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A LOCAL CRITERION FOR THE SAITO-KUROKAWA LIFTING
OF CUSPFORMS WITH CHARACTERS

Dominic Lanphier

Abstract. Let f be a holomorphic degree-2 Siegel cuspform of weight κ, level N , and

nebentype a primitive Dirichlet character χ. Let f be an eigenfunction of the regular
Hecke operators Tp, Tp2 at primes p - N and an eigenfunction of the Frobenius operators

Πp and their duals Π∗
p at primes p|N . For certain χ, we give conditions on the Satake

parameters of f which imply that f is lifted from an elliptic cuspform φ of weight 2κ−2,
level N , and nebentype χ2. We also show that for such f and φ, the eigenvalues of the

Frobenius operators on f are eigenvalues of Hecke operators on φ.

1. Introduction

The Saito-Kurokawa lift is a Hecke equivariant map from elliptic cuspforms to
degree-2 Siegel cuspforms so that the spin L-function of a Siegel cuspform in the image
of the lift decomposes into more elementary L-functions in a precise way. Classically,
cuspforms that are in the image of the lift are characterized by conditions on their
Fourier coefficients. In particular, let f be a Siegel cuspform of weight κ and level
1. For a totally positive definite matrix H =

( a b/2
b/2 c

)
with a, b, c ∈ Z, write the

Hth Fourier coefficient of f by Af (H) = Af (a, b, c). Then f is in the image of the
Saito-Kurokawa lifting (the Maass space) if and only if the Fourier coefficients of f
satisfy the Maass relations [9],

Af (a, b, c) =
∑

d|gcd(a,b,c)

dκ−1Af (
ac

d2
,
b

d
, 1).

The existence of the Saito-Kurokawa lift was demonstrated in a series of papers [1],
[13], [24] and an exposition of the proof is in [9] and [20]. The lift has been generalized
to cuspforms of higher level [14], and to Siegel cuspforms of degree 2n [11].

For N ∈ Z>0 we denote the space of holomorphic degree-2 Siegel cuspforms of
weight κ, level N , and character χ by S2

κ(Γ
2
0(N), χ). In this paper we consider eigen-

functions of the regular Hecke operators Tp, Tp2 for p - N and eigenfunctions of the
Frobenius operators Πp,Π∗

p for p|N , as defined by Andrianov in [3]. We define a Saito-
Kurokawa lift, that is a lift from holomorphic elliptic cuspforms of weight 2κ−2, level
N , and nebentype χ2 into S2

κ(Γ
2
0(N), χ), in Section 2. For p - N we define the Satake

parameters {α0p, α1p, α2p} of f in Section 2, see [19]. To a Dirichlet character χ we
define a character χ̃ of Z[i] by χ̃(a) = χ(aa) as in [2].

Theorem 1. Let N ∈ Z>0 be odd and squarefree. Let χ be a primitive Dirichlet
character of conductor N so that the character χ̃ is primitive. Let κ > 2 and let
f ∈ S2

κ(Γ
2
0(N), χ) be a Hecke eigenfunction of Tp and Tp2 at primes p - N and an
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eigenfunction of the Frobenius operators Πp and their duals Π∗
p at p|N . If Af (12) 6= 0

and the Satake parameters of f satisfy the condition

α1pα2p = p±1 or α1pα
−1
2p = p±1 for p - N,

then f is in the image of the Saito-Kurokawa lift.

The condition Af (12) 6= 0 is a technical condition that allows the results from [2]
and [18] to be more easily applied. Note that from Remark 4 in [2] there are examples
of primitive characters χ so that χ̃ is not a primitive character of Z[i]. Also, note
that a local characterization for the Saito-Kurokawa lift was obtained in [23], using
[16] and a converse theorem from [22]. Recently another local characterization of the
lifting was obtained by Pitale and Schmidt in [17].

Theorem 2. Let f be as in Theorem 1 and in the image of the Saito-Kurokawa lift of
an elliptic cuspform φ of weight 2κ−2, level N , and nebentype χ2. For p|N , let ρf (p)
be the eigenvalue of the Frobenius operator Πp on f and let λφ(p) be the eigenvalue
of the pth Hecke operator on φ. Then ρf (p) = λφ(p).

In Section 2 we define the cuspforms and the lifting that we study. In Section 3 we
prove Theorem 2. We introduce spinor zeta functions twisted by Dirichlet characters
as in [18], and prove a result on Gauss sums in Section 4. In the last section we
prove Theorem 1, using the results from Section 4 which allow us to apply a converse
theorem due to Booker, [5].

2. Automorphic Forms and the Saito-Kurokawa Lifting

Let
H2 = {z ∈M2(C) | zT = z, −i(z − z∗) > 0}

denote the Siegel upper-half space, where M2(C) denotes the set of 2 × 2 matrices
with entries in C, zT is matrix transpose, and z∗ = zT . For N ∈ Z>0 consider the
congruence subgroup

Γ2
0(N) =

{ (
a b
c d

)
∈ Sp2(Z)

∣∣ c ≡ 02 (mod N)
}
.

Let Γ0(N) denote the analogous congruence subgroup in SL2(Z), as in [12].
Let µ(g, z) = det(cz + d)−1 and let χ be a Dirichlet character modulo N . A holo-

morphic Siegel modular form of weight κ, level N , and character χ is a holomorphic
C-valued function f on H2 so that

f(g(z))µ(g, z)κχ(det(d))−1 = f(z)

for all z ∈ H2, g =
(
a b
c d

)
∈ Γ2

0(N), and where g(z) = (az + b)(cz + d)−1. Let
M2

κ(Γ
2
0(N), χ) denote the space of such Siegel modular forms and let S2

κ(Γ
2
0(N), χ)

denote the subspace of cuspforms. Similarly, let S1
κ(Γ0(N), χ2) be the space of holo-

morphic elliptic cuspforms of weight κ, level N , and character χ2.
The Fourier expansion of f ∈ S2

κ(Γ
2
0(N), χ) is of the form

f(z) =
∑
H∈A+

2

Af (H)eπiσ(Hz)
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where

A+
2 = {H =

(
a b/2
b/2 c

)
∈M2(Z) | a, b, c ∈ Z, H > 0}

and σ is the trace. For p - N , we define the Hecke operators Tp, Tp2 and for p|N the
Frobenius operators Πp,Π∗

p for the space of such modular forms as in [3]. Note that
the Frobenius operator Πm commutes with the Hecke operators and has a natural
action on f by

Πm(f)(z) =
∑
H∈A+

2

Af (mH)eπiσ(Hz),

see [3]. The following is a consequence of Theorem 22 from [3].

Theorem 3 ([3], Theorem 22). Let N be a product of distinct odd primes and χ a
Dirichlet character modulo N so that χ2 is primitive. Then there exists an orthonor-
mal basis of S2

κ(Γ
2
0(N), χ) consisting of eigenfunctions of the Hecke operators Tp, Tp2

for p - N and Frobenius operators Πp,Π∗
p for p|N . The eigenvalues of Πp and Π∗

p

have absolute value equal to pκ−3/2.

In particular, for p an odd prime and χ primitive there is an orthonormal basis for
S2
κ(Γ

2
0(p), χ) consisting of such eigenfunctions.

Let

J =
(

02 −12

12 02

)
and let G = GSp2 = {g ∈ GL4 | gTJg = ν(g)J} where ν is a multiplicative (simil-
itude) character. Let AQ denote the adeles of Q and let GA be the group G with
entries in AQ. We can associate to f ∈ S2

κ(Γ
2
0(N), χ) a smooth cuspform on GA in

the following way. Let A0 denote the finite adeles of Q. Let Qp be the completion of
the valuation | · |p of Q and let Gp be the local points of GA. Let Γ2

0(N)A denote the
congruence subgroup of GA.

For p <∞ set Kp = GZp and let KA0 =
∏
p<∞Kp. For p|∞ define

Kp = {g ∈ Gp | g(i12) = i12} ∼= U(2)

where U(2) = {g ∈ GL4(C) | g∗g = 14}. Then Kp is a maximal compact subgroup
of Gp. If g ∈ K∞ =

∏
p|∞Kp then let ρκ(g) = det(a+ ib)κ. Let KA = K∞KA0 . For

g ∈ GA and z ∈ H2 define

µ(g, z) = (µ(gp, zp))p∈A∞ .

For f a function on H2 and g ∈ GA, define a function on H2 by (f |κg)(z) =
χ(det(d))−1µ(g, z)κf(g(z)). A holomorphic automorphic form is therefore a func-
tion f : H2 → C× so that f is holomorphic and f |κg = f for all g ∈ Γ2

0(N)A.
Then χ(det(d))−1µ(1, g(i1n))κf(g(i1n)) is a function on GA which we also label f .
By strong approximation on GA, f is a left GQ-invariant, right (K∞, ρκ)-equivariant,
right Γ2

0(N)A0-invariant function on GA, and so f is a holomorphic modular form on
GA of weight κ, level N and character χ.

We say that f on GA as defined above is an eigenfunction of the Hecke operators
Tp, Tp2 or of the Frobenius operators Πp,Π∗

p if the corresponding function f on H2 is
an eigenfunction of Tp, Tp2 or Πp,Π∗

p respectively, in the sense of [3].
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For a smooth cuspform f on GA that is a Hecke eigenfunction at almost all primes,
let πA be the automorphic representation of GA generated by f under the right regular
representation. We have the factorization πA ∼= ⊗′pπp [10], which is a completed
restricted product and πp is an irreducible unitarizable automorphic representation
of Gp.

Consider the Borel subgroup of Gp,

Bp =
{ 

λa1 ∗ ∗ ∗
0 λa2 ∗ ∗
0 0 a−1

1 0
0 0 ∗ a−1

2

 ∈ Gp
∣∣∣∣ λ, a1, a2 ∈ Q×

p

}
.

By [7] and [8] an irreducible admissible spherical representation embeds into an un-
ramified principal series. By dualization, an admissible spherical representation is also
an image of an unramified principal series. Thus for p <∞ so that πp is a spherical
representation of Gp, we have a surjection of Gp-representation spaces

Ip(χp) = c-IndGp

Bp
χpδ

1/2
B → πp

where χp is an unramified character on Bp [8], δB is the modular function of Bp, and
c-Ind is compactly-supported smooth induction. Thus πp is isomorphic to a quotient
of Ip(χp).

Let χ1, χ2, σ be unramified characters of Q×
p so that for b ∈ Bp we have χp(b) =

χ1(a1)χ2(a2)σ(λ). For p - N let α0p = pκ−3/2σ(p), α1p = χ1(p), and α2p = χ2(p).
We consider the 8 element set {α±1

0p , α
±1
1p , α

±1
2p } to be the set of Satake parameters

of f , see [19], where this is the orbit of {α0p, α1p, α2p} under the action of the Weyl
group.

Let f ∈ S2
κ(Γ

2
0(N), χ) be an eigenfunction of the Hecke operators Tp, Tp2 for p - N

so that
Tpf(z) = λf (p)f(z) and Tp2f(z) = λf (p2)f(z).

The (Langlands) spinor zeta function of f on GA is

ZL(s, f) =
∏
p

Zp(s, f)

where the product is over the finite primes and for p - N we have Zp(s, f) =
Qp,f (p−s)−1 where

Qp,f (x) = 1− λf (p)x+ {pλf (p2) + χ(p2)p2κ−5(p2 + 1)}x2

− χ(p2)p2κ−3λf (p)x3 + χ(p4)p4κ−6x4.

In the sequel, products defining L-functions are understood to be over the finite places.
Note that for p - N we also have

Zp(s, f) =
[
(1− α0pp

−s)(1− α0pα1pp
−s)(1− α0pα2pp

−s)(1− α0pα1pα2pp
−s)

]−1
.

The standard degree-5 L-function attached to f is

LSt(s, f) =
∏
p

Lp(s, f)
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where for p - N ,

Lp(s, f) =
[
(1− p−s)(1− α1pp

−s)(1− α−1
1p p

−s)(1− α2pp
−s)(1− α−1

2p p
−s)]−1.

It was shown in [4] (for level 1) and [21] that LSt(s, f) is holomorphic except possibly
for a finite number of simple poles. The standard degree-2 L-function attached to
φ ∈ S1

2κ−2(Γ0(N), χ2) is

L(s, φ) =
∏

p prime

Lp(s, φ) =
∏
p-N

(1− λφ(p)p−s + χ(p)p2κ−3−2s)−1
∏
p|N

(1− λφ(p)p−s)−1,

where λφ(p) is the eigenvalue of the pth Hecke operator on φ, as in [12].
Let f be an eigenfunction of the Hecke operators at p - N . We say that f is in

the image of the Saito-Kurokawa lifting of the elliptic cuspform φ if and only if the
incomplete spinor zeta function attached to f decomposes

(1) ZS(s, f) =
∏
p-N

Zp(s, f) = L(s− κ+ 1, χ)L(s− κ+ 2, χ)LS(s, φ)

where S = {p prime | p|N} and LS(s, φ) =
∏
p-N Lp(s, φ) is the incomplete L-function

of φ. Let S2
κ(Γ

2
0(N), χ)∗ denote the subspace of S2

κ(Γ
2
0(N), χ) generated by such

cuspforms in the image of the Saito-Kurokawa lift.

3. Eigenvalues of the Frobenius Operators and the Saito-Kurokawa
Lifting

Let φ ∈ S1
2κ−2(Γ0(N), χ2) and let f ∈ S2

κ(Γ
2
0(N), χ). For wN,1 =

(
0 −1
N 0

)
define

φ∗(z) = φ
∣∣
wN,1

(z) = Nκ−1(Nz)−2κ−2φ(wN,1(z)) (for z in the complex upper-half

plane) and for wN,2 =
(

02 −12
N ·12 02

)
define f∗(z) = f

∣∣
wN,2

(z) = Nκ(Nz)−κf(wN,2(z))
(for z ∈ H2). Let A∗f (12) denote the Fourier coefficient of f∗ at H = 12. Then
Af (12) 6= 0 if and only if A∗f (12) 6= 0, from [2].

Lemma 1. If φ ∈ S1
2κ−2(Γ0(N), χ2) is a Hecke eigenfunction then so is φ∗ ∈

S1
2κ−2(Γ0(N), χ2).
If f ∈ S2

κ(Γ
2
0(N), χ) is a Hecke eigenfunction for p - N and an eigenfunction of the

Frobenius operators Πp,Π∗
p for p|N then so is f∗ ∈ S2

κ(Γ
2
0(N), χ).

Proof. The first part is Theorem 4.5.5 on p.137 in [15] and the second is from Theorem
2 in [2]. �

Let f be an eigenfunction of the Hecke operators Tp, Tp2 for p - N as in Section 2,
and an eigenfunction of the Frobenius operators Πp,Π∗

p for p|N , as in [2] or [3]. Let

Πpf(z) = ρf (p)f(z) and Π∗
pf(z) = ρ∗f (p)f(z).

Following [2], for Re(s) > κ and f as above, define the (Andrianov) spinor zeta
function

ZA(s, f) =
∏
p-N

Qp,f (p−s)−1
∏
p|N

(1− ρf (p)p−s)−1.

From Theorems 1 and 3 in [2] we have the analytic continuation and a functional
equation for ZA(s, f). Note that the degree-1 factors are from [2], and differ from the
factors of the Langlands spinor zeta function at p|N .
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By Theorem 2 in [2] and Lemma 1, f∗ is also an eigenfunction for the Hecke
operators and Frobenius operators and we have

ZA(s, f∗) =
∏
p-N

Qp,f (χ(p2)p−s)−1
∏
p|N

(1− ρf∗(p)p−s)−1.

Lemma 2. Let f ∈ S2
κ(Γ

2
0(N), χ)∗ be an eigenfunction of the Hecke operators at

p - N and in the image of φ ∈ S1
2κ−2(Γ0(N), χ2). Then f∗ ∈ S2

κ(Γ
2
0(N), χ)∗ and is in

the image of φ∗ ∈ S1
2κ−2(Γ0(N), χ2).

Proof. As f is in the image of the lift, from (1) we have

ZS(s, f) = L(s− κ+ 1, χ)L(s− κ+ 2, χ)LS(s, φ)

where φ ∈ S1
2κ−2(Γ0(N), χ2). From a direct computation, for p - N the decomposition

Qp,f (p−s) = Lp(s− κ+ 1, χ)Lp(s− κ+ 2, χ)Lp(s, φ)

is equivalent to the equations

λf (p) = λφ(p) + χ(p)pκ−2(p+ 1)

λf (p2) = χ(p)2p2κ−4 + χ(p)λφ(p)pκ−3(p+ 1)− χ(p)2p2κ−6.

Let p1 =
(

12
p·12

)
and p2 =

( 1
p

p2

p

)
. Then Tpf

∗ = λf∗(p)f∗ and Tp2f
∗ =

λf∗(p2)f∗ where

λf∗(p) = χ(ν(p1)2)λf (p) and λf∗(p2) = χ(ν(p2)2)λf (p2)

from 0.7 and (2) of Theorem 2 in [2]. As ν is the similitude character, then ν(p1)2 = p2

and ν(p2)2 = p4. From Theorem 6.27 p.113 of [12] we have λφ∗(p) = χ(p)−2λφ(p)
and so

λf∗(p) = χ(ν(p1)2)λf (p) = χ(p)2(λφ(p) + χ(p)pκ−2(p+ 1))

= λφ∗(p) + χ(p)pκ−2(p+ 1))

and

λf∗(p2) = χ(ν(p2)2)λf (p2) = χ(p)4λf (p2)

= χ(p)4(χ(p)2p2κ−4 + χ(p)λφ(p)pκ−3(p+ 1)− χ(p)2p2κ−6)

= χ(p)2p2κ−4 + χ(p)λφ∗(p)pκ−3(p+ 1)− χ(p)2p2κ−6.

These equations imply the decomposition

Zp(s, f∗) = Qp,f (χ(p2)p−s)−1 = Qp,f∗(p−s)−1

=
(
1− λf∗(p)p−s + {pλf∗(p2) + χ(p2)p2κ−5(p2 + 1)}p−2s

− χ(p2)λf∗(p)p2κ−3−3s + χ(p4)p4κ−6−4s
)−1

=
(
(1− χ(p)pκ−1−s)(1− χ(p)pκ−2−s)(1− λφ∗(p) + χ(p)2p2κ−3−2s)

)−1

= Lp(s− κ+ 1, χ)Lp(s− κ+ 2, χ)Lp(s, φ∗).

�
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Lemma 3. Let f ∈ S2
k(Γ

2
0(N), χ)∗ be an eigenfunction of the Hecke and Frobenius

operators as in Theorem 1 and in the image of the lift of φ ∈ S1
2κ−2(Γ0(N), χ2). Then

ZA(s, f) = L(s− κ+ 1, χ)L(s− κ+ 2, χ)L(s, φ)PN,1(s, f, φ)

where

PN,1(s, f, φ) =
∏
p|N

1− λφ(p)p−s

1− ρf (p)p−s
.

Proof. For f and φ as in the lemma, we have from (1),

ZA(s, f) =L(s− κ+ 1, χ)L(s− κ+ 2, χ)
∏
p-N

Lp(s, φ)
∏
p|N

(1− ρf (p)p−s)−1

=L(s− κ+ 1, χ)L(s− κ+ 2, χ)L(s, φ)PN,1(s, f, φ),

as Lp(s, φ) = (1− λφ(p)p−s)−1 for p|N . �

Define the Gauss sums

g(χ) =
∑

a (mod N)

χ(a)e2πia/N ,

G(χ) =
∑

a1,a2 (mod N)

χ(a2
1 + a2

2)e
2πia1/N .

If χ is primitive then |g(χ)|2 = N (see [15] for example). Let K = Q(i) and let OK
denote the integers of K. Let χ̃ be the character on OK defined by χ̃(a1 + ia2) =
χ(a2

1 + a2
2) (as in Section 1). If χ̃ is primitive then |G(χ)| = N , from Lemma 3 on

p.17 of [18].

Proposition 1. Let χ be a primitive Dirichlet character modulo N so that χ̃ is a
primitive character of OK . Let f ∈ S2

κ(Γ
2
0(N), χ)∗ be an eigenfunction of the Hecke

operators Tp, Tp2 at p - N and Frobenius operators Πp,Π∗
p at p|N . Then

Af (12) = A∗f (12)(−1)κ+u
G(χ)
g(χ)2

.

Further, if f is in the image of φ ∈ S1
2κ−2(Γ0(N), χ2) then ρf (p) = λφ(p) for p|N .

Proof. From the functional equation of ZA(s, f) in Theorem 3 of [2], we have

Af (12)Ψ(s, f) = A∗f (12)χ(−1)G(χ)N3κ−3s−4Ψ(2κ− 2− s, f∗)

where Ψ(s, f) = (2π)−2sΓ(s)Γ(s − κ + 2)ZA(s, f). Note that the power of N here is
different than that explicitly stated in [2]. This is due to the definition of f∗, where
from 0.9 in [2] it is given by f∗(z) = f

∣∣
wN,2

(z) = N2κ−3(Nz)−κf(wN,2(z)). Also note
that the coefficient in Theorem 3 of [2] is Af (2 · 12). This is the same as Af (12) here,
from the definition of the Fourier coefficients of f given in Section 2. Therefore, from
Lemma 3 we have

Af (12)(2π)−2sΓ(s)Γ(s− κ+ 2)L(s− κ+ 1, χ)L(s− κ+ 2, χ)L(s, φ)PN,1(s, f, φ)

=A∗f (12)χ(−1)G(χ)N3κ−3s−4(2π)−2(2κ−2−s)Γ(2κ− 2− s)Γ(κ− s)

× L(κ− 1− s, χ)L(κ− s, χ)L(2κ− 2− s, φ∗)PN,2(s, f∗, φ∗)
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where

PN,2(s, f∗, φ∗) =
∏
p|N

1− λφ∗(p)ps−2κ+2

1− ρ(p)ps−2κ+2
.

For α a primitive Dirichlet character modulo A and α(−1) = (−1)u let

Λ1(s, α) = (A/π)s/2Γ(
s+ u

2
)L(s, α).

As α is primitive, for any a ∈ C we can write the functional equation of the Hecke
L-function L(s, α) in the form

(2) Λ1(s− a, α) = i−ug(α)A−1/2Λ1(1− s+ a, α),

see (12.7) p. 204 in [12] for example. Applying (2) to L(s, χ) with a = κ − 1 and
a = κ− 2, the above functional equation for ZA(s, f) becomes

Af (12)(2π)−2sΓ(s)Γ(s− κ+ 2)L(s, φ)PN,1(s, f, φ)

=A∗f (12)χ(−1)G(χ)N3κ−3s−4(2π)−2(2κ−2−s)Γ(κ− s)Γ(2κ− 2− s)

× L(2κ− 2− s, φ∗)
(
N/π)2s−2κ+2 (−1)uN

g(χ)2
PN,2(s, f∗, φ∗)

× Γ(
s− κ+ u+ 1

2
)Γ(

s− κ+ u+ 2
2

)/Γ(
κ− s+ u

2
)Γ(

κ− s+ u− 1
2

).

For Λ2(s, φ) = Ns/2(2π)−sΓ(s)L(s, φ), the functional equation is

Λ2(s, φ) = i2κ−2Λ2(2κ− 2− s, φ∗).

Applying this and simplifying, the previous equation becomes

Af (12)(2π)2κ−2−2sΓ(s− κ+ 2)Γ(
κ− s+ u− 1

2
)Γ(

κ− s+ u

2
)PN,1(s, f, φ)

=A∗f (12)χ(−1)
G(χ)
g(χ)2

Γ(κ− s)(−1)u+κ−1π2κ−2−2sΓ(
s− κ+ u+ 1

2
)Γ(

s− κ+ u+ 2
2

)

× PN,2(s, f∗, φ∗).

Applying the identity 22s−1Γ(s)Γ(s+ 1
2 ) =

√
πΓ(2s) to this and simplifying, we obtain

Af (12)Γ(s− κ+ 2)Γ(κ− s+ u− 1)PN,1(s, f, φ) = A∗f (12)
χ(−1)G(χ)(−1)u+κ−1

g(χ)2

× Γ(κ− s)Γ(s− κ+ u+ 1)PN,2(s, f∗, φ∗).

For u = 1 we can simplify directly, and for u = 0 we apply the identity Γ(s)Γ(1−s) =
π/ sin(πs). In both cases we obtain

Af (12)PN,1(s, f, φ) = A∗f (12)(−1)κ+u
G(χ)
g(χ)2

PN,2(s, f∗, φ∗).

Since |ρf (p)| = pκ−3/2 from Theorem 3, and |λφ(p)| = pκ−3/2 from Theorem 6.3,
p.117 from [12] for example, we must have

(1− λφ(p)p−s)(1− ρf (p)p
s−2κ+2) = Cp(1− ρf (p)p−s)(1− λφ∗(p)ps−2κ+2)
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where Cp = Cp(f, φ, ψ) is nonzero and independent of s. This gives

1 + λφ(p)ρf (p)p
−2κ+2−λφ(p)p−s − ρf (p)p

s−2κ+2

= Cp(1 + λφ∗(p)ρf (p)p−2κ+2 − ρf (p)p−s − λφ∗(p)ps−2κ+2).

This implies the equations

λφ(p) = Cpρf (p)

ρf (p) = Cpλφ∗(p)

1 + λφ(p)ρf (p)p
−2κ+2 = Cp(1 + λφ∗(p)ρf (p)p−2κ+2).

Combining these, the third equation becomes

1 + Cpρf (p)ρf (p)p
−2κ+2 = Cp + ρf (p)ρf (p)p

−2κ+2

which by Theorem 3 gives 1 + Cpp
−κ+1/2 = Cp + p−κ+1/2. Thus Cp = 1 and sub-

sequently ρf (p) = λφ(p). This gives PN,1(s, f, φ) = PN,2(s, f∗, φ∗) = 1 and the
result. �

Note that for f ∈ S2
κ(Γ

2
0(N), χ)∗ in the image of φ ∈ S1

2κ−2(Γ0(N), χ2) and an
eigenfunction of the Hecke operators and Frobenius operators as in Proposition 1, the
above results imply the decomposition

(3) ZA(s, f) = L(s− κ+ 1, χ)L(s− κ+ 2, χ)L(s, φ).

4. Twisted Spinor Zeta Functions and Gauss Sums

For ψ a Dirichlet character of conductor M , following [18] we define the twisted
spinor zeta function attached to f and ψ to be

ZA(s, f ⊗ ψ) =
∏
p-N

Qp,f (ψ(p)p−s)−1
∏
p|N

(1− ψ(p)ρf (p)p−s)−1.

Define the Gauss sum

S(ψ) =
∑

H∈A2(M)

ψ(σ(H−1))e−2πiσ(H)/M ,

where

A2(M) = {H ∈M2(ZM ) | HT = H, H is invertible modulo M}.

For ψ primitive we have |S(ψ)| = M3/2 from Lemma 2 on p.14 of [18].
Let

(4) Ψ(s, f ⊗ ψ) = (2π)−2sΓ(s)Γ(s− κ+ 2)ZA(s, f ⊗ ψ).

In order to apply the converse theorem from [5] (given in Section 5 here), we need
to slightly generalize the main result from [18]. In particular, statement (iv) from
Theorem 5 in Section 5 requires hypotheses on χ, ψ, and M that are slightly more
general than the hypotheses explicitly stated in the Haupttheorem in [18]. Let ψ1 =
χψ. As in Section 1 we can contruct the characters ψ̃ and ψ̃1 of OK .
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Theorem 4 ([18], Haupttheorem). Let κ > 2 and let f ∈ S2
κ(Γ

2
0(N), χ) with Af (12) 6=

0. Let ψ be a primitive Dirichlet character modulo M . Then Ψ(s, f ⊗ψ) is meromor-
phic in s ∈ C with at most simple poles at s = κ and κ− 2.

If (M,N) = 1 and χ, ψ, and ψ̃1 are primitive characters then Ψ(s, f ⊗ ψ) is
holomorphic and satisfies the functional equation

(5) Af (12)Ψ(s, f ⊗ ψ) = A∗f (12)
χ(−M2)ψ(N)G(ψ1)S(ψ)
M4s−4κ+6N3s−3κ+4g(ψ)

Ψ(2κ− 2− s, f∗ ⊗ ψ).

Proof. The functional equation (5) with the hypotheses on M,N and ψ, χ, ψ1 is
the Haupttheorem on p.12 of [18]. Here we show that the hypotheses there can be
weakened at the expense of the possibility of poles of Ψ(s, f ⊗ ψ), in order to obtain
the first part of the theorem.

Following [2] and [18], recall that OK denotes the integers of K = Q(i). Let

H = {(x+ iy, r) ∈ C× R | r > 0}

be upper-half hyperbolic 3-space. Then PSL2(OK) acts on H by linear fractional
transformations and there is a natural embedding ı : H ↪→ H2. See [2] for example.

Let u = (x + iy, r) ∈ H, let s ∈ C with sufficiently large real part, and let α be a
Dirichlet character modulo A. As in (4.7) of [2], define the Eisenstein series

E(u, s, α) =
vs

2

∑
(γ,δ)∈OK−{(0,0)}

α(δδ)
(|Aγz + δ|2 + |Aγ|2)s

.

By (5.12) from [2] we have the expression

(2π)−sΓ(s)E(u, s, α) = ∆(u, s, α)− α(0)
sAs

+
G(α, 0)

(s− 2)As+2

where

∆(u, s, α) = A−2s

∫ ∞

1/A

t1−s
( ∑
γ,δ∈OK −{0,0}

G(α, γ)e−
πt
v (|γz−δ|2+|γ|2v2)

)
dt

+
∫ ∞

1/A

ts−1(Θ(t, u, α)− α(0)) dt(6)

is a holomorphic function of s, Θ(t, u, α) is a theta-series from (5.1) in [2], and

G(α, γ) =
∑

d∈OK/(A)

α(dd)e−2πiRe(γd/A).

Note that G(α, 1) = G(α) from Section 3. It follows that E(u, s, α) has a meromorphic
continuation to s ∈ C, with possible poles only at the points s = 0, 2 and these are
at most simple poles.

Let

Γ̃0(N) =
{ (

a b
c d

)
∈ PSL2(OK)

∣∣ c ≡ 0 (mod N)
}

and let FN be a fundamental domain for the action of Γ̃0(N) on H. Let M,N ∈ Z>0

(not necessarily relatively prime) and let ` be the least common multiple of M and
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N . For f ∈ S2
κ(Γ

2
0(N), χ) then from Lemma 1.1 on p.27 of [18], following (4.6) in

Lemma 2 of [2], we have the integral representation of the radial Dirichlet series

R(s, f ⊗ ψ) =
∞∑
m=1

ψ(m)Af (m · 12)m−s

given by

(4π)−sΓ(s)R(s, f ⊗ ψ) =
∏

p-MN

(1− ψ1(N(p))N(p)−(s−κ+2))

∫
FN

f(ı(u))E(u, s− κ+ 2, ψ1)rκ−3 du,

where (p) ⊂ OK . Therefore, from the above expression for the Eisenstein series we
get

(4π)−sΓ(s)R(s, f ⊗ ψ) =
∏

p-MN

(1− ψ1(N(p))N(p)−(s−κ+2))(2π)−(s−κ+2)Γ(s− κ+ 2)

×
( ∫

FN

f(ı(u))∆(u, s− κ+ 2, ψ1)rκ−3 du

− ψ1(0)
(s− κ+ 2)`s−κ+2

PN (f) +
G(ψ1, 0)

(s− κ)`s−κ
PN (f)

)
where

PN (f) =
∫
FN

f(ı(u))rκ−3 du.

Following p.23 of [18], for f as above with the Fourier expansion as in Section 2,
and ψ a primitive Dirichlet character modulo M , we define

fψ(z) =
∑
H∈A+

2

ψ(σ(H))Af (H)e2πiσ(Hz) ∈ S2
κ(Γ

2
0(M

2N,M), ψ1)

where

Γ2
0(M

2N,M) =
{ (

a b
c d

)
∈ Γ2

∣∣ c ≡ 0 (mod M2N) d ≡
(
d1 −d2

d2 d1

)
(mod M)

}
.

Note that Γ2
0(M

2N,M) < Γ2
0(M

2N) and since ` is the least common multiple of M
and N we have∏

p-MN

(1− ψ1(N(p))N(p)−s)−1 =
∏
p-`

(1− ψ1(N(p))N(p)−s)−1.

Thus by (1) on p.62 of [18] we have ZA(s, f ⊗ ψ) = ZA(s, fψ) and so

Af (12)ZA(s, f ⊗ ψ) =
∏
p-`

(1− ψ1(N(p))N(p)−(s−κ+2))−1R(s, f ⊗ ψ).

Putting these and (4) together, we obtain the expression

Af (12)Ψ(s, f ⊗ ψ) =2s(2π)−κ+2

( ∫
FN

f(ı(u))∆(u, s− κ+ 2, ψ1)rκ−3 du

− ψ1(0)
(s− κ+ 2)`s−κ+2

PN (f) +
G(ψ1, 0)

(s− κ)`s−κ
PN (f)

)
.(7)
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As f is a cuspform, the integral part above is a holomorphic function of s. Thus
Ψ(s, f ⊗ ψ) has possible poles only at s = κ, κ − 2 and these are at most simple.
Furthermore, if ψ1 is primitive then ψ1(0) = G(ψ1, 0) = 0 and it follows that Ψ(s, f ⊗
ψ) is holomorphic. This gives the first part. The functional equation (5) is the
Haupttheorem on p.17 of [18]. �

As a consequence of the theorem, we have following result on Gauss sums.

Proposition 2. Let (M,N) = 1. Let χ be a primitive Dirichlet character modulo N
and ψ a primitive Dirichlet character modulo M so that the characters χ̃ and ψ̃ are
primitive. Then

G(ψ1) = G(χ)G(ψ)χ(M)2ψ(N)2

and

S(ψ) =
g(ψ)4g(ψ)
G(ψ)

.

Note that the second equation is due to Rombach [18], p.66.

Proof. Let f and φ satisfy the hypotheses of Proposition 1. From (3) and (4) we have

Ψ(s, f ⊗ ψ) = (2π)−2sΓ(s)Γ(s− κ+ 2)L(s− κ+ 1, ψ1)L(s− κ+ 2, ψ1)L(s, φ⊗ ψ)

and similarly,

Ψ(2κ− 2− s, f∗ ⊗ ψ) =(2π)−2(2κ−2−s)Γ(2κ− 2− s)Γ(κ− s)

× L(κ− 1− s, ψ1)L(κ− s, ψ1)L(2κ− 2− s, φ∗ ⊗ ψ).

We put these into equation (5) and then apply (2) with a = κ − 1 and a = κ − 2.
This gives

Af (12)Γ(s)Γ(s− κ+ 2)Γ(
κ− s+ u

2
)Γ(

κ− s− 1 + u

2
)L(s, φ⊗ ψ)

= A∗f (12)
1

M2s−2κ+3Ns−κ+1

χ(−M2)ψ(N)G(ψ1)S(ψ)
g(ψ)g(ψ1)2(−1)u

π2κ−2s−2(2π)−2(κ−s−1)

×Γ(2κ− 2− s)Γ(κ− s)Γ(
s− κ+ 1 + u

2
)Γ(

s− κ+ 2 + u

2
)L(2κ− 2− s, φ∗ ⊗ ψ).

Applying the identity 22s−1Γ(s)Γ(s+ 1
2 ) =

√
πΓ(2s) and simplifying, this becomes

Af (12)Γ(s)Γ(s− κ+ 2)Γ(κ− s− 1 + u)L(s, φ⊗ ψ)

=A∗f (12)
1

M2s−2κ+3Ns−κ+1

χ(−M2)ψ(N)G(ψ1)S(ψ)
g(ψ)g(ψ1)2(−1)u

π2κ−2s−22−2(κ−s−1)

× Γ(2κ− 2− s)Γ(κ− s)2−(s−κ+u)Γ(s− κ+ 1 + u)L(2κ− 2− s, φ∗ ⊗ ψ)

For u = 0 we use the identity Γ(s)Γ(1−s) = π/ sin(sπ) in order to simplify the above
expression further, and for u = 1 the simplification follows directly. In both cases,
the above equation becomes

Af (12)Γ(s)L(s, φ⊗ ψ) =A∗f (12)
1

M2s−2κ+3Ns−κ+1

χ(−M2)ψ(N)G(ψ1)S(ψ)
g(ψ)g(ψ1)2(−1)

× (2π)−2(κ−s−1)Γ(2κ− 2− s)L(2κ− 2− s, φ∗ ⊗ ψ).



SAITO-KUROKAWA LIFTING OF CUSPFORMS WITH CHARACTERS 433

Let
Λ3(s, φ⊗ ψ) = (

√
M2N/2π)sΓ(s)L(s, φ⊗ ψ)

where L(s, φ ⊗ ψ) is the standard degree-2 L-function of φ twisted by ψ. As φ ∈
S1

2κ−2(Γ0(N), χ2) and ψ is primitive, the functional equation is

Λ3(s, φ⊗ ψ) = i2κ−2χ(M)2ψ(N)g(ψ)2M−1Λ3(2κ− 2− s, φ∗ ⊗ ψ),

see Theorem 7.6, p.126 of [12]. Applying this to the previous equation and simplifying,
we obtain

Af (12) = A∗f (12)(−1)κ+u
G(ψ1)S(ψ)

g(ψ)g(ψ1)2g(ψ)2
.

Combine this with Proposition 1 to get

S(ψ) =
g(ψ1)2g(ψ)2g(ψ)G(χ)

g(χ)2G(ψ1)

for any primitive χ, ψ modulo N,M respectively, with (M,N) = 1. For such χ and
ψ we can apply g(ψ1) = g(χ)g(ψ)χ(M)ψ(N) (see Lemma 3.1.2 on p.81 in [15] for
example) and get

S(ψ) =
g(ψ)4g(ψ)G(χ)χ(M)2ψ(N)2

G(ψ1)
.

Note the right hand side is independent of N . Setting the arbitrary N and the N = 1
cases equal we get G(ψ1) = G(χ)G(ψ)χ(M)2ψ(N)2 and S(ψ) = g(ψ)4g(ψ)/G(ψ).
This gives the result. �

5. Satake Parameters and a Converse Theorem

In this section we prove Theorem 1. Let χ and f satisfy the hypotheses of Theorem
1. Then Af (12) 6= 0 and f satisfies the condition

(8) α1pα2p = p±1 or α1pα
−1
2p = p±1 for p - N.

As α2
0pα1pα2p = p2κ−3 then α0p = pκ−2∓1 and this implies the decomposition

(9) ZA(s, f ⊗ ψ) = L(s− κ+ 1, ψ1)L(s− κ+ 2, ψ1)DN (s, f, ψ)

where

DN (s, f, ψ) =
∏
p-N

(
(1− ψ(p)α0pα1pp

−s)(1− ψ(p)α0pα2pp
−s)

)−1

×
∏
p|N

(1− ψ(p)ρf (p)p−s)−1.

Now, we have that f∗ also satisfies (8) and

ZA(2κ− 2− s, f∗ ⊗ ψ) = L(κ− 1− s, ψ1)L(κ− s, ψ1)DN (2κ− 2− s, f∗, ψ).

Lemma 4. Let κ > 2 and let (M,N) = 1. Let χ be a primitive Dirichlet character
modulo N and ψ a primitive Dirichlet character modulo M so that χ̃ and ψ̃ are
primitive. Let f ∈ S2

κ(Γ
2
0(N), χ) satisfy (8) and let

Λ4(s, f, ψ) = (
√
M2N/2π)sΓ(s)DN (s, f, ψ).
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Then Λ4(s, f, ψ) satisfies the functional equation

Af (12)Λ4(s, f, ψ) = A∗f (12)(−1)u−1 G(χ)
g(χ)2

χ(M)2ψ(N)g(ψ)2M−1Λ4(2κ− 2− s, f∗, ψ).

Proof. For f ∈ S2
κ(Γ

2
0(N), χ), we apply the functional equation (5) from Theorem 4.

This gives

Af (12)Ψ(s, f ⊗ ψ) = A∗f (12)
χ(−M2)ψ(N)G(ψ1)S(ψ)
M4s−4κ+6N3s−3κ+4g(ψ)

Ψ(2κ− 2− s, f∗ ⊗ ψ).

By decomposition (9) and Proposition 2 we have

Af (12)(2π)−2sΓ(s)Γ(s− κ+ 2)L(s− κ+ 1, ψ1)L(s− κ+ 2, ψ1)DN (s, f, ψ)

=A∗f (12)
χ(−M4)ψ(N3)G(χ)g(ψ)4

M4s−4κ+6N3s−3κ+4
(2π)−2(2κ−2−s)Γ(2κ− 2− s)Γ(κ− s)

× L(κ− 1− s, ψ1)L(κ− s, ψ1)DN (2κ− 2− s, f∗, ψ).

As ψ1 is primitive, we can apply the functional equation (2) of the L-functions
L(s, ψ1) to this, with a = κ− 1 and a = κ− 2. After simplifying we get

Af (12)(2π)−2sΓ(s)Γ(s− κ+ 2)Γ(
κ− s+ u′

2
)Γ(

κ− s− 1 + u′

2
)DN (s, f, ψ)

=A∗f (12)
χ(−M2)ψ(N)G(χ)g(ψ)2

M2s−2κ+3Ns−κ+1g(χ)2
π−2s+2κ−2(−1)u

′
(2π)−2(2κ−2−s)

×Γ(2κ− 2− s)Γ(κ− s)Γ(
s− κ+ 1 + u′

2
)Γ(

s− κ+ 2 + u′

2
)DN (2κ− 2− s, f∗, ψ)

where ψ1(−1) = (−1)u
′
. As before, we apply the identity 22s−1Γ(s)Γ(s + 1/2) =√

πΓ(2s) and similar properties of the gamma function. Simplifying, this gives us

Af (12)(2π)−s(
√
M2N)sΓ(s)DN (s, f, ψ) = A∗f (12)(−1)κ+u

G(χ)
g(χ)2

i2κ−2χ(M)2ψ(N)

× g(ψ)2M−1(2π)2κ−2−s(
√
M2N)2κ−2−sΓ(2κ− 2− s)DN (2κ− 2− s, f∗, ψ),

which is the result. �

The standard degree-5 L-function attached to f and a Dirichlet character ψ is

LSt(s, f ⊗ ψ) =
∏
p

Lp(s, f ⊗ ψ)

where for p - N we have

Lp(s, f ⊗ ψ) =
[
(1− ψ1(p)p−s)(1− ψ(p)α1pp

−s)(1− ψ(p)α−1
1p p

−s)

× (1− ψ(p)α2pp
−s)(1− ψ(p)α−1

2p p
−s)]−1.

The analytic continuation of LSt(s, f ⊗ ψ) was studied in [21]. As with LSt(s, f), it
is shown that there are at most a finite number of simple poles.

Lemma 5. Let f ∈ S2
κ(Γ

2
0(N), χ) satisfy (8). Then the local factor at p - N of the

standard degree-5 L-function attached to f and ψ is

(10) Lp(s, f ⊗ ψ) = Lp(s, ψ1)Dp(s+ κ− 1, f, ψ)Dp(s+ κ− 2, f, ψ).
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Proof. Note that for p - N ,

Dp(s, f, ψ) =
[
(1− ψ(p)α0pα1pp

−s)(1− ψ(p)α0pα2pp
−s)

]−1
.

where α0p = pκ−1 if α1pα2p = p−1, or α0p = pκ−3 if α1pα2p = p. In the case
α1pα2p = p−1 and α0p = pκ−1 we have α−1

1p = α2pp and α−1
2p = α1pp. Thus the local

factor of the standard L-function becomes

Lp(s, f ⊗ ψ) =
[
(1− ψ1(p)p−s)(1− ψ(p)α1pp

−s)(1− ψ(p)α2pp
−s)

× (1− ψ(p)α−1
2p p

−s)(1− ψ(p)α−1
1p p

−s)]−1

=
[
(1− ψ1(p)p−s)(1− ψ(p)α1pp

−s)(1− ψ(p)α2pp
−s)

× (1− ψ(p)α1pp
−s+1)(1− ψ(p)α2pp

−s+1)]−1

=
[
(1− ψ1(p)p−s)(1− ψ(p)α0pα1pp

−s−κ+1)(1− ψ(p)α0pα2pp
−s−κ+1)

× (1− ψ(p)α0pα1pp
−s−κ+2)(1− ψ(p)α0pα2pp

−s−κ+2)]−1

=Lp(s, ψ1)Dp(s+ κ− 1, f, ψ)Dp(s+ κ− 2, f, ψ).

The case α1pα2p = p and α0p = pκ−3 is done similarly. �

Lemma 6. Let f ∈ S2
κ(Γ

2
0(N), χ) with χ a primitive Dirichlet character so that χ̃ is

primitive. Let ψ be a Dirichlet character that is primitive or trivial. Then DN (s, f, ψ)
is meromorphic in s ∈ C. There are at most a finite number of poles, which are of
finite order and lie in the strip Re(s) ∈ [κ− 2, κ].

Proof. From the decomposition (9) and the analyticity of Ψ(s, f ⊗ ψ) from Theo-
rem 4 and [18] (and [2] for ψ trivial), we have that DN (s, f, ψ) has a meromorphic
continuation to C. By the Euler product expansion, DN (s, f, ψ) is holomorphic and
nonvanishing for Re(s) > κ.

Let s0 ∈ C with Re(s0) < κ− 2. Then for any primitive Dirichlet character ψ,

Ψ(s, f ⊗ ψ) = (2π)−sΓ(s)Γ(s− κ+ 2)L(s− κ+ 1, ψ1)L(s− κ+ 2, ψ1)DN (s, f, ψ)

is holomorphic at s = s0, by Theorem 4. Thus, if DN (s, f, ψ) has a pole at s0 then
one of the two L-functions must vanish at s0. Now, the only (possible) points where
L(s, ψ1) vanishes for Re(s) < 0 are at the negative integers, and Γ(s) has poles at
the negative integers of the same order as the zeroes of the L-function. Also, we
have that L(s − κ + 1, ψ1) = 0 if and only if L(s − κ + 2, ψ1) 6= 0. Thus the zeroes
of the L-functions are cancelled by the poles of the Γ-functions, and it follows that
DN (s, f, ψ) cannot have a pole at s0.

From (10) of Lemma 5 we have the decomposition
(11)
LSt(s, f ⊗ψ) =

∏
p

Lp(s, f ⊗ψ) = L(s, ψ1)DN (s+ κ− 1, f, ψ)DN (s+ κ− 2, f, ψ)F (s)

where

F (s) =
∏
p|N

(1− ψ(p)ρf (p)p−(s+κ−1))(1− ψ(p)ρf (p)p−(s+κ−2))
Lp(s, f ⊗ ψ)

.

Note that F (s) only vanishes at a finite number of values of s ∈ C, and these come
from the zeros of the numerator of F (s) and the poles of the denominator. Thus the
possible zeros of F (s) are all of finite order (in fact of order at most 2).
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Let s0 ∈ C be in the strip 1 < Re(s) < 2 so then κ− 1 < Re(s0 + κ− 2) < κ and
Re(s0+κ−1) > κ. Thus DN (s, f, ψ) is holomorphic and nonvanishing at s = s0+κ−1
and L(s, ψ1) is holomorphic and nonvanishing at s = s0. Now, LSt(s, f ⊗ ψ) has at
most a finite number of poles and these are all of finite order, and F (s) has a finite
number of zeros of finite order. It follows from decomposition (11) therefore, that there
are at most a finite number of poles of DN (s, f, ψ) in the strip κ − 1 < Re(s) < κ,
and these are of finite order.

Let s0 ∈ C be in the strip 1 < Re(s0) < 0 so then κ− 2 < Re(s0 + κ− 1) < κ− 1
and Re(s0 + κ− 2) < κ− 2. Thus DN (s, f, ψ) is holomorphic at s = s0 + κ− 2 and
L(s, ψ1) is holomorphic and nonvanishing at s = s0. Now, LSt(s, f ⊗ ψ) has at most
a finite number of poles and these are all of finite order, and F (s) has a finite number
of zeros of finite order. It follows from decomposition (11) therefore, that there are
at most a finite number of poles of DN (s, f, ψ) in the strip κ − 2 < Re(s) < κ − 1,
and these are of finite order. Similarly, we can see that D(s, f, ψ) has at most a finite
number of poles of finite order on the lines Re(s) = κ, κ− 2.

It follows that for ψ trivial or primitive, DN (s, f, ψ) has at most a finite number
of poles. The poles are at of finite order and lie in the strip κ− 2 ≤ Re(s) ≤ κ.

Note that in the case where N = 1, then Ψ(s, f ⊗ψ) has simple poles at s = κ and
κ− 2. It follows that DN (s, f, ψ) is holomorphic. �

We are now able to apply a converse theorem to the functions Af (12)DN (s, f, ψ)
and A∗f (12)(−1)κ+u G(χ)

g(χ)2DN (s, f∗, ψ). We state the theorem, essentially in the form
given in [6], as Theorem 5. It was applied to Artin’s conjecture in [5] and a detailed
proof of this is in [6].

Let φj(z) =
∑∞
n=1 an,jq

n with an,j ∈ O(nα) for j = 0, 1 and α some positive
number. Let D(s, φj) =

∑∞
n=1 an,jn

−s. For ψ a Dirichlet character of conductor M
let

D(s, φj ⊗ ψ) =
∞∑
n=1

an,jψ(n)n−s

and set

Λ(s, φj ⊗ ψ) = (
√
M2N/2π)sΓ(s)D(s, φj ⊗ ψ).

Theorem 5 ([6], Theorem 6.2). Assume that D(s, φ1) satisfies the following:
i) Has an Euler product expansion so that each factor at a prime p is the reciprocal

of a polynomial in p−s.
ii) Can be expressed as ratios of entire functions of finite order.
iii) Has at most finitely many poles.
iv) For all primitive Dirichlet characters ψ, the functions Λ(s, φ1⊗ψ) and Λ(s, φ2⊗

ψ) have meromorphic continuations with no poles outside the strip Re(s) ∈ (0, 2κ−2).
v) For ψ primitive of conductor 1 or a prime p, the functional equation

Λ(s, φ1 ⊗ ψ) = i2κ−2χ′(p)ψ(N)g(ψ)2p−1Λ(2κ− 2, φ2 ⊗ ψ)

is satisfied.
Then φ1 ∈ S1

2κ−2(Γ0(N), χ′) for χ′ a Dirichlet character modulo N .
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Clearly Af (12)DN (s, f) can be expressed as a Dirichlet series whose coefficients
are O(nα) for some α ∈ R. As Af (12)DN (s, f) has an Euler product expansion, then
(i) is satisfied. From (7) in the proof of Theorem 4 and (6.1) in [2], we have

Af (12)Ψ(s, f ⊗ ψ) = c1a
s
1

( ∫
FN

f(ı(u))∆(u, s− κ+ 2, ψ1)rκ−3 du+ c2a
s
2 + c3a

s
3

)
where ai, ci are constants. We have from (6) (see also (5.14) in [2]),

∆(u, s, ψ1) = `−2s

∫ ∞

1/`

t1−s
( ∑
γ,δ∈OK −{0,0}

G(ψ1, γ)e−
πt
v (|γz−δ|2+|γ|2v2)

)
dt

+
∫ ∞

1/`

ts−1(Θ(t, u, ψ1)− ψ1(0)) dt

where Θ(t, u, ψ1) is a theta-series from (5.1) in [2]. It follows that ZA(s, f ⊗ ψ) is
of finite order for ψ primitive or trivial. Thus there is a polynomial Q(x) so that
ZA(s, f)Q(s) is entire and of finite order. Similarly, there is a polynomial P (x) so
that L(s, χ)P (s) is entire and of finite order. Thus we have

Af (12)DN (s, f) =
Af (12)ZA(s, f)Q(s)P (s− κ+ 1)P (s− κ+ 2)

Q(s)L(s− κ+ 1, χ)P (s− κ+ 1)L(s− κ+ 2, χ)P (s− κ+ 2)

which is a ratio of entire functions of finite order, and so (ii) is satisfied. By Lemma 6
we have that Af (12)DN (s, f) has finitely many poles and the possible poles are in the
strip [κ−2, κ] ⊂ (0, 2κ−2) for κ > 2, and so we get (iii). By Theorem 4 and Lemmas
4 and 6 we see that (iv) holds for Λ(s, φ⊗ψ) and Λ(s, φ∗⊗ψ). The functional equation
in the statement of the theorem follows from Lemma 4 with χ′ = χ2, φ1 = Af (12)φ,
and φ2 = A∗f (12)(−1)κ+u G(χ)

g(χ)2φ
∗. This gives (v).

Applying Theorem 5 therefore, we have that Af (12)DN (s, f) =
∑∞
n=1 ann

−s =
a1L(s, φ) for some φ ∈ S1

2κ−2(Γ0(N), χ2). Thus ZA(s, f) decomposes into

L(s− κ+ 1, χ)L(s− κ+ 2, χ)DN (s, f) =
a1

Af (12)
L(s− κ+ 1, χ)L(s− κ+ 2, χ)L(s, φ)

and we have a1 = Af (12). This gives decomposition (1) and it follows that f is in
the image of the Saito-Kurokawa lift. This finishes the proof of Theorem 1.
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