution Ψ(t) of (2.12), (2.13) can be now defined as follows.

Ψ(t) = ψ−(t) + ψ+(t),

ψ±(t) = e−iv2t/4±ivx/2ε1/2ψ̃±(ε(x∓ vt∓X0), ε2t),

ψ̃±(x, t) =
e

ix2
4(t+1)

(t+ 1)1/2
u±
(

x

t+ 1
,− 1

t+ 1

)
,

u± = uα±,ε.

The basic properties of the profile Ψ(x, t) are collected in the following proposition.

Proposition 2.2. (i) Ψ satisfies the initial conditions (2.13) in the sense

(2.17) ‖Ψ(0)− ψ(0)‖H1 ≤ Cε1/2,

(ii) Ψ(t) admits the estimate

(2.18) ‖Ψ(t)‖W k,p ≤ C

(
ε

1 + ε2t

) 1
2−

1
p

, t ≥ 0, k = 0, 1, 2 ≤ p ≤ ∞,

(iii) the error r ≡ −iΨt + LΨ + F (|Ψ|2)Ψ satisfies

(2.19) ‖r‖L6/5(R+,W 1,6/5) ≤ Cε.

Proof.
Part (i) follows directly from (2.16).
Estimate (ii) is a consequence of the bound

(2.20) ‖ < z >m uα,ε(τ)‖Hl ≤ Cl,m,

that holds for any l,m, uniformly with respect to τ ∈ [0, 1] and ε sufficiently small.
To estimate the error r we write it as a sum r = r0 + r1 + r2, where

r0 = V (x)Ψ, r1 = −|ψ− + ψ+|4(ψ− + ψ+) + |ψ−|4ψ− + |ψ+|4ψ+,

r2 = F̃ (|Ψ|2)Ψ, F̃ (ξ) = F (ξ) + ξ2.

We first consider r0. For any l, m, one has

(2.21) < z >m |∂l
z(u

α,ε(z, τ)− uα,ε(z, τ1))| ≤ Cl,m|τ − τ1|, z ∈ R,
uniformly with respect to τ, τ1 ∈ [0, 1] and ε sufficiently small. Taking into account
the support properties of u±(0) (suppu±(0) ⊂ {|z| ≤ v

2ε}), one can easily deduce
from this inequality that for any N ,

|∂l
x(V (x)Ψ(x, t))| ≤ CNe

−γ|x| εN

(1 + ε2t)3/2
, l = 0, 1.

In particular, this means that

‖r0‖L6/5(R+,W 1,6/5) ≤ CNε
N .

Consider r1:
|r1| ≤ C|ψ−||ψ+|(|ψ−|3 + |ψ+|3),
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which implies

‖r1(t)‖6/5 ≤ C

(
ε

1 + ε2t

)2/3

‖ψ−ψ+‖∞.

Similarly,

‖∂xr1‖6/5 ≤ C

(
ε

1 + ε2t

)2/3

(‖ψ+∂xψ
−‖∞ + ‖ψ+∂xψ

−‖∞).

The expressions |ψ±∂l
xψ

∓|, l = 0, 1 can be estimated as follows:

‖ψ±∂l
xψ

∓‖∞ ≤ CN
εN

1 + ε2t
.

Here we have once more used (2.20).
Putting the last three inequalities together one gets

‖r1‖L6/5(R+,W 1,6/5) ≤ CNε
N .

Finally, it follows from (2.18) that

‖r2‖L6/5(R+,W 1,6/5) ≤ Cε.

This concludes the proof of proposition 2.2. �
We are now in position to prove the following uniform bounds for the difference

h(t) = ψ(t)−Ψ(t).

Proposition 2.3. For all t1 < T ∗ one has

‖h(t)‖L∞([0,t1],H1) + ‖h‖L6([0,t1],W 1,6) ≤ Cε1/2.

Proof. The proof is based on the standard perturbation argument. We first esti-
mate ‖h‖L6([0,t1],W 1,6). h(t) solves the Cauchy problem:

(2.22) iht = Lh+ r +N1(h),

h|t=0 = h1, h1 = ψ(0)−Ψ(0).
Here

N1(h) = F (|Ψ + h|2)(Ψ + h)− F (|Ψ|2)Ψ.
For h satisfying |h| ≤ C, N1(h) can be estimated as follows

(2.23) |N1(h)| ≤ C
(
|h||Ψ|4 + |h|5

)
,

(2.24) |∂xN1(h)| ≤ C
(
|hx|(|Ψ|4 + |h|4) + |h|(|Ψ|+ |Ψx|)4 + |h|5

)
.

As a consequence,

‖N1(h(t))‖W 1,6/5 ≤ C

(
‖h(t)‖H1

(
ε

1 + ε2t

)5/3

+ ‖h(t)‖5W 1,6

)
,

and

(2.25) ‖N1(h(t))‖L6/5([0,t1],W 1,6/5) ≤ C
(
‖h(t)‖L∞([0,t1],H1) + ‖h(t)‖5L6([0,t1],W 1,6)

)
,

provided ‖h(t)‖L∞([0,t1],H1) ≤ C.
Rewritings (2.22) as the integral equation

h(t) = e−itLh1 − i

∫ t

0

dse−itL(r(s) +N1(h(s))),
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and applying proposition 1.1, one gets from (2.17), (2.19), (2.25):

(2.26) ‖h‖L6([0,t1],W 1,6) ≤ C
(
ε1/2 + ‖h(t)‖L∞([0,t1],H1) + ‖h‖5L6([0,t1],W 1,6)

)
.

In order to estimate ‖h‖H1 we use the identities:
d

dt
‖h(t)‖22 = 2Im (r +N1(h), h)

d

dt
(Lh(t), h(t)) = 2Im (r +N1(h), Lh).

By (2.18), (2.23), (2.24), they imply:

d

dt
‖h(t)‖22 ≤ C

[(
ε

1 + ε2t

)2

‖h(t)‖22 + ‖h(t)‖6‖r(t)‖6/5 + ‖h(t)‖66

]
,

d

dt
(Lh, h)(t) ≤ C

[(
ε

1 + ε2t

)2

‖h‖2H1 + ‖h‖W 1,6‖r‖W 1,6/5 + ‖h‖6W 1,6

]

≤ C

[(
ε

1 + ε2t

)2

((Lh, h) + (h, h)) + ‖h‖W 1,6‖r‖W 1,6/5 + ‖h‖6W 1,6

]
.

As a consequence:

d

dt
y(t) ≤ C

[(
ε

1 + ε2t

)2

y(t) + ‖h(t)‖W 1,6‖r(t)‖W 1,6/5 + ‖h(t)‖6W 1,6

]
,

where y(t) = (Lh(t), h(t)) + (h(t), h(t)). Integrating this inequality and using (2.17),
(2.18), one gets

(2.27) ‖h‖2L∞([0,t1],H1) ≤ C(ε+ ε‖h‖L6([0,t1],W 1,6) + +‖h‖6L6([0,t1],W 1,6)).

Combining (2.26), (2.27), one obtains the bounds announced in proposition 2.3:

‖h(t)‖L∞([0,t1],H1) + ‖h‖L6([0,t1],W 1,6) ≤ Cε1/2,

which together with (2.18) implies (2.15). This completes the proof of theorem 1.1.
Theorem 1.2 follows directly from proposition 2.3 and (2.16), (2.21).
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