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ELLIPTIC CURVES WITH LARGE TATE-SHAFAREVICH GROUPS
OVER A NUMBER FIELD

Kazuo Matsuno

Abstract. Let p be a prime number and let K be a cyclic Galois extension of Q of

degree p. We prove that the p-rank of the Tate-Shafarevich group over K of elliptic
curves defined over Q can be arbitrarily large.

1. Introduction

For an elliptic curve E defined over a number field K, the Tate-Shafarevich group
X(E/K) of E over K is defined to be the abelian group consisting of the isomorphism
classes of principal homogeneous spaces for E over K which are everywhere locally
trivial. We have the following description of X(E/K):

X(E/K) = Ker
(
H1(K,E(K)) −→

∏
v

H1(Kv, E(Kv))
)
.

Here v runs over all primes of K. In this paper, we discuss the size of the Tate-
Shafarevich groups of elliptic curves over number fields. It is classically conjectured
(but still unknown in general) that the Tate-Shafarevich group is finite for any elliptic
curve over any number field of finite degree. Cassels, however, proved that there exists
an elliptic curve defined over Q whose Tate-Shafarevich group has an arbitrarily large
order. More precisely, Cassels [5] showed that the dimension over F3 of X(E/Q)[3],
the 3-torsion subgroup of X(E/Q), is unbounded as E varies over elliptic curves of
j-invariant zero. After Cassels, the unboundedness of dimFp X(E/Q)[p] was studied
by many authors and was proved for primes p ≤ 7 or p = 13. See the papers [1], [2],
[11], [16], [18], [20], and some other papers cited in those.

It is not easy to prove the unboundedness of dimFp X(E/Q)[p] for an arbitrary p
by extending the method given in the above papers because many of them used the
fact that there exist infinitely many elliptic curves over Q (with different j-invariants)
which have isogenies of degree p. It is known that there exist only finitely many such
elliptic curves for p = 11 or p ≥ 17. If we allow K to vary over number fields of
bounded degree and E varies over elliptic curves over K, then the unboundedness of
dimFp X(E/K)[p] has been proved for any p by a similar method (cf. Kloosterman
[15]). However, we cannot apply the same argument to showing the unboundedness
for elliptic curves over a fixed number field K when p ≥ 23 since the modular curve
X0(p) has genus greater than 1 and hence there exist only finitely many K-rational
points on X0(p).
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The aim of this paper is to prove that dimFp X(E/K)[p] is unbounded if K is a
fixed abelian field of degree p and E runs over elliptic curves over Q. The main result
is stated as follows.

Theorem A. Let K be a Galois extension of Q such that Gal(K/Q) ∼= Z/pZ for a
prime number p. Then, for any integer k, there exists an elliptic curve E defined over
Q satisfying dimFp

X(E/K)[p] ≥ k.

More precisely, we will prove the unboundedness of the n-ranks of Tate-Shafarevich
groups of elliptic curves over a fixed cyclic extension of Q of degree n, where n is a pos-
itive integer not divisible by 4 (Theorems 5.1). We remark that the assertion of The-
orem A does not follow immediately from the unboundedness of dimFp

X(E/Q)[p],
which is known in the case p ≤ 7 or p = 13. Indeed, the natural map X(E/Q) →
X(E/K) might have a large kernel of exponent p if the degree of K is divisible by p.

Our proof of Theorem A is separated into two steps. The first step is to give a
lower bound for the size of the p-Selmer group Selp(E/K) of an elliptic curve E over
K. In order to obtain a nontrivial lower bound, we investigate the difference of Selmer
groups in the cyclic Galois extension K/Q of degree p. In [21], Mazur studied the
behavior of the p∞-Selmer groups of abelian varieties in an infinite Galois extension
with Galois group isomorphic to Zp and proved a result which is often called “Mazur’s
control theorem” (cf. [12, Section 1]). We apply a similar argument to our situation
(Proposition 3.2). The main ingredient of the proof is the Cassels-Poitou-Tate global
duality.

This lower bound enables us to show that dimFp
Selp(E/K) is unbounded as E

varies over elliptic curves defined over Q (Corollary 4.4). This implies the unbound-
edness of either rankZE(K) or dimFp

X(E/K)[p] (see the exact sequence (1) in Sec-
tion 2). The second step of the proof of Theorem A is to construct an elliptic curve
E with large p-Selmer group and with small Mordell-Weil group over K. For an odd
p, we will construct an elliptic curve E such that Selp(E/K) is arbitrarily large and
Sel2(E/K) is small (bounded by some constant) by using Kramer’s argument in [18]
and a result coming from sieve methods. For p = 2, the upper bound of the Mordell-
Weil rank is obtained by a result of Hoffstein-Luo [14] on the existence of a quadratic
twist of an elliptic curve such that the central value of the Hasse-Weil L-function is
nonzero and the conductor has only a few prime factors. The proofs are given in
Section 5 for odd p and in Section 6 for p = 2.

Kloosterman’s result [15] mentioned above is the unboundedness of dimFp

X(E/K)[p] as both K and E vary. Our main result, Theorem A, improves this by
fixing the base field K. (We remark that the degree of K in Theorem A, [K : Q] = p,
is smaller than that considered in [15].) Recently, Clark and Sharif gave in [7] a
different improvement of Kloosterman’s result that dimFp X(E/K)[p] is unbounded
for any fixed elliptic curve E over Q as K varies over number fields of degree p (not
necessarily Galois over Q). We will give another proof of their result for p = 2 (see
the end of Section 4).

Proposition B. Let E be an elliptic curve defined over Q. Then, for any integer k,
there exists a quadratic field K satisfying dimF2 X(E/K)[2] ≥ k.
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2. Notation

For an abelian group M and a positive integer n, we denote by M [n] the subgroup
of M annihilated by n. If M is a torsion abelian group, then we denote by M (p) the
p-primary component of M for each prime p, i.e., M (p) := ∪mM [pm]. For a finite
abelian group M , we denote by rknM the largest integer k such that M contains a
subgroup isomorphic to (Z/nZ)⊕k. By definition, we have rknM = rkn(M [n]) in any
case, and rkpM = dimFp M if pM = 0 for a prime p.

For an elliptic curve E defined over a number field K, we put E[n] := E(K)[n].
Then the n-Selmer group Seln(E/K) of E over K is defined as follows:

Seln(E/K) := Ker
(
H1(K,E[n]) −→

∏
v

H1(Kv, E(Kv))
)
,

where v runs over all primes of K. By definition, we have an exact sequence

(1) 0 −→ E(K)/nE(K) −→ Seln(E/K) −→ X(E/K)[n] −→ 0.

For a prime number p, we denote by Selp∞(E/K) the inductive limit of Selpm(E/K)
under the maps induced by the natural inclusions E[pm] ↪→ E[pm+1]. We have

Selp∞(E/K) = Ker
(
H1(K,E[p∞]) −→

∏
v

H1(Kv, E(Kv))
)
,

where E[p∞] = ∪mE[pm] is the group of all p-power torsion points of E.

3. Consequences of global duality

In this section, we recall some facts obtained from the global duality. We assume
that E is an elliptic curve defined over Q.

Proposition 3.1. Let p be a prime number and S a finite set of primes of Q con-
taining p, the unique archimedean prime, and all bad reduction primes for E. Then
Selp∞(E/Q) coincides with the kernel of the map

ϕ : H1(QS/Q, E[p∞]) −→
∏
v∈S

H1(Qv, E(Qv))(p),

where QS denotes the maximal extension of Q unramified outside S. Furthermore,
we have

rkpCoker(ϕ)[p] ≤ rankZp
Selp∞(E/Q)∨ + rkpE(Q)[p],

where Selp∞(E/Q)∨ is the Pontryagin dual of Selp∞(E/Q).

Remark. We have rankZp
Selp∞(E/Q)∨ = rankZE(Q) if X(E/Q)(p) is finite.

Proof. The first assertion is well-known (cf. [22, Corollary I.6.6]). The second asser-
tion follows immediately from [8, (4) and Lemma 1.8]. �

Let K be a cyclic Galois extension of Q of finite degree. For a (non-archimedean
or archimedean) prime v of Q, we define Wv,K by

Wv,K := Ker
(
H1(Qv, E(Qv)) −→ H1(Kw, E(Qv))

)
,

where w is a prime of K lying above v. The definition of Wv,K is independent of the
choice of w. It is known that Wv,K is finite.
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Proposition 3.2. Let K/Q be a cyclic Galois extension with Galois group G =
Gal(K/Q). Suppose that the set S in the statement of Proposition 3.1 contains the
primes ramified in K/Q. Then Selp∞(E/K) contains a subgroup M which sits in the
following exact sequence:

(2) 0 −→ X −→ Selp∞(E/Q) −→M −→
(∏
v∈S

W
(p)
v,K

)
/X ′ −→ Y −→ 0.

Here X, X ′ and Y are finite abelian p-groups satisfying

rkpX, rkpX
′ ≤ rkpE(Q)[p] + δ,

rkpY ≤ rankZp
Selp∞(E/Q)∨ + rkpE(Q)[p],

where δ = 1 if p = 2 and rk2E(Q)[2] = 1, and δ = 0 if not.

Remark. The above M is of finite index in Selp∞(E/K)G, the subgroup of
Selp∞(E/K) consisting of G-invariant elements. Moreover, we have M =
Selp∞(E/K)G if E(Q)[p] = 0.

Proof. Let M′ be the image of the restriction map

H1(QS/Q, E[p∞]) −→ H1(QS/K,E[p∞]).
Then we have the commutative diagram

0→ H1(G, E(K)[p∞]) → H1(QS/Q, E[p∞]) → M′ → 0

↓ ψ ↓ ϕ ↓ ϕK

0→
Q
v∈S

W
(p)
v,K →

Q
v∈S

H1(Qv , E(Qv))(p) →
Q
v∈S

Q
w|v

H1(Kw, E(Qv))(p)

with exact rows. Put M = Ker(ϕK), X = Ker(ψ) and X ′ = Im(ψ), where ϕK

and ψ are the vertical maps in the above diagram. By definition, M is contained in
Selp∞(E/K), and we have an exact sequence

0 −→ X −→ Selp∞(E/Q) −→M −→
(∏

v∈S

W
(p)
v,K

)
/X ′ −→ Coker(ϕ)

by the snake lemma. By putting Y as the image of the last map of this sequence,
we obtain the exact sequence (2). The assertion on rkpY follows immediately from
Proposition 3.1. Since we have rkpX, rkpX

′ ≤ rkpH
1(G,E(K)[p∞]) by definition,

the proof of this proposition is reduced to showing

(3) rkpH
1(G,E(K)[p∞]) ≤ rkpE(Q)[p] + δ.

Let K ′ be the maximal p-extension of Q contained in K and fix a generator σ of
G′ = Gal(K ′/Q). Since G′ is cyclic, we have

H1(G,E(K)[p∞]) ∼= H1(G′, E(K ′)[p∞]) ∼= Ker(NK′/Q)/(σ − 1)(E(K ′)[p∞]),

where NK′/Q : E(K ′)[p∞] → E(Q)[p∞] is the norm map. In particular, we have

rkpH
1(G,E(K)[p∞]) ≤ rkpE(K ′)[p∞] = rkpE(K ′)[p].

Since G′ is a p-group, rkpE(K ′)[p] = 0 if and only if rkpE(Q)[p] = 0. This implies
rk2E(K ′)[2] ≤ rk2E(Q)[2] + δ for p = 2. If p is odd, then K ′ contains no primitive
p-th root of unity. Hence we have rkpE(K ′)[p] ≤ 1 for any odd p, which implies
rkpE(Q)[p] = rkpE(K ′)[p]. Thus we obtain the inequality (3) for any p. The proof
has been completed. �
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Remark. We cannot remove the term δ in (3). In fact, if we take E as the elliptic
curve defined by y2 = (x − 1)(x2 + x − 1), the curve 40A3 in [9], and take K as the
cyclotomic field of conductor 5, then we have E(Q)[2∞] ∼= Z/4Z and E(K)[2∞] =
E(Q(

√
5))[2∞] ∼= Z/4Z⊕ Z/2Z. One sees that the norm map NK/Q is the zero map

and (σ − 1)(E(K)[2∞]) = 2E(Q)[2∞], where σ is a generator of G = Gal(K/Q).
Therefore, H1(G,E(K)[2∞]) ∼= Ker(NK/Q)/(σ − 1)(E(K)[2∞]) ∼= (Z/2Z)⊕2, which
implies rk2H

1(G,E(K)[2∞]) = 2 = rk2E(Q)[2] + 1.

Corollary 3.3. For any prime number p and any positive integer e, we have

rkpeSelpe(E/K) ≥
∑
v∈S

rkpeWv,K − 2rkpE(Q)[p]− δ,

where δ and S are as in Proposition 3.2.

Proof. Let M, X ′ and Y be as in Proposition 3.2. Put r = rankZp
Selp∞(E/Q)∨ and

t = rkpE(Q)[p]. By the exact sequence (2) in Proposition 3.2, the maximal divisible
subgroup D of M is isomorphic to (Qp/Zp)⊕r and we have an exact sequence of finite
abelian p-groups:

M/D −→
(∏

v∈S

W
(p)
v,K

)
/X ′ −→ Y −→ 0.

Although the pe-rank is not “additive” for short exact sequences in general, the above
sequence implies the inequality

rkpeM/D ≥
∑
v∈S

rkpeW
(p)
v,K − rkpX

′ − rkpY.

Therefore, as an abelian group, M is isomorphic to the direct sum of (Qp/Zp)⊕r and
a finite abelian p-group whose pe-rank is not less than

∑
v∈S

rkpeW
(p)
v,K − r − 2t − δ.

Since M is a subgroup of Selp∞(E/K) and there exists a surjection Selpe(E/K) →
Selp∞(E/K)[pe], we have

rkpeSelpe(E/K) ≥ rkpeM[pe]

≥ r +
∑
v∈S

rkpeW
(p)
v,K − r − 2t− δ

=
∑
v∈S

rkpeWv,K − 2t− δ.

The proof has been completed. �

Remark. In the case e = 1, one can improve the assertion of the above corollary as

rkpSelp(E/K) ≥
∑
v∈S

rkpWv,K − rkpE(Q)[p]

by using the fact that the kernel of Selp(E/K) → Selp∞(E/K)[p] is isomorphic (as
an abelian group) to E(K)[p].
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4. Large Selmer groups

In this section, we give some sufficient conditions for W`,K to be nontrivial. By
Corollary 3.3, this enables us to construct elliptic curves defined over Q which have
large Selmer groups over K. We keep the assumptions that the elliptic curve E is
defined over Q and K is a cyclic Galois extension of Q.

Lemma 4.1. Let ` be a prime number satisfying the following conditions for a positive
integer n prime to `.

(i) E has split multiplicative reduction at `.
(ii) The inertia degree of ` in K/Q is divisible by n.
(iii) The Tamagawa factor c` of E at ` is divisible by n.

Then W`,K contains a subgroup isomorphic to Z/nZ, i.e., rknW`,K ≥ 1.

Proof. Fix a prime l of K lying above `. Let L be the maximal unramified extension of
Q` in Kl and put G′ = Gal(L/Q`). Then we have an injection H1(G′, E(L)) ↪→W`,K

by the inflation-restriction sequence. Hence it suffices to show that H1(G′, E(L)) has
an element of order n. If we denote by E0(L) the subgroup of E(L) consisting of the
points with non-singular reduction, then we have

(4) H1(G′, E(L)) ∼= H1(G′, E(L)/E0(L))

(cf. [21, Proposition 4.3]). By the assumption (i) and the fact that L/Q` is unramified,
E(L)/E0(L) is a cyclic group of order c` and G′ acts trivially on it. Hence we have

H1(G′, E(L)) ∼= Hom(G′, E(L)/E0(L)) ∼= Z/gZ,
where g is the greatest common divisor of c` and the order of G′. By (ii) and (iii), g
is divisible by n. Thus the claim has been proved. �

Lemma 4.2. Let ` be a prime number satisfying the following conditions for a positive
integer n prime to `.

(i) E has good reduction at `.
(ii) The ramification index of ` in K/Q is divisible by n.
(iii) E(Q`) contains an element of order n.

Then W`,K contains a subgroup isomorphic to Z/nZ.

Proof. Since we have an isomorphism E(Q`)/nE(Q`)
∼−→ H1(Q`, E(Q`))[n] by the

Tate local duality (cf. [22, Corollary I.3.4]), there exists an element α ∈ H1(Q`, E(Q`))
of order n by the assumption (iii). By [19, Corollary 1], α becomes trivial over Kl

under the assumptions (i) and (ii), i.e., α ∈ W`,K . Thus, W`,K contains an element
of order n, as desired. �

By these lemmas, we obtain a lower bound of Selmer groups.

Definition. For a cyclic Galois extension K over Q of degree n, let TE,K be the set of
prime numbers ` - n satisfying the assumptions either of Lemmas 4.1 or 4.2. Denote
by tE,K the cardinality of TE,K .

Proposition 4.3. Let K be a cyclic Galois extension of Q of degree n. Then we have

rknSeln(E/K) ≥ tE,K − 2 max
{
rkpE(Q)[p]

∣∣ p|n}
− δ′ ≥ tE,K − 4,

where δ′ = 1 if n is even and rk2E(Q)[2] = 1, and δ′ = 0 if not.
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Proof. By Lemmas 4.1 and 4.2, we have rkn(W`,K) ≥ 1 for any ` ∈ TE,K . Hence the
assertion follows immediately from Corollary 3.3. �

By using this lower bound, we have the following results on the unboundedness of
p-Selmer groups.

Corollary 4.4. Let p be a prime number. Then, for any cyclic Galois extension K/Q
of degree p, we have

sup{dimFp
Selp(E/K) | E is defined over Q} = +∞.

Proof. For any positive integer k, take prime numbers `1, · · · , `k not equal to p which
remain primes in K. Then there exists an elliptic curve E′ defined over Q whose
j-invariant is equal to (`1 · · · `k)−p. We can take a quadratic twist E of E′ such that
E has split multiplicative reduction at each `i. Since ord`i

(jE) = ord`i
(jE′) = −p,

the Tamagawa factor of E at `i is equal to p. Therefore, the primes `1, · · · , `k satisfy
the conditions of Lemma 4.1, i.e., `1, · · · , `k ∈ TE,K . By Proposition 4.3, we have
dimFp Selp(E/K) ≥ k − 4, which implies the assertion of this corollary. �

Corollary 4.5. Let p be a prime number. For any elliptic curve E defined over Q,
we have

sup{dimFp
Selp(E/K) | K/Q is a cyclic extension of degree p} = +∞.

Proof. There exist infinitely many odd prime numbers which split completely in the
extension Q(E[p])/Q. For any positive integer k, take such primes `1, · · · , `k at which
E has good reduction. Then E[p] is contained in E(Q`i

) for each i. By a property
of the Weil pairing, Q×`i

contains a primitive p-th root of unity, i.e., `i ≡ 1 (mod p).
Hence there exists an abelian field K of degree p and of conductor `1 · · · `k. Then the
primes `1, · · · , `k satisfy the conditions of Lemma 4.2, i.e., `1, · · · , `k ∈ TE,K . Thus,
we have dimFp Selp(E/K) ≥ k− 4 by Proposition 4.3. This implies the assertion. �

We conclude this section by giving a proof of Proposition B in the introduction.
Let E be an elliptic curve defined over Q with conductor N . As in the proof of
Corollary 4.5, take odd prime numbers `1, · · · , `k - N which split completely in the
Galois extension Q(E[2])/Q. By results of Waldspurger (cf. [4, Theorem in Section 0])
and Kolyvagin ([17]), there exists a quadratic field K such that all `1, · · · , `k ramify
in K/Q and rankZE

′(Q) = 0, where E′ is the quadratic twist of E corresponding
to K. Then we have rankZE(K) = rankZE(Q) + rankZE

′(Q) = rankZE(Q). By
Corollary 3.3 and Lemma 4.2, we have dimF2 Sel2(E/K) ≥ k − 4 and

dimF2 X(E/K)[2] ≥ dimF2 Sel2(E/K)− rankZE(K)− 2 ≥ k − 6− rankZE(Q).

Since rankZE(Q) is independent of k, this completes the proof of Proposition B by
taking k arbitrarily large.

5. Large Tate-Shafarevich groups

In this section, we prove the following result, which implies the statement of The-
orem A in the introduction for odd primes p.
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Theorem 5.1. Let K be a cyclic Galois extension of Q of odd degree n. Then, for any
positive integer κ, there exists an elliptic curve E defined over Q such that X(E/K)
contains a subgroup isomorphic to (Z/2nZ)⊕κ, i.e., rk2nX(E/K)[2n] ≥ κ.

For a positive integer k, let `1, · · · , `k,m1, · · · ,mk be distinct odd prime numbers
satisfying the following conditions:

(A1) `i ≡ 1 (mod 4) and `i - n for any i.
(A2) mj - n for any j.
(A3) All `1, · · · , `k,m1, · · · ,mk remain prime in K.
(A4)

(
mj

`i

)
= (−1)δi,j for any pair of i and j, where δi,j is the Kronecker delta.

We can indeed find such primes by using the Chebotarev density theorem. (After
taking m1, · · · ,mk satisfying (A2) and (A3), take `1 - n such that the fixed field of
the Frobenius element at `1 in Gal(K(

√
−1,

√
m1, · · · ,

√
mk)/Q) is Q(

√
−1,

√
m2, · · · ,√

mk), and so on.) By Lemma 5.2 below, which is proved by using a result in [13],
we can take odd positive integers s and t such that

s`1 · · · `k − 16tmn
1 · · ·mn

k = 1

and st has at most 5 prime factors.

Lemma 5.2. Let a and b be nonzero coprime integers. If ab is even and negative,
then there exist odd positive integers c and d such that ac+ bd = 1 and cd has at most
5 prime factors.

Proof. We may assume a is negative. Take odd integers c0 and d0 satisfying ac0+bd0 =
1 and consider the polynomial F (x) := (2ax− d0)(2bx+ c0) ∈ Z[x]. By assumption,
we have 8ab(ac0 +bd0) 6= 0. Moreover, for any prime p, there is an integer e such that
F (e) 6≡ 0 (mod p). Then there exist infinitely many positive integers e′ such that
F (e′) has at most 5 prime factors (cf. [13, Chapter 10], [10]). Take such an e′ so that
both c = c0 + 2be′ and d = d0 − 2ae′ are positive. These c and d satisfy the assertion
of this lemma. �

Put l = s`1 · · · `k and m = tmn
1 · · ·mn

k . Let A be the elliptic curve defined by the
Weierstrass equation

(5) y2 + xy = x3 + 8mx2 + lmx.

The discriminant ∆A of this curve is ∆A = l2m2 = m2(16m+ 1)2. As shown in [18,
Lemma 1], A is semistable and A[2] ⊂ A(Q). In fact, the points P1 = (0, 0), P2 =
(−4m, 2m) and P3 = (− l

4 ,
l
8 ) have order 2. Furthermore, A has split multiplicative

reduction at `1, · · · , `k,m1, · · · ,mk (cf. [18, p. 383]). We have an isomorphism

λK : H1(K,A[2]) ∼−−→ K = {(x, y, z) ∈ (K×/K×2)⊕3 | xyz = 1}
such that the image of a point P ∈ A(K) \A(K)[2] under the composite map

A(K) −→ A(K)/2A(K) ↪→ H1(K,A[2]) λK−−→ K
is (x(P ), x(P ) + 4m,x(P ) + l

4 ), where x(P ) is the x-coordinate of P (cf. [18, Sec-
tion 3]). Moreover, if we define the subgroup Kv of (K×

v /K
×
v

2)⊕3 for a prime v of K
similarly, then there is an isomorphism H1(Kv, A[2]) ∼−−→ Kv compatible with λK ,
and the image of A(Kv)/2A(Kv) in Kv has been described explicitly (cf. [3] and [18,
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Lemma 2]). For instance, if A has good reduction at a non-archimedean prime v not
above 2, then the image of A(Kv)/2A(Kv) is the subgroup of Kv generated by units of
Kv. In particular, the image of the 2-Selmer group Sel2(A/K) under λK is contained
in

KΣ := {(x, y, z) ∈ K | ordv(x) = ordv(y) = 0 for any v 6∈ Σ},
where Σ is the set of primes of K consisting of the archimedean primes and the
primes dividing 2lm, and ordv : K×

v /K
×
v

2 → Z/2Z is the homomorphism induced by
the normalized valuation.

Let L be the subgroup of KΣ generated by the classes of the elements (q, q, 1) and
(q, 1, q) for all q ∈ {`1, · · · , `k,m1, · · · ,mk}. We have dimF2 L = 4k.

Lemma 5.3. Let h denote the 2-rank of the Σ-ideal class group ClΣ(K) of K. Then
we have dimF2 KΣ/L ≤ 14n+ 2h.

Proof. We have an exact sequence

1 −→ (O×Σ/O
×
Σ

2
)⊕2 −→ KΣ −→ (ClΣ(K)[2])⊕2 −→ 1,

where O×Σ is the group of Σ-units of K. Since K is a totally real field of degree n,
there exist exactly n archimedean primes. Since 2st has at most 6 prime factors, the
number of non-archimedean primes in Σ is at most 6n+ 2k by (A3). Hence we have
dimF2 O×Σ/O

×
Σ

2 ≤ 7n+ 2k. This implies

dimF2 KΣ − dimF2 L ≤ 2(7n+ 2k) + 2h− 4k = 14n+ 2h

as desired. �

The following proposition is proved by an argument given in [18, Section 2].

Proposition 5.4. L ∩ λK(Sel2(A/K)) = {1}.

Proof. Take an element (x, y, z) ∈ L ∩ λK(Sel2(A/K)) and suppose y is represented
by q := `e1

1 · · · `ek

k m
f1
1 · · ·mfk

k (ei, fj ∈ {0, 1}). It is known that y is contained in the
kernel of the natural map K×/K×2 → K×

`i
/K×

`i

2
for any i (cf. [3, Section 4], [18,

Section 2]). This implies that ord`i(y) = 0, i.e., ei = 0. Moreover, we have fi = 0
since mi 6∈ K×

`i

2
and mj ∈ K×

`i

2
for any j 6= i by (A4). (Recall that n = [K : Q] is

odd.) Thus, y is trivial in K×/K×2. Similar argument shows that z is trivial since
the image of z in K×

mj
/K×

mj

2 should be trivial for any j and
(

`i

mj

)
= (−1)δi,j by (A1)

and (A4). This proves the assertion. �

By this proposition, Sel2(A/K) can be regarded as a subgroup of KΣ/L. We obtain
the following upper bound of the Mordell-Weil rank of A over K.

Corollary 5.5. rankZA(K) ≤ 14n+ 2h− 2.

Proof. By Lemma 5.3 and Proposition 5.4, we have dimF2 Sel2(A/K) ≤ 14n+2h. The
assertion follows from the exact sequence (1) and the fact dimF2 A(K)[2] = 2. �

Combining this with Proposition 4.3, we have the following lower bound of the
n-rank of the Tate-Shafarevich group of A over K.
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Corollary 5.6. We have rknX(A/K)[n] ≥ k − 14n− 2h− 8.

Proof. If mj does not divide st, then the Tamagawa factor of A at mj is equal to 2n,
i.e., mj ∈ TA,K . Since A(Q)[n] = 0 by [18, Lemma 3], we have rkn(Seln(A/K)) ≥
tA,K ≥ k− 5 by Proposition 4.3. Since A(K)/nA(K) is isomorphic to a direct sum of
(Z/nZ)⊕rankZA(K) and a cyclic group of order dividing n, the assertion follows from
Corollary 5.5 and the exact sequence (1). �

Although Corollary 5.6 is sufficient for proving Theorem A for odd primes p, in
order to complete the proof of Theorem 5.1, we show that the 2-rank of the Tate-
Shafarevich group over K also becomes large if we replace the curve A with its 2-
isogenous curve B below as in [18].

Let B be the elliptic curve over Q defined by the equation

(6) y2 + xy = x3 − 16mx2 − 8mx−m.

The discriminant ∆B of this curve is lm and there exists an isogeny f : A → B of
degree 2 defined over Q. The following lower bound on the 2-rank of X(B/K)[2] is
enough to prove Theorem 5.1.

Proposition 5.7. We have dimF2 X(B/K)[2] ≥ 2k − 17.

Remark. We give here a proof based on a result of Cassels [6] as in [16]. One can also
obtain a similar lower bound by the same argument as given in Kramer’s paper [18].

Proof. Since n = [K : Q] is odd, the kernel of the restriction map X(B/Q) →
X(B/K) has no element of order 2. Hence we have only to show dimF2 X(B/Q)[2] ≥
2k − 17. Let g : B → A be the dual isogeny of f . We have the following relation
between the Selmer groups Self (A/Q) and Selg(B/Q) associated with the isogenies
f and g (cf. [16, Theorem 1]):

dimF2 Selg(B/Q) ≥ dimF2 Self (A/Q) +
∑

q

(uA,q − uB,q)− 1.

Here q runs over all prime numbers at which A and B have bad reduction and we
denote by uA,q and uB,q the normalized 2-adic valuations of the Tamagawa factors of A
and B at q. Since A and B are semistable and ∆A = ∆2

B , we have uA,q ≥ uB,q for any
prime q at which A and B have bad reduction. Moreover, we have uA,q−uB,q = 1 if q is
one of the primes `1, · · · , `k,m1, · · · ,mk since both A and B have split multiplicative
reduction at q. Hence we have

dimF2 Selg(B/Q) ≥ dimF2 Self (A/Q) + 2k − 1 ≥ 2k − 1.

By the exact sequence

B(Q)[2] −→ A(Q)[f ] −→ Selg(B/Q) −→ Sel2(B/Q)

(cf. [16, Proposition 1]), we have dimF2 Sel2(B/Q) ≥ dimF2 Selg(B/Q) − 1 ≥ 2k − 2.
By the same argument as in the proof of Proposition 5.4 and Corollary 5.5, we have
rankZB(Q) = rankZA(Q) ≤ 14 (see also the proof of Corollary 6.2). Therefore,
we have dimF2 X(B/Q)[2] ≥ 2k − 2 − 14 − 1 = 2k − 17 by (1) and the fact that
B(Q)[2] ∼= Z/2Z. �
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The isogeny f : A→ B induces an isomorphism X(A/K)[n] ∼= X(B/K)[n] since
the degree of f is prime to n. Hence we have

rk2nX(B/K) ≥ k − 14n− 2h− 8

by Corollary 5.6 and Proposition 5.7. Thus the elliptic curve E = B with k =
κ+ 14n+ 2h+ 8 satisfies the assertion of Theorem 5.1.

6. The case p = 2

In this section, we complete the proof of Theorem A for p = 2. The proof is
obtained by combining Proposition 4.3 with a result of Hoffstein-Luo [14], a variant
of Waldspurger’s result on the behavior of central values of the Hasse-Weil L-functions
under quadratic twists.

Let K be a quadratic field with fundamental discriminant D. For an arbitrary posi-
tive integer k, take distinct odd primes `1, · · · , `k,m1, · · · ,mk satisfying the conditions
(A1), (A3) and (A4) in the preceding section. (We can indeed take such primes by
the Chebotarev density theorem; `1 is taken so that the fixed field of the Frobenius el-
ement in Gal(Q(

√
−1,

√
D,
√
m1, · · · ,

√
mk)/Q) is Q(

√
−1,

√
Dm1,

√
m2, · · · ,

√
mk).)

Then, by Lemma 5.2, there exist odd positive integers s and t such that s`1 · · · `k −
16tm1 · · ·mk = 1 and st has at most 5 prime factors. Let A be an elliptic curve
defined by the equation (5) with l = s`1 · · · `k and m = tm1 · · ·mk (not same as in
the preceding section). The following proposition is proved by using a result of [14].
We denote by Ea the quadratic twist of an elliptic curve E over Q corresponding to
a quadratic extension Q(

√
a)/Q.

Proposition 6.1. There exists a square-free integer d with at most 4 prime factors
such that rankZAd(K) = rankZAd(Q), d ≡ 1 (mod 8), and

(
d
q

)
= 1 for any prime q

dividing Dlm.

Proof. Let S be the set of prime numbers dividing 2Dlm. By applying [14, Theorem]
to AD and S, we obtain an integer d with at most 4 prime factors which satisfies
L(ADd, 1) 6= 0 and

(
d
q

)
= 1 for any q ∈ S. Here L(ADd, s) is the Hasse-Weil

L-function of ADd. By a result of Kolyvagin on the Birch and Swinnerton-Dyer
conjecture ([17]), we have rankZADd(Q) = 0. This implies

rankZAd(K) = rankZAd(Q) + rankZADd(Q) = rankZAd(Q)

as desired. �

By the argument of Kramer [18] used in the preceding section, we obtain the
following upper bound of the Mordell-Weil rank of Ad over K.

Corollary 6.2. We have rankZAd(K) = rankZAd(Q) ≤ 20.

Proof. If we put d = 4e+ 1, then Ad has a Weierstrass equation

y2 + xy = x3 + (8md+ e)x2 + lmd2x.

The discriminant of this Weierstrass model is l2m2d6 and Ad(Q) contains Ad[2]. As
in the preceding section, Sel2(Ad/Q) is regarded as a subgroup of

QΣ = {(x, y, z) ∈ (Q×/Q×2)⊕3 | xyz = 1, ordq(x) = ordq(y) = 0 for any q 6∈ Σ},
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where Σ is the set of prime numbers dividing 2dlm. Moreover, any nonzero element
of Sel2(Ad/Q) is not contained in the subgroup of QΣ generated by the classes of
(q, q, 1) and (q, 1, q) for all q ∈ {`1, · · · , `k,m1, · · · ,mk} since the assumption

(
d
q

)
= 1

implies the local condition at q for defining the 2-Selmer group does not change by
the quadratic twist corresponding to Q(

√
d) (see the proof of Proposition 5.4). Hence

we have

dimF2 Sel2(Ad/Q) ≤ dimF2 QΣ − 4k = 2(2k + 5 + 4 + 2)− 4k = 22.

This implies rankZAd(Q) ≤ dimF2 Sel2(Ad/Q)− dimF2 Ad(Q)[2] ≤ 20, as desired. �

Corollary 6.3. We have dimF2 X(Ad/K)[2] ≥ 2k − 31.

Proof. Since Ad has split multiplicative reduction with even Tamagawa factor at each
q ∈ {`1, · · · , `k,m1, · · · ,mk} not dividing st and any such q remains prime in K, we
have tAd,K ≥ 2k− 5. By Proposition 4.3, we have dimF2 Sel2(Ad/K) ≥ 2k− 9. Hence
we have dimF2 X(Ad/K)[2] ≥ 2k − 9 − dimF2 Ad(K)/2Ad(K) ≥ 2k − 31 by (1) and
Corollary 6.2. �

By taking k large arbitrarily, this corollary implies that the 2-rank of X(Ad/K)[2]
is unbounded as d varies. The proof of Theorem A has been completed.

We can also give a proof of Theorem A for p = 2 by considering the 2-rank of
X(Bd/K) instead of X(Ad/K). As in the preceding section, we can show that

dimF2 X(Bd/Q)[2] = dimF2 Sel2(Bd/Q)− rankZBd(Q)− dimF2 Bd(Q)[2]

≥ (2k − 8− 1)− 20− 1 = 2k − 30

by using [16, Theorem 1] and Corollary 6.2. (Recall that Bd is isogenous to Ad and
Bd has semistable reduction at any prime not dividing d.) As we remarked before,
this does not imply the assertion of Theorem A immediately since Ker(X(Bd/Q) →
X(Bd/K)) may have a large subgroup of exponent 2 in general. However, we can
apply the following lemma in this case.

Lemma 6.4. Let F ′/F be a Galois extension of number fields such that [F ′ : F ] is a
prime p. For any elliptic curve E defined over F satisfying rankZE(F ′) = rankZE(F ),
we have

dimFp X(E/F ′)[p] ≥ dimFp X(E/F )[p]− 2.

Proof. By the inflation-restriction sequence, the kernel of the restriction map
X(E/F ) → X(E/F ′) is regarded as a subgroup of H1(G,E(F ′)), where G =
Gal(F ′/F ). We have only to prove that the p-rank of H1(G,E(F ′)) is at most
2. If we denote by T the torsion subgroup of E(F ′), then G acts trivially on the
free Z-module E(F ′)/T . Indeed, Pσ − P is contained in T for any P ∈ E(F ′)
and any σ ∈ G by the assumption rankZE(F ′) = rankZE(F ). Hence we have
H1(G,E(F ′)/T ) = Hom(G,E(F ′)/T ) = 0. On the other hand, H1(G,T ) is of expo-
nent p and its p-rank is not greater than dimFp

T [p] ≤ 2. The claim is proved. �

Since rankZBd(Q) = rankZBd(K) by Proposition 6.1, we have dimF2

X(Bd/K)[2] ≥ 2k − 32. This implies the assertion of Theorem A for p = 2.
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trarily large, J. reine angew. Math. 214/215 (1964), 65–70.

[6] J. W. S. Cassels, Arithmetic on curves of genus 1, VIII. On conjectures of Birch and

Swinnerton-Dyer, J. reine angew. Math. 217 (1965), 180–199.
[7] P. L. Clark and S. Sharif, Period, index and potential X, preprint, 2006.

[8] J. Coates and R. Sujatha, “Galois Cohomology of Elliptic Curves”, Tata Institute of Funda-

mental Research, Narosa Publ. House, 2000.
[9] J. E. Cremona, “Algorithms for Modular Elliptic Curves”, 2nd edition, Cambridge University

Press, 1997.

[10] H. Diamond and H. Halberstam, Some applications of sieves of dimension exceeding 1, in “Sieve
Methods, Exponential Sums, and their Applications in Number Theory”, London Math. Soc.

Lecture Note Series, vol. 237, Cambridge University Press, 1997, pp. 101–107.

[11] T. Fisher, Some examples of 5 and 7 descent for elliptic curves over Q, J. Eur. Math. Soc. 3
(2001), 169–201.

[12] R. Greenberg, Iwasawa theory for elliptic curves, in “Arithmetic Theory of Elliptic Curves”,
Lecture Notes in Math., vol. 1716, Springer-Verlag, 1999, pp. 51–144.

[13] H. Halberstam and H.-E. Richert, “Sieve Methods”, Academic Press, 1974.

[14] J. Hoffstein and W. Luo, Nonvanishing of L-series and the combinatorial sieve, Math. Research
Letters 4 (1997), 435–444.

[15] R. Kloosterman, The p-part of Shafarevich-Tate groups of elliptic curves can be arbitrarily large,

J. Theorie Nombres Bordeaux 17 (2005), 787–800.
[16] R. Kloosterman and E. F. Schaefer, Selmer groups of elliptic curves that can be arbitrarily large,

J. Number Theory 99 (2003), 148–163.

[17] V. A. Kolyvagin, Finiteness of E(Q) and X(E,Q) for a subclass of Weil curves, Math. USSR-
Izv. 32 (1989), 523–541.

[18] K. Kramer, A family of semistable elliptic curves with large Tate-Shafarevitch groups, Proc.

Amer. Math. Soc. 89 (1983), 379–386.
[19] S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80

(1958), 659–684.
[20] K. Matsuno, Construction of elliptic curves with large Iwasawa λ-invariants and large Tate-

Shafarevich groups, manuscr. math. 122 (2007), 289–304.
[21] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent.

math. 18 (1972), 183–266.
[22] J. S. Milne, “Arithmetic Duality Theorems”, 2nd edition, BookSurge, LLC, 2006.

[23] J. H. Silverman, “The Arithmetic of Elliptic Curves”, Graduate Texts in Math., vol. 106,
Springer-Verlag, 1986.

Department of Mathematics, Tsuda College, 2-1-1, Tsuda-machi, Kodaira, Tokyo 187-

8577, Japan
E-mail address: matsuno@tsuda.ac.jp


