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A LOCAL CRITERION FOR THE SAITO-KUROKAWA LIFTING
OF CUSPFORMS WITH CHARACTERS

DoMINIC LANPHIER

ABSTRACT. Let f be a holomorphic degree-2 Siegel cuspform of weight &, level N, and
nebentype a primitive Dirichlet character x. Let f be an eigenfunction of the regular
Hecke operators Tp, T},2 at primes p t N and an eigenfunction of the Frobenius operators
I, and their duals IT}; at primes p|N. For certain x, we give conditions on the Satake
parameters of f which imply that f is lifted from an elliptic cuspform ¢ of weight 2k — 2,
level N, and nebentype x2. We also show that for such f and ¢, the eigenvalues of the
Frobenius operators on f are eigenvalues of Hecke operators on ¢.

1. Introduction

The Saito-Kurokawa lift is a Hecke equivariant map from elliptic cuspforms to
degree-2 Siegel cuspforms so that the spin L-function of a Siegel cuspform in the image
of the lift decomposes into more elementary L-functions in a precise way. Classically,
cuspforms that are in the image of the lift are characterized by conditions on their
Fourier coefficients. In particular, let f be a Siegel cuspform of weight x and level
b72 b(/f) with a,b,c € Z, write the
H™ Fourier coefficient of f by Af(H) = Ag(a,b,c). Then f is in the image of the
Saito-Kurokawa lifting (the Maass space) if and only if the Fourier coefficients of f
satisfy the Maass relations [9],

1. For a totally positive definite matrix H = (

e ac b
Ap(abe)= Y A A (5, 50 0),
d|ged(a,b,c)

The existence of the Saito-Kurokawa lift was demonstrated in a series of papers [1],
[13], [24] and an exposition of the proof is in [9] and [20]. The lift has been generalized
to cuspforms of higher level [14], and to Siegel cuspforms of degree 2n [11].

For N € Z-o we denote the space of holomorphic degree-2 Siegel cuspforms of
weight &, level N, and character x by S2(I'Z(N), x). In this paper we consider eigen-
functions of the regular Hecke operators T),,T}> for p t N and eigenfunctions of the
Frobenius operators II,,, I}, for p| N, as defined by Andrianov in [3]. We define a Saito-
Kurokawa lift, that is a lift from holomorphic elliptic cuspforms of weight 2k — 2, level
N, and nebentype x? into S2(T'3(N), x), in Section 2. For p{ N we define the Satake
parameters {agp, a1y, @2, } of f in Section 2, see [19]. To a Dirichlet character x we
define a character Y of Z[i] by X(a) = x(aa) as in [2].

Theorem 1. Let N € Z~q be odd and squarefree. Let x be a primitive Dirichlet
character of conductor N so that the character X is primitive. Let k > 2 and let
f € S2(T3(N),x) be a Hecke eigenfunction of T, and T, at primes p { N and an
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eigenfunction of the Frobenius operators 1, and their duals IL; at p|N. If Ay(12) #0
and the Satake parameters of f satisfy the condition

Q1pap = prt or alpagpl =p*t for ptN,
then f is in the image of the Saito-Kurokawa lift.

The condition Af(12) # 0 is a technical condition that allows the results from [2]
and [18] to be more easily applied. Note that from Remark 4 in [2] there are examples
of primitive characters x so that X is not a primitive character of Z[i]. Also, note
that a local characterization for the Saito-Kurokawa lift was obtained in [23], using
[16] and a converse theorem from [22]. Recently another local characterization of the
lifting was obtained by Pitale and Schmidt in [17].

Theorem 2. Let f be as in Theorem 1 and in the image of the Saito-Kurokawa lift of
an elliptic cuspform ¢ of weight 2k —2, level N, and nebentype x?. For p|N, let ps(p)
be the eigenvalue of the Frobenius operator I, on f and let \y(p) be the eigenvalue
of the p'" Hecke operator on ¢. Then ps(p) = A\y(p).

In Section 2 we define the cuspforms and the lifting that we study. In Section 3 we
prove Theorem 2. We introduce spinor zeta functions twisted by Dirichlet characters
as in [18], and prove a result on Gauss sums in Section 4. In the last section we
prove Theorem 1, using the results from Section 4 which allow us to apply a converse
theorem due to Booker, [5].

2. Automorphic Forms and the Saito-Kurokawa Lifting

Let
9o ={z€ My(C) | 2 =2, —i(z—2") >0}
denote the Siegel upper-half space, where M5(C) denotes the set of 2 x 2 matrices

with entries in C, 2T is matrix transpose, and z* = Z'. For N € Z~ consider the
congruence subgroup

T3(N) ={ (CCL Z) € Sp2(Z) | c=0y (mod N)}.

Let T'y(IV) denote the analogous congruence subgroup in SLy(Z), as in [12].

Let u(g, 2) = det(cz + d)~! and let x be a Dirichlet character modulo N. A holo-
morphic Siegel modular form of weight k, level N, and character x is a holomorphic
C-valued function f on $)o so that

F(g(2))ulg, 2)"x(det(d) " = f(2)
for all z € $2, g = (24) € I'3(N), and where g(z) = (az + b)(cz + d)~'. Let
MZ2(TZ(N), x) denote the space of such Siegel modular forms and let S2(I'3(N), x)
denote the subspace of cuspforms. Similarly, let SL(To(N), x?) be the space of holo-
morphic elliptic cuspforms of weight &, level N, and character 2.
The Fourier expansion of f € S2(T2(N), x) is of the form

fe)= 3 AgH)emiotw)

HecAS
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where
a

b/2
A;Z{H:(W é)eMg(ZHa,b,ceZ, H>0)

and o is the trace. For p{ N, we define the Hecke operators T),, T)2 and for p|N the
Frobenius operators IT,,, IT% for the space of such modular forms as in [3]. Note that
the Frobenius operator II,, commutes with the Hecke operators and has a natural
action on f by

W (f)(2) = > Ap(mH)e™7H2),
HeAf

see [3]. The following is a consequence of Theorem 22 from [3].

Theorem 3 ([3], Theorem 22). Let N be a product of distinct odd primes and x a
Dirichlet character modulo N so that x? is primitive. Then there exists an orthonor-
mal basis of Si(l’%(N), X) consisting of eigenfunctions of the Hecke operators T, Tz
for p t N and Frobenius operators 11, 1Ly for p|N. The eigenvalues of 11, and 1T
have absolute value equal to p*—3/2.

In particular, for p an odd prime and x primitive there is an orthonormal basis for
S2(T3(p), x) consisting of such eigenfunctions.

Let
_ (02 —1o
=)
and let G = GSpy = {g € GL4 | ' Jg = v(g)J} where v is a multiplicative (simil-
itude) character. Let Ag denote the adeles of Q and let G4 be the group G with
entries in Ag. We can associate to f € S2(T2(N),x) a smooth cuspform on G in
the following way. Let Ay denote the finite adeles of Q. Let Q, be the completion of
the valuation | - |, of Q and let G, be the local points of G. Let I'3(N)a denote the
congruence subgroup of G, .

For p < oo set K, = Gz, and let Ky, =[] K,. For p|oco define

p<oo
Ky, ={g9€G,|glilz) =ila} = U(2)

where U(2) = {g € GL4(C) | g*g = 14}. Then K, is a maximal compact subgroup
of Gp. If g € Koo =[]0 Kp then let p(g) = det(a + ib)". Let Ky = KooKy, For
g € Gp and z € $3 define

19, 2) = (11(gp» 2p) ) pein. -

For f a function on $y and g € G4, define a function on $Hy by (f|.g9)(z) =
x(det(d))~tu(g, 2)*f(g(2)). A holomorphic automorphic form is therefore a func-
tion f : 2 — C* so that f is holomorphic and f|.g = f for all g € T3(N)a.
Then y(det(d))"1u(1,g(il,))< f(g(il,)) is a function on G4 which we also label f.
By strong approximation on Gy, f is a left Gg-invariant, right (Ko, p.;)-equivariant,
right T'3(IV)a,-invariant function on G, and so f is a holomorphic modular form on
Gy of weight x, level N and character x.

We say that f on G as defined above is an eigenfunction of the Hecke operators
T, Tpz or of the Frobenius operators II,,, I if the corresponding function f on $)3 is
an eigenfunction of T}, Tp2 or II,,, I} respectively, in the sense of [3].
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For a smooth cuspform f on G that is a Hecke eigenfunction at almost all primes,
let ma be the automorphic representation of G generated by f under the right regular
representation. We have the factorization my = ®m, [10], which is a completed
restricted product and m, is an irreducible unitarizable automorphic representation

of Gp.
Consider the Borel subgroup of G,

Aaq * * *
0  )as * *
By = { 0 0 a' o [€C
0 0 * ayt

A ay,as € @; }

By [7] and [8] an irreducible admissible spherical representation embeds into an un-
ramified principal series. By dualization, an admissible spherical representation is also
an image of an unramified principal series. Thus for p < co so that 7, is a spherical
representation of G, we have a surjection of G,-representation spaces

Ip(xp) = C'Indgz Xp5113/2 — Tp

where X, is an unramified character on B, [8], 0 is the modular function of B, and
c-Ind is compactly-supported smooth induction. Thus 7, is isomorphic to a quotient

of Ip(Xp)-

Let x1, x2,0 be unramified characters of Q; so that for b € B, we have x,(b) =
x1(a1)xz2(az)a(). For pt N let agp, = p"~320(p), a1, = x1(p), and az, = x2(p).
We consider the 8 element set {aétpl,ai},ozfpl} to be the set of Satake parameters
of f, see [19], where this is the orbit of {ag,,a1p, gy} under the action of the Weyl
group.

Let f € S2(T2(N), x) be an eigenfunction of the Hecke operators T}, Ty for pf N
so that

Tpf(2) = Ap(p)f(2) and  Tpaf(2) = As(p*)f(2).
The (Langlands) spinor zeta function of f on Gy is

Zi(s, f) = || Zo(s, f)

where the product is over the finite primes and for p { N we have Z,(s,f) =
Qp.f(p™*)~" where

Qp.r(x) =1 =Ap(p)x + {pAr(P*) + x(P*)p*°(p* + 1)}a?
= x> 2 Ap ()2 + x(p*)p* Ot

In the sequel, products defining L-functions are understood to be over the finite places.
Note that for p{ N we also have

—s —s —5 N
Zy(s, f) = [(1 —agpp” *)(1 — agparpp™ *) (1 — agpazpp™ ) (1 — agpaipaapp )}

The standard degree-5 L-function attached to f is
LSt(Sv f) = HLP(Sv f)
P
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where for pt N,

Ly(s, f) = [(1 = p™) (1 = a1pp™) (1 = o, p ") (1 = cpp™*) (1 = g, p~ )] 7
It was shown in [4] (for level 1) and [21] that Ls; (s, f) is holomorphic except possibly

for a finite number of simple poles. The standard degree-2 L-function attached to
6 € She_a(To(N),x?) is
IT Zo(s.¢) =TT =2~ + xp* > A = As(p)p™) ",
p prime ptN pIN

where A4 (p) is the eigenvalue of the p'™ Hecke operator on ¢, as in [12].

Let f be an eigenfunction of the Hecke operators at p { N. We say that f is in
the image of the Saito-Kurokawa lifting of the elliptic cuspform ¢ if and only if the
incomplete spinor zeta function attached to f decomposes

(1) [ 25 F) = Lls — 5+ 10L(s — 5+ 2, )55, 6)
ptN
where S = {p prime | p|N'} and L% (s, ¢) = [] 4 Ly (s, ¢) is the incomplete L-function

of ¢. Let S2(I'3(N),x)* denote the subspace of S(I'3(N),x) generated by such
cuspforms in the image of the Saito-Kurokawa lift.

3. Eigenvalues of the Frobenius Operators and the Saito-Kurokawa
Lifting
Let ¢ € Sy, 2(FO(N) 2) and let f € SL(T3(N),x). For wyy = (5 3') define
o*(z) = ¢|wN1 = Nr™ 1(]\7,2) 25=2¢(wn1(z)) (for z in the complex upper-half
plane) and for wy o = (1\1012 0,2 ) define f*(z) = f|wN~2(z) = N*(N2)""f(wn.a(z))
(for z € 92). Let A}(12) denote the Fourier coefficient of f* at H = 1,. Then
Ay(12) # 0 if and only if A%(12) # 0, from [2].

Lemma 1. If ¢ € S5, »(To(N),x?) is a Hecke eigenfunction then so is ¢* €
San-2(To(N), X?).

If f € S2(T'3(N), x) is a Hecke eigenfunction for pt N and an eigenfunction of the
Frobenius operators I, TL; for p|N then so is f* € S2(T3(N),¥X).

Proof. The first part is Theorem 4.5.5 on p.137 in [15] and the second is from Theorem
21in [2]. O

Let f be an eigenfunction of the Hecke operators T}, Tp2 for p{ N as in Section 2,
and an eigenfunction of the Frobenius operators I1,,, IT5 for p|N, as in [2] or [3]. Let

I, f(2) = ps(p)f(2) and 1L f(2) = p;(p)f(2)-

Following [2], for Re(s) > x and f as above, define the (Andrianov) spinor zeta

function
IIQM~*81I11—W )
pIN
From Theorems 1 and 3 in [2 ] we have the analytic continuation and a functional

equation for Z4(s, f). Note that the degree-1 factors are from [2], and differ from the
factors of the Langlands spinor zeta function at p|N.
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By Theorem 2 in [2] and Lemma 1, f* is also an eigenfunction for the Hecke
operators and Frobenius operators and we have

5, 1) =[] Qor&x®p~*)  T](1 = ps=()p~*) "
ptN p|N

Lemma 2. Let f € Si(F(Q)(N),X)* be an eigenfunction of the Hecke operators at
pt N and in the image of ¢ € S3,._o(To(N),x?). Then f* € S2(T3(N),X)* and is in
the image of ¢* € Sy, 5(To(N),X2).

Proof. As f is in the image of the lift, from (1) we have
Z5(s, f) = L(s — s + 1, x)L(s — 5 + 2, X)L (s, ¢)
where ¢ € S3,._5(o(N), x?). From a direct computation, for p f N the decomposition
Qpr(™°) = Lp(s =+ 1,x)Lp(s — £+ 2,X) Lp(s, )
is equivalent to the equations
A(p) = As(p) + x(p)p"*(p + 1)
M) = x(P* P+ XA (PP (0 + 1) = x(p)*p*°

1
Let p1 = ('2,,,) and py = ( P ) Then Tp,f* = M- (p)f* and Tpe f* =
g« (p?)f* where !
Ap=(p) = X(w(p1)*)Af(p) and Ag- (p%) = X(v(p2)*)As (P°)

from 0.7 and (2) of Theorem 2 in [2]. As v is the similitude character, then v(p;)? = p
and v(p2)? = p*. From Theorem 6.27 p.113 of [12] we have A4« (p) = x(p) "2y (p)
and so

2

Ap(p) = X(w(p1)?)Ar(p) = X(p)*(Ns(p) + x(P)p" 2(p + 1))
= Ao (p) + X(P)P" *(p+ 1))

and
Ap=(0%) = X(w(p2)*)Ar(p%) = X()* A s (P?)
=X@)* (x@)’P*"* + x(P)As ()P (0 + 1) — x(0)*p* )
=X)*P" T+ X(0)As- (P)p" (0 + 1) — X(p)*p** .

These equations imply the decomposition
Zp(5, ) = Qus (X)) ' = Qpy-(p™) "
= (L= Ap ()™ + {pAp- () + X @)™ > (0* + 1)}p*°
_ o—3_ _ o—G—ds) —1
= X@*)Ap- (> 27 + X (pt )

= (L =X@P" )1 = X(P)P" 27 (1 = Age (p) + X(p)*p**572))
Ly(s—k+1,X)Lp(s —k+2,X)Ly(s, 0").
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Lemma 3. Let f € S{(I'3(N),x)* be an eigenfunction of the Hecke and Frobenius
operators as in Theorem 1 and in the image of the lift of ¢ € S o(To(N), x?). Then

Za(s,f)=L(s—k+1,x)L(s —k+2,x)L(s,0)Pna(s, [, )

where
1= As(p)p™°

PN,l(Safa¢) = H 1 _pf(p)p_s

p|N
Proof. For f and ¢ as in the lemma, we have from (1),
Za(s, f) =L(s — s + 1,x)L(s — £+ 2,x) [ [ Lo(s.0) [[(1 = pr()p~) "
ptN p|N
:L(S — K+ 1aX)L(S — K+ 27X)L(5a ¢)PN,1(57 f7 ¢),
as Ly(s,¢) = (1 — A\y(p)p=%) ! for p|N. O
Define the Gauss sums

s = >, x(@emN,
a (mod N)
Gx)= Y, xlai+ap)em e/,
ai,az  (mod N)
If y is primitive then |g(x)[? = N (see [15] for example). Let K = Q(i) and let O
denote the integers of K. Let X be the character on Ok defined by Y(a1 + iaz) =

x(a? + a3) (as in Section 1). If X is primitive then |G(x)| = N, from Lemma 3 on
p.17 of [18].

Proposition 1. Let x be a primitive Dirichlet character modulo N so that X is a
primitive character of Ok . Let f € Si(I‘%(N),X)* be an eigenfunction of the Hecke
operators Ty, T2 at p{ N and Frobenius operators 11, 117 at p|N. Then

Ap(12) = A7 (L) (-1)"™

Further, if f is in the image of ¢ € Sy,._o(To(N), x?) then ps(p) = Ay(p) for p|N.
Proof. From the functional equation of Z4 (s, f) in Theorem 3 of [2], we have
Ap(12)¥(s, f) = AF(12)x(=DGOON> 4026 — 2 — 5, )

where U(s, f) = (2m) 2T (s)['(s — k + 2)Za(s, f). Note that the power of N here is
different than that explicitly stated in [2]. This is due to the definition of f*, where
from 0.9 in [2] it is given by f*(z) = f‘wN z(z) = N2*73(Nz)7* f(wn2(z)). Also note
that the coefficient in Theorem 3 of [2] is YAf (2-15). This is the same as Ay(12) here,
from the definition of the Fourier coefficients of f given in Section 2. Therefore, from
Lemma 3 we have
Ap(12)(2m) 2T ()T (s — k + 2)L(s — K + 1, X)L(s — £ + 2, X) L(s,9) Pn 1 (s, f, 9)
=A3(L2)x(—1)G () N334 (2m) 2252791255 — 2 — 5)['(k — 5)
X L(H -1- S,Y)L(K/ - S,X)L(2/‘C -2- S,¢*)PN’2(S,f*7(b*)
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where

_ 1— >\¢* (p)psf2n+2
PN,2(S; f 7¢ ) = H 1— ﬁ(p)ps—in-ﬁ—Q '
pIN

For « a primitive Dirichlet character modulo A and a(—1) = (—1)“ let

Ai(s,0) = (A/m)PT(E) (s, 0).

As « is primitive, for any a € C we can write the functional equation of the Hecke
L-function L(s,«) in the form

(2) Ai(s —a,a) =i "g(a)A"Y2A (1 — s+ a, @),

see (12.7) p. 204 in [12] for example. Applying (2) to L(s,x) with a = x — 1 and
a = k — 2, the above functional equation for Z4(s, f) becomes

Af(12)(2m)"*T(s)(s — K+ 2)L(s,¢) Pn.a (s, f, 9)
=A7 (L)X (~1) G N 574 (2m) 2279 (5 — 5)(25 — 2 — s)

X L(2k — 2 — s,¢%) (N/W)Z’S*?HHMPN@(& fr9)

g(x)?
s—rk+u+1 s—n+u+2 —-s+u,_  k—s+u—1
x I'( )T /T~ )T( )-
2 2 2
For As(s,¢) = N*/2(2m)~*T(s)L(s, (;5), the functional equation is
Ag(s, ¢) = i 2Aa(2k — 2 — 5,0").

Applying this and simplifying, the previous equation becomes

99 —s+u—1_ K—s5+u
Ap(12) (220 (s — o+ )P (TS Py (s, 1,0)

G(x) 1 2022 —k+u+l,_ s—k+u+2
=A%(12)x(—1 I'(k — s)(=1)¥tr—lg2r=2=2s r
HL2 (1) ST = 5)(-) (T

X PN,2(3a f*7 ¢*)
Applying the identity 2%7'T'(s)['(s+ 1) = /7'(2s) to this and simplifying, we obtain

X(=1)G)(=1)“F !
a(x)?

Ap(12)l(s = r+2)0(k —s +u—1)Pna(s, f,0) = Af(12)
xT(k—s)T'(s—k+u+1)Pna(s, f*,0%).

For u = 1 we can simplify directly, and for u = 0 we apply the identity I'(s)I'(1—s) =
7/ sin(ws). In both cases we obtain

Af(12)Pra(5.£,6) = A7(12) (1) 200 Py £7,6°).

Since |ps(p)| = p"~3/? from Theorem 3, and |A\s(p)| = p"~3/? from Theorem 6.3,
p.117 from [12] for example, we must have

(L= 26(p)p ™)1 =7, (0)p" %) = Cy(1 = ps ()"} (1 = Age (p)p*~>*)
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where C), = C,(f, ¢, %) is nonzero and independent of s. This gives

1+ X (p)ps(p)p™ > 2 =X (p)p~° — By (p)p° 2"
= Cp(1+ Mg (p)ps(p)p 212 = pr(p)p™° — Ay (p)p° 2" F2).

This implies the equations

2o(p) = Coos (0)
p(p) = CpAp=(p)
L+ /\¢(P)pf (P)If2N+2 =Cp(1+ Ao (p)ps (p)p72n+2).

Combining these, the third equation becomes

L+ Copr(p)ps(p)p~2""2 = Cp + ps(p)py (p)p~ 22

which by Theorem 3 gives 1 + Cpp™"t/2 = C, + p~*+1/2. Thus C, = 1 and sub-
sequently pr(p) = Ay(p). This gives Pya(s, f,¢) = Pna(s, f*,¢*) = 1 and the
result. O

Note that for f € S2(I'3(N),x)* in the image of ¢ € S3,. o(I'o(N),x?) and an
eigenfunction of the Hecke operators and Frobenius operators as in Proposition 1, the
above results imply the decomposition

(3) Za(s, f)=L(s—r+1,x)L(s —k+2,x)L(s, ®).

4. Twisted Spinor Zeta Functions and Gauss Sums

For ¢ a Dirichlet character of conductor M, following [18] we define the twisted
spinor zeta function attached to f and ¥ to be

s,f @) = Hpr pp ) ] = vw)esp)p~) 7
p|N
Define the Gauss sum
SW)= Y wle(H))e FmotAL
HeAx(M)
where
Ao(M) ={H € My(Zys) | H' = H, H is invertible modulo M}.

For ¢ primitive we have |S(1))| = M?3/2 from Lemma 2 on p.14 of [18].

Let
(4) U(s, f @) = (2m) > T()T(s — £+ 2)Za(s, f @ 1))

In order to apply the converse theorem from [5] (given in Section 5 here), we need
to slightly generalize the main result from [18]. In particular, statement (iv) from
Theorem 5 in Section 5 requires hypotheses on y, %, and M that are slightly more
general than the hypotheses explicitly stated in the Haupttheorem in [18]. Let ¢ =
x%. As in Section 1 we can contruct the characters 1/1 and ¢1 of Ok.
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Theorem 4 ([18], Haupttheorem). Let k > 2 and let f € S2(T2(N), x) with Ar(la) #
0. Let v be a primitive Dirichlet character modulo M. Then ¥(s, f @) is meromor-
phic in s € C with at most simple poles at s = k and Kk — 2.
If (M,N) =1 and x, ¥, and zzl are primitive characters then ¥(s, f ® 1) is
holomorphic and satisfies the functional equation
X(=M?)(N)G(¥1)S ()

6) A1), S @) = 43 (12) Y LT WO =2 s 0 )

Proof. The functional equation (5) with the hypotheses on M, N and %, x, ¥; is
the Haupttheorem on p.12 of [18]. Here we show that the hypotheses there can be
weakened at the expense of the possibility of poles of ¥ (s, f ® 1), in order to obtain
the first part of the theorem.

Following [2] and [18], recall that O denotes the integers of K = Q(). Let

H={(z+iy,7) e CxR|r>0}

be upper-half hyperbolic 3-space. Then PSL2(Ok) acts on H by linear fractional

transformations and there is a natural embedding 2 : H < $)2. See [2] for example.
Let uw = (z + iy,r) € H, let s € C with sufficiently large real part, and let « be a

Dirichlet character modulo A. As in (4.7) of [2], define the Eisenstein series

v® a(60)
E(u,s,a) = — Z .
2 A 2 A~|2)s
(roredi ooy 1472 TP+ 1AF)

By (5.12) from [2] we have the expression

o), G(a.0)

(2m)"°T(s)E(u, s,a) = A(u, s, ) — A (s —2)As72

where

A(u,s,a) = A_Qs/ tl_s( Z G(a7fy)e—?(’vz—52+|’y2v2)> dt

1/4 v,0€0k —{0,0}

(6) + /100 71(O(t, u, o) — a(0)) dt

/A

is a holomorphic function of s, ©(t, u, a) is a theta-series from (5.1) in [2], and

Glay)= Y a(dd)e 2mifetd/4),
deOk /(A)

Note that G(a, 1) = G(«) from Section 3. It follows that E(u, s, &) has a meromorphic
continuation to s € C, with possible poles only at the points s = 0,2 and these are
at most simple poles.

Let

To(N) = { (Z Z) € PSLy(Ok) | ¢=0 (mod N)}

and let i be a fundamental domain for the action of fO(N) on H. Let M, N € Z~g
(not necessarily relatively prime) and let ¢ be the least common multiple of M and
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N. For f € S*(T3(N),x) then from Lemma 1.1 on p.27 of [18], following (4.6) in
Lemma 2 of [2], we have the integral representation of the radial Dirichlet series

s,f @) = Zw )Af(m - 15)m~

given by

(m) =T () R(s f @v) = T (=N )N ()~

PIMN
F(w)E(u, s — ki +2,01)r" " du,
FnN
where (p) C Ok. Therefore, from the above expression for the Eisenstein series we
get

(4m) " T(s)R(s, f @) = [] (1 — o1 (N ()N (p) ==+ (2m) ==+ (s — 1 + 2)

pIMN
X ( fa(u)A(u, s — k + 2, 1!11)7"’"‘*3 du
FN

o (3_ R/lﬁ_lg)))és—n—i-QPN(f) + mPN(f)>

f) = /f F(u(w))r=? du.

Following p.23 of [18], for f as above with the Fourier expansion as in Section 2,
and ¥ a primitive Dirichlet character modulo M, we define

> U(o(H)Af(H)e* 7 ) € SYTFHMN, M), 1)
HeAS

where

where

T5(M2N, M) = { <Z 2) €l |c=0 (mod M?N) d= <§; _d‘f?> (mod M) }.

Note that T3(M?2N, M) < T3(M?N) and since ¢ is the least common multiple of M
and N we have

IT @ =ea(NE)N ) ) =T = s (N )N () )~
pIMN pte
Thus by (1) on p.62 of [18] we have Z4(s, f ® ¥) = Z4(s, fy) and so
Ap(12)Za(s. f @) = [TQ = e (V)N () "C~+) 7 R(s, £ @ ).
pte
Putting these and (4) together, we obtain the expression
Ar(12)W(s, f @) :23(271)_’”'2( Fu)A(u, s — K +2,91)r" 3 du

FN

) S0 PN<f>+G“/’1"”PN(f>).

(s — K+ 2)05—K+2 (s — K)s—"




432 DOMINIC LANPHIER

As f is a cuspform, the integral part above is a holomorphic function of s. Thus
U(s, f ® ¥) has possible poles only at s = k,x — 2 and these are at most simple.
Furthermore, if 11 is primitive then ¢ (0) = G(¢1,0) = 0 and it follows that U(s, f ®
1) is holomorphic. This gives the first part. The functional equation (5) is the
Haupttheorem on p.17 of [18]. O

As a consequence of the theorem, we have following result on Gauss sums.

Proposition 2. Let (M, N) = 1. Let x be a primitive Dirichlet character modulo N

and v a primitive Dirichlet character modulo M so that the characters X and QZ are
primitive. Then

G (1) = G)G()x(M)*P(N)?
and
g(¥)*a(¥)
G(yp)

Note that the second equation is due to Rombach [18], p.66.

S(¥) =

Proof. Let f and ¢ satisfy the hypotheses of Proposition 1. From (3) and (4) we have

U(s, fRY) = (27) " 2T(s)[(s — i + 2)L(s — k + 1,91)L(s — K + 2,91)L(s,¢ @ 1)
and similarly,

U2k —2—s, [ @) =(2m) 222790 (25 — 2 — 5)T(k — 5)
X L(k —1—8,%,)L(k — 8,9,)L(2k — 2 — 5,¢* @ ).
We put these into equation (5) and then apply (2) with a = k — 1 and a = k — 2.
This gives
Ap(12)D)0s — r+ 20 15 s @)
1 X(_Mj)w(N)G(T/Jl)S(@) 29292 () ~2r—s—1)
M25—2r+3 Ns—r+1 a(@)g(e1)2(—1)v
s I*i—|2-1+u)r($ /@—é—?—i—u
Applying the identity 22*7'T'(s)['(s + 3) = /7'(2s) and simplifying, this becomes
Ap(L)T(s)I' (s —k+2)T(k —s — 14+ u)L(s, ¢ @)

1 X(=M?)$p(N)G(¥1)S () 12— 25—29=2(r—s—1)

= Aj(12)

xI'(2k —2 — s)T'(k — $)I( VL(2k — 2 — 5,0" @ ).

M25—2n+3Ns—rc+1 g(w)g(wl)Q(_l)u
x T2k —2—8)D(k — )27 HID(s — k + 1+ u)L(26 — 2 — 5, 0" @)

=A3(12)

For u = 0 we use the identity I'(s)I'(1 — s) = 7/ sin(s) in order to simplify the above
expression further, and for v = 1 the simplification follows directly. In both cases,
the above equation becomes

1 X(=M2)H(N)G (1) S ()

M?2s—26+3 Ns—r+1 g( )g(¢1)2(_1)
x (2m) 72T DT (2K — 2 — 5)L(26 — 2 — 5,0 @ 9).

Ap(12)L(s)L(s, ¢ @ ) =A% (12)
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Let
As(s, ¢ ® ) = (VM2N[2m)°T'(s)L(s, ¢ @ )
where L(s,¢ ® 1) is the standard degree-2 L-function of ¢ twisted by ¢. As ¢ €
S 5(To(N), x?) and 1 is primitive, the functional equation is

As(s,0 @) = " (M)*(N)g(v)* M~ A3(26 — 2 — 5, 0" @ 1)),

see Theorem 7.6, p.126 of [12]. Applying this to the previous equation and simplifying,
we obtain

G(11)S(2)) .
(V)g(¥1)%g(v)?

Ap(lp) = A}(12)(—1)”+"g
Combine this with Proposition 1 to get

—  a(v1)?g(¥)*g(¥)G(x)
SW) = a(x)%G(¢1)

for any primitive x, ¢ modulo N, M respectively, with (M, N) = 1. For such x and

¥ we can apply g(¢1) = g(x)g(¥)x(M)(N) (see Lemma 3.1.2 on p.81 in [15] for
example) and get

S@) = 8(1)*8(¥)GOIX(M)*$(N)*
G(¥1)
Note the right hand side is independent of N. Setting the arbitrary NV and the N =1

cases equal we get G (1) = G(X)G(Y)x(M)*$(N)?* and S(¢) = g(¥)'g()/G(¥).
This gives the result. [l

5. Satake Parameters and a Converse Theorem

In this section we prove Theorem 1. Let x and f satisfy the hypotheses of Theorem
1. Then Af(15) # 0 and f satisfies the condition

(8) 1pry = ptt or oqpag_p1 =ptt for ptN.
As agpalpagp = p?*73 then ap, = p" 2F! and this implies the decomposition
9) Za(s,f@¢Y)=L(s—k+1,91)L(s — k + 2,91)Dn (s, f,¥)
where
Dy (s, f,¥) = H ((1 =¥ (p)aoparpp™*)(1 - w(p)aopa%p_s))il
PIN

< [T = v @esp)p~)~"

p|N
Now, we have that f* also satisfies (8) and
ZA(2K' —-2- Svf* ®$) = L("€ -1- Sv@l)L(KJ - ‘97$1>1)N(2"£ —-2- S7f*a¥)'

Lemma 4. Let k > 2 and let (M,N) = 1. Let x be a primitive Dirichlet character

modulo N and v a primitive Dirichlet character modulo M so that X and 7;/; are
primitive. Let f € S2(T3(N),x) satisfy (8) and let

A4(87 f7 flp) = ( v M2N/2W)SF(S)DN(83 fa ’l/})
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Then A4(s, f,1)) satisfies the functional equation
Ap(iz)Aa(o, £0) = A0~ ST MPV)a( M A2 25,1, D)

Proof. For f € S2(T%4(N), x), we apply the functional equation (5) from Theorem 4.
This gives

Ap(12) (s, f @ ) = A?(b)ﬁ;ﬂiﬁiﬁfﬁfﬁj{ﬁ 22— s F &)

By decomposition (9) and Proposition 2 we have
Af(lg)(27)7281—‘(8)1—\(8 —k+2)L(s —k+1,91)L(s — K+ 2,¢%1)Dn(s, f,9)

A4 3 4
:A’}(12)X( M]\i—)i(i\ﬁf]\)fg(—éli(f) (2m) 72229 D(25 — 2 — 5)T(k — 5)

x L(k — 1~ 5,6;)L(k — 8,01) Dy (25 — 2 — 5, f*, ).

As )y is primitive, we can apply the functional equation (2) of the L-functions
L(s,1) to this, with a = k — 1 and a = k — 2. After simplifying we get

Ap(12)(2m) T (5)T(s — s+ 2D (T2 Yyp(r e g

_M2W(N)G 5
>§\(428—231p3(N3_H&><1)gg(($)2 7T725+2H72(*1) (27{') 2(26—2—5)
S_R;1+U/)F(8_H;2+U/)DN(25—2—s,f*@)

where 11 (—1) = (=1)*". As before, we apply the identity 225~ 'I'(s)['(s + 1/2) =
/7[(2s) and similar properties of the gamma function. Simplifying, this gives us

)DN(Svfaw)

=A% (12)

xI'(2k — 2 — s)I'(k — s)I(

A7(Lo)(2m)~* (VAN) T () Dy (s, £, ) = A;uz)(—l)”*“féglz'%-?x(Mfw(N)

X g(¥)2 M~ (2m) 72 (VMEN) 2T (25 — 2 — 5) D (26 — 2 — s, f*, ),
which is the result. O

The standard degree-5 L-function attached to f and a Dirichlet character ¢ is
Lsi(s, f @) = H Ly(s, f @)

where for pt N we have
Ly(s, f @) = [(1 = 1(p)p~*)(1 = ¢(p)arpp™ ) (1 — ¢(p)ay, p~°)
X (1= 1p(p)azyp™*)(1 = Y(p)ag, p~*) .

The analytic continuation of Lgt(s, f ® 1) was studied in [21]. As with Lg(s, f), it
is shown that there are at most a finite number of simple poles.

Lemma 5. Let f € S2(T3(N), x) satisfy (8). Then the local factor at pt N of the
standard degree-5 L-function attached to f and 1 is

(10) Lp(sv f & 1:[]) = LP(val)DP(S + K= 1; fa w)DP(S + K= 2> f,w)
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Proof. Note that for p{ N,
Dy(s, f,0) = [(1 = ¥(p)aoparpp™ ) (1 — ¥(p)aopazyp )]

where ag, = prlif aptiap = p~ L, or agp = pr3 if apazy = p. In the case

a1pg, = p~ ! and ag, = p*~! we have ozl_pl = app and ozgpl = aypp. Thus the local

factor of the standard L-function becomes
Lp(s, f @) =[(1 = ¢1(p)p~") (1 = ¥ (p)arp™)(1 = ¢(p)azyp™)
X (1= (p)ag, p~)(1 = (p)ag, p~*)] "
=[(1 = 1(p)p™*) (1 = ¥ (p)arpp ™) (1 — Y(p)azpp~*)
x (1= (p)app™ )1 = ¢(p)agp™* )™
:[(1 —i(p)p~*)(1 = 7»[1(p)04010O‘ljopiSiNJrl)(1 - lb(p)aopo‘?ppﬂimrl)
x(1- w<p)a0pa1pp—s—w+2)(1 - w(p)aopa%p_s_m_z)]_l
=L,(s,1)Dp(s + k=1, f,0)Dy(s + k=2, f, ).

The case ajpa, = p and app = p*~3 is done similarly. U

-1

r—1

Lemma 6. Let f € S2(T2(N),x) with x a primitive Dirichlet character so that X is
primitive. Let 1) be a Dirichlet character that is primitive or trivial. Then Dy (s, f, 1)
is meromorphic in s € C. There are at most a finite number of poles, which are of
finite order and lie in the strip Re(s) € [k — 2, k].

Proof. From the decomposition (9) and the analyticity of ¥(s, f ® 1) from Theo-
rem 4 and [18] (and [2] for ¢ trivial), we have that Dy(s, f,%) has a meromorphic
continuation to C. By the Euler product expansion, Dy (s, f, 1) is holomorphic and
nonvanishing for Re(s) > k.

Let so € C with Re(sg) < k — 2. Then for any primitive Dirichlet character v,

\I/(S, f ® w) = (2’”)731—‘(8)1—\(8 — K+ 2)L(8 — K+ 1, l/fl)L(S — K+ 27 wl)DN(s’ fv 7/1)
is holomorphic at s = sg, by Theorem 4. Thus, if Dy(s, f,%) has a pole at sy then
one of the two L-functions must vanish at sg. Now, the only (possible) points where
L(s,1) vanishes for Re(s) < 0 are at the negative integers, and T'(s) has poles at
the negative integers of the same order as the zeroes of the L-function. Also, we
have that L(s — k + 1,11) = 0 if and only if L(s — k + 2,11) # 0. Thus the zeroes
of the L-functions are cancelled by the poles of the I'-functions, and it follows that

N (s, f,1) cannot have a pole at sq.

From (10) of Lemma 5 we have the decomposition
(11)
Lsi(s, f @1)) = HL L f @) = L(s,91)Dn(s+ k=1, f,)Dn(s+ k=2, f,4)F(s)

where

F(s)=] (1= o (@)pr ()~ ) (A — ey (p)p” )
LP(Sv f & 7,/1)
Note that F(s) only vanishes at a finite number of values of s € C, and these come

from the zeros of the numerator of F(s) and the poles of the denominator. Thus the
possible zeros of F'(s) are all of finite order (in fact of order at most 2).

p|N
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Let sg € C be in the strip 1 < Re(s) < 2 so then kK — 1 < Re(sp + k — 2) < k and
Re(sg+x—1) > k. Thus Dy (s, f, %) is holomorphic and nonvanishing at s = sg+x—1
and L(s, 1) is holomorphic and nonvanishing at s = sg. Now, Lgt(s, f ® ) has at
most a finite number of poles and these are all of finite order, and F(s) has a finite
number of zeros of finite order. It follows from decomposition (11) therefore, that there
are at most a finite number of poles of Dy (s, f,%) in the strip k — 1 < Re(s) < &,
and these are of finite order.

Let sp € C be in the strip 1 < Re(sg) <0sothenk —2 < Re(sp+x—1) <k —1
and Re(sg + k — 2) < kK — 2. Thus Dn(s, f,%) is holomorphic at s = sg + k — 2 and
L(s,11) is holomorphic and nonvanishing at s = sg. Now, Lgt(s, f ® ¢) has at most
a finite number of poles and these are all of finite order, and F(s) has a finite number
of zeros of finite order. It follows from decomposition (11) therefore, that there are
at most a finite number of poles of Dy (s, f,4) in the strip k — 2 < Re(s) < k — 1,
and these are of finite order. Similarly, we can see that D(s, f, 1) has at most a finite
number of poles of finite order on the lines Re(s) = k, x — 2.

It follows that for ¢ trivial or primitive, Dy (s, f,%) has at most a finite number
of poles. The poles are at of finite order and lie in the strip k — 2 < Re(s) < k.

Note that in the case where N = 1, then ¥(s, f ® 1) has simple poles at s = k and
k — 2. Tt follows that Dy (s, f,) is holomorphic. d

We are now able to apply a converse theorem to the functions Ay(12)Dn(s, f, )
and A% (12)(— 1)"”’“ (x)2 ~N (s, f*,1)). We state the theorem, essentially in the form
given in [6], as Theorem 5. It was applied to Artin’s conjecture in [5] and a detailed
proof of this is in [6].

Let ¢;(z) = Y07 an ;g™ with a,; € O(n®) for j = 0,1 and « some positive
number. Let D(s,¢;) = >.-" a, jn~*. For ¢ a Dirichlet character of conductor M
let

s, 0; @) = Zamw

and set
A(s, ¢ @) = (VM2N /2m)°T'(s)D(s, ¢; @ ).

Theorem 5 ([6], Theorem 6.2). Assume that D(s,$1) satisfies the following:

i) Has an Euler product expansion so that each factor at a prime p is the reciprocal
of a polynomial in p~*°.

it) Can be expressed as ratios of entire functions of finite order.

i11) Has at most finitely many poles.

iv) For all primitive Dirichlet characters 1, the functions A(s, »1 1) and A(s, p2®
1) have meromorphic continuations with no poles outside the strip Re(s) € (0,2k—2).

v) For ¢ primitive of conductor 1 or a prime p, the functional equation

Als, 91 @ ¥) = "7 ()Y (N)a(¥)*p~ A2k — 2,62 ® V)

is satisfied.
Then ¢y € S3,._5(To(N),X’) for X' a Dirichlet character modulo N.
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Clearly A¢(12)Dn (s, f) can be expressed as a Dirichlet series whose coefficients
are O(n®) for some a € R. As A;(13)Dn(s, f) has an Euler product expansion, then
(7) is satisfied. From (7) in the proof of Theorem 4 and (6.1) in [2], we have

Ap(12)¥(s, f@Y) = cm‘i(/f F@(u)A(u,s — £ +2,91)r" "% du + caa3 + c3a3)

where a;, ¢; are constants. We have from (6) (see also (5.14) in [2]),

A(%Sywl)f%//zt”( > wa)ezﬁ(wzsﬁﬂ“’ﬁ) dt

1 v,6€0x —{0,0}

[ et ) - (o)
1/6

where ©(t, u, 1) is a theta-series from (5.1) in [2]. It follows that Za(s, f ® ) is
of finite order for ¢ primitive or trivial. Thus there is a polynomial Q(z) so that
Z4(s, f)Q(s) is entire and of finite order. Similarly, there is a polynomial P(z) so
that L(s, x)P(s) is entire and of finite order. Thus we have

Ar(12)Za(s, f)Q(s)P(s —k +1)P(s — k + 2)
Ap(12)Dn(s, f) =
Q(s)L(s—k+1,x)P(s—k+1)L(s—Kk+2,x)P(s —k+2)

which is a ratio of entire functions of finite order, and so (i) is satisfied. By Lemma 6
we have that A¢(12)Dn (s, f) has finitely many poles and the possible poles are in the
strip [k —2, k] C (0,2k—2) for k > 2, and so we get (4ii). By Theorem 4 and Lemmas
4 and 6 we see that (7v) holds for A(s, p®%) and A(s, ¢* ®). The functional equation
in the statement of the theorem follows from Lemma 4 with x' = x?, ¢1 = Af(12)¢,
and ¢y = A (12)(—1)"+ S ¢ This gives (v).

9(x)?

Applying Theorem 5 therefore, we have that Ay(12)Dn (s, f) = > ooojapn™* =
a1L(s, ) for some ¢ € S3,._5(To(N), x?). Thus Z4(s, f) decomposes into
L(‘S*H‘F]-aX)L(s*H‘FQ,X)DN(S,f) = Aa(ll )L(’S*H+1’X)L(87’€+27X)L(sa¢))

712

and we have a; = Ay(1s). This gives decomposition (1) and it follows that f is in
the image of the Saito-Kurokawa lift. This finishes the proof of Theorem 1.
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