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AN EQUIVARIANT INDEX FORMULA IN CONTACT GEOMETRY

SEAN FITZPATRICK

ABSTRACT. Given an elliptic action of a compact Lie group G on a co-oriented contact
manifold (M, E) one obtains two naturally associated objects: A G-transversally elliptic
operator [P, and an equivariant differential form with generalized coefficients J(E, X)
defined in terms of a choice of contact form on M.

We explain how the form J(E, X) is natural with respect to the contact structure,
and give a formula for the equivariant index of [, involving J(E, X). A key tool is the
Chern character with compact support developed by Paradan-Vergne [11, 12].

1. Introduction

Let (M, E) be a compact contact manifold. Suppose that the contact distribution
E is co-oriented, and let o € A'(M) be a contact form compatible with the co-
orientation. The distribution F is contact if and only if the restriction of da to F is
symplectic.

We equip E with a complex structure J compatible with da, defining an almost-
Cauchy-Riemann (CR) structure E1 9 C TM @ C on M whose underlying real sub-
bundle is E (see [5]). We suppose E®! = (FE;)* is equipped with a compatible
Hermitian metric A and connection V, and note the isomorphism ¢ : E* — E%!
given in Section 3, equation (7) below.

Analogous to the definitions in [2], let C'(E) be the bundle of Clifford algebras over
M whose fibre at x € M is the Clifford algebra of E with respect to the Riemannian
metric on E obtained from h. Then & = A\ E%! is a spinor module for C(E), with
Clifford multiplication given for v € E, by

(1) c(v) = U (v)) — e(¥(v)).

Using the connection V and the Clifford multiplication (1) we can define a Spin®-
Dirac-like operator I, whose principal symbol is o4(x, &) = —ic(q(€)), where (z,¢) €
T*M, and ¢ : T*M — E* denotes projection. Since (03)?(x,&) = ||q(¢)||?, the
support of o, is the annihilator bundle E° of E, whence [, is not elliptic.

Suppose now that a compact Lie group G acts on M, such that the action preserves
the contact distribution E, as well as its co-orientation, and choose «, J, h and V to
be G-invariant. We require the action to be elliptic, meaning that T'M is spanned by
E and the vectors tangent to the G-orbits, or equivalently, that E° is transverse to
the space T¢; M of covectors orthogonal to the G-orbits.

Thus, although [P, is not elliptic, the requirement of ellipticity on the group ac-
tion gives Supp(op) NTEM C M x {0}, which implies that [}, is a G-transversally
elliptic operator in the sense of Atiyah [1], and that the principal symbol o} is a
G-transversally elliptic symbol in the sense of Berline-Vergne [3].
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Atiyah [1] has shown that the kernel and cokernel of any G-transversally elliptic
operator P will define trace-class representations of G, and that the principal symbol
of P defines an element in the equivariant K-theory K¢ (TgM). The G-equivariant
index of P is well-defined, but only as a generalized function on G, given by the
formula [1, 3J:

(2) index®(P)(g) = Tr(g, ker P) — Tr(g, ker P*).

Berline and Vergne [3, 4] have given a character formula which gives the germ of
(2) at g € G in terms of the integral over T*M(g) of certain equivariant differential
forms, as follows:

For a G-transversally elliptic symbol o, we have, for g € G and X € g(g) sufficiently
small,

— dim M(g) Ch%v(aa X)AQ(M(Q)a X)
DR(N(Q)’X) ’

@) index%(o)(ge®) = / (2ir)
T*M(g)

where Ch%,, (0, X) is the Chern character of [3]. For a G-transversally ellip-
tic operator P with principal symbol o(P), the equality of generalized functions
index(P) = index®(o(P)) was proved in [4].

Recent work of Paradan and Vergne [12] allows one to replace the non-compactly
supported equivariant forms in the integrand of (3) by forms with compact support,
provided one passes to equivariant differential forms with generalized coefficients:
these are C'~°° maps from g to A(M), as in [8]. The space of all such forms will be
denoted by A~>(g, M).

When one allows generalized coefficients, it is possible to define a natural differen-
tial form on M adapted to the contact structure as follows:

Let a be a contact form on M, let D = d — ¢(X) be the equivariant differential,
and let dp be the Dirac delta distribution on R. Then we may define the form

(4) J(E,X)=aAd(Da(X)),

which is well-defined as an element of A~°(g, M).
Moreover, using the properties of the delta distribution, one has that
(1) DJ(E,X) =0, so that J(E, X) defines a class in H~>°(g, M), the equivariant
cohomology of M with generalized coefficients.
(2) J(E,X) is independent of the choice of contact form « and thus depends
only on the contact structure F.

For a fixed g € G, let i : M(g) — M denote the inclusion of the set of g-fixed points
in M. In Proposition 2.7, we show that (M(g), E(g)) is again a contact manifold,
with contact form a9 = i*a, so that J(E(g),X) = a9 A §p(Da?d(X)) is again well
defined, for X € g(g) C g.

In this article, our interest in the form J(F,X) is due to its appearance in our
formula for the equivariant index of the G-transversally elliptic operator ). The
results of [11, 12] allow us to re-write the integrand of (3) in terms of a Chern character
Chag(o, X) with “Gaussian shape” along the fibres of E* in the sense of [10], and a
differential form Py(X) with generalized coefficients whose support intersects E° in
a compact set. We are then able to integrate over the fibres of T*M(g) to obtain:



AN EQUIVARIANT INDEX FORMULA IN CONTACT GEOMETRY 377

Theorem 1.1. Let (M, E) be a compact, co-oriented contact manifold, and let G be
a compact Lie group acting elliptically on M. The G-equivariant index of By is the
generalized function on G whose germ at g € G is given, for X € g(g) sufficiently
small, by

. _ —k(g) Td(E(g), X)T (E(g), X)
5) index (1) (9e™) = / (2mi) 7H) Dc(N(g), X) ’

M(g)
where dim(M (g)) = 2k(g) + 1

In particular, we have the following formula at the identity:

Theorem 1.2. For X € g sufficiently small,

. 1
(6) index® () (eX) = @i IZ Td(E, X)J(E, X).

In the case of an elliptic circle action on M, we can relate our index formula to the
index of a Dirac operator on the quotient: Suppose that M is a prequantum U(1)-
bundle over a prequantizable Hamiltonian G-space (B, w, ®) in the sense of [7]. If & is
a connection form satisfying the prequantization condition :Da(X) = 7*(w — ®(X)),
then a = i@ is a contact form on M, and the action of G x U(1) on M obtained from
the action of G on B and the principal U(1)-action is elliptic.

Corollary 1.3. Let P denote the Dolbeault-Dirac operator on sections of NT*'B, let
L = M xy(1)C, and denote 0., = o(D) ® Id em. Then we have the following equality
of generalized functions on G x U(1):

index®Y ™ (1B,) (g, u) Z u”" index® (o, ) (g).
meZ

2. Elliptic actions on contact manifolds

Let G be a compact Lie group, and let M be a G-manifold. We make use of the
following notation:

Definition 2.1. The set |J, ¢, (To(G.%))° C T*M of covectors orthogonal to the
G-orbits will be denoted TEM .

Definition 2.2. Let n € AY(M) be an invariant 1-form on a G-manifold M. We
define the n-moment map to be the map f, : M — g* given by the pairing

< fn(m)vX >= nm(XM(m»v

for any X € g, where Xy is the vector field on M corresponding to X wvia the
infinitesimal action of g on M.
We denote by Cy, the zero-level set fn_l(O) C M of the n-moment map.

For any G-space V, we will denote by V(g) the subset of V fixed by the action of
an element g € G.
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Remark 2.3. Let 0 be the canonical 1-form on T*M, and consider the lift of the
action of G on M to T*M. This action is Hamiltonian, and fy : T*M — g* is
the corresponding moment map. We may describe the space T&M according to
TeM = Cy.

Let (M, E) denote a compact co-oriented contact manifold, and let G be a compact
Lie group acting on M preserving the contact structure F, and the co-orientation.
Choose a G-invariant contact form « compatible with the co-orientation. That is, if
we let E?r be the connected component of E?\ 0 that is positive with respect to the
co-orientation, then a(M) C Eg{. We will suppose such a choice of contact form has
been fixed throughout the article.!

Remark 2.4. The space ES)r C T*M is a symplectic cone over the base M, called
the symplectization of M. The symplectic form on E?_ is the pullback under inclusion
of the canonical symplectic form on T*M. The cotangent lift of an action of G on M
preserving F restricts to a symplectic action of G on E?r commuting with the natural
R, action.

Definition 2.5. The action of G on (M, E) is said to be elliptic if and only if
THZM N E? =0.

For the remainder of this article, we will impose this stronger condition on the
action of G on M.

Remark 2.6. The action of G on (M, E) is elliptic if the orbits of G in M are nowhere
tangent to the contact distribution. Alternatively, if ® : ES_ — g* is the restriction of
fo to ES)F, then the action is elliptic if and only if zero is not in the image of ®.

Associated to the chosen contact form « is the Reeb vector field, which is the vector
field Y € I'(T'M) such that

t(Y)a=1 and «(Y)da =0.

Accordingly, we obtain a splitting TM = E @ RY, dual to the splitting T*M =
E* @& Ra given by the choice of contact form.
The following proposition is a key lemma for our proof of the fixed-point formula

(5):
Proposition 2.7. Let (M, «) be a co-oriented contact manifold, and suppose G is a

compact group acting on M elliptically. For any g € G, let i : M(g) — M denote
inclusion of the g-fized points. Then we have:

(1) The submanifold M(g) C M is a contact manifold, and o9 = i*« is a contact
form on M(g).
(2) The action of the centralizer G(g) of g in G on M(g) is elliptic.

Proof. (1) Let TM = E @ RY, where Y is the Reeb vector field associated to the
G-invariant contact form «, and thus G-invariant as well.
Denote by N(g) the normal bundle to M(g) in M. Then we have that

TM|ng) =TM(g) ® N(g) = E(g) ®RYY @ N(g)

1A good exposition of this terminology can be found in [9].
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by the invariance of Y, where Y9 = Y|/, and E(g) is the subset of E fixed by the
action of g € G.

Choose any m € M(g). Then we know that da|g,, is symplectic. Moreover, the
action of G on the symplectic vector space E,, preserves «, and thus the symplectic
structure, whence E,,(g) is symplectic, with symplectic form dad = i*da.

Finally, since a(M(g)) C T*M(g) = (T'M(g))*, and «(Y9)a¥9 = 1, we have
ker(a?) NRYY = 0, whence ker(a9) C E(g), and a dimension count gives ker(a9) =
E(g).

(2) Recall that the action of G on M is elliptic if and only if zero is not in the
image of the moment map ® : EY — g* (Remark 2.6). Let H = G(g), and let h be
the Lie algebra of H.

If € EY(g), we have by the equivariance of ® that ®(z) € h*. Thus, the
corresponding moment map ¥ : EY(g) — b* for the action of G(g) on E{(g) is
simply the restriction of ® to E9 (the projection from g* to h* being redundant).

Since ¥ = (I>|E1(g), it follows that zero is not in the image of ¥, and thus the action

of G(g) on M(g) is elliptic. O

3. Definition of the operator [J;

Let o € T'(E?\ 0) be a given choice of G-invariant contact form on (M, E). Then
da|g defines a symplectic structure on the fibres of E, so that E is a symplectic vector
bundle over M. Let J be a G-invariant complex structure on E.

If 3 is any other contact form, then 3 = efa for some f € C°°(M). Thus we have
dB = efdf A a+ efda, whence d3|g = efda|g. Therefore, if J is a complex structure
on E compatible with da, it is also compatible with d3, and thus depends only on
the contact structure F.

The pair (E,J) determines an almost-CR structure E; ¢ on M whose underly-
ing real bundle is the contact distribution (see [5]). Thus E1 0N E1o = 0, and so
E10® Ep1 = E®C, where Eg; = Fy 9. Let BV = (E;)*, giving the G-invariant
decomposition

E*®C=E"Y ¢ E™!
into +i-eigenspaces of J, where for € T*M and £ € T'M the induced almost-complex
structure on E* is given by J(n)(&) = n(J(§))
Let ¢ : E* = E%! be the isomorphism given by

(7) P(n) = n+1iJ(n).

Letp: E* - M, q: T*"M — E*, and mp; = poq : T*M — M denote projections. Let
h be the G-invariant Hermitian metric on E%! determined by .J and da, and let V be
a G-invariant Hermitian connection on E®!. The metric h determines an invariant
Riemannian metric on E. Let C(E) — M be the bundle whose fibre over € M is
the Clifford algebra of E, with respect to this metric. For any v € E,, we have the
Clifford multiplication given by

(8) c(v) = (¥ (v)) — e(¥(v)),

where €(n) denotes exterior multiplication by 7, and ¢(n) denotes contraction with
respect to h: ¢(n,€) = h(n,€). The multiplication ¢ makes & = A E®! into a spinor
module for C(E).
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Using V and ¢, we define a G-invariant differential operator By, : T'(£) — T'(€) by
the composition

(9) IE) LTI M ®E) LT(E* &) S ().

In the case that Ej is integrable, M is a Cauchy-Riemann manifold, and we can
choose V such that
Dy = V2(0, + 3y),
where 9y, is the tangential Cauchy-Riemann operator defined with respect to E1 o [5].
Write £ = £T @ E~ with respect to the Zo-grading given by exterior degree, and let
op : my ET — w3, E7 denote the principal symbol of B, given for any (z,§) € T*M
and v € £T by

(10) ob(z,£)(7) = —ic(q(§))r-
For any morphism o on 7},&, define
Supp(o) = {(x,&) € T*M|o(x,&) is not invertible}.

Since o2(xz, &) = ||q(£)]|*, we have Supp(o},) = EY. This implies that for an elliptic
G-action on M, Dy is a G-transversally elliptic differential operator in the sense of
Atiyah [1], since E°NT4LM = 0.

Therefore, [7},&,0p] defines an equivariant K-theory class in Kq(TgM). This
class is independent of the almost-CR structure (since any two such structures with
underlying real bundle E are homotopic) and the Hermitian metric. A formula for
the equivariant index of this class has been given by Berline and Vergne [3, 4], but
requires the integration of non-compactly supported forms on 7M.

Following Paradan and Vergne [12], we will instead pass to equivariant differential
forms with generalized coefficients, which will allow us to construct a compactly sup-
ported form whose integral over T* M agrees with that of the Berline-Vergne formula,
and for which the integral over the fibres is easily carried out.

Before dealing with the technical details of this construction and the proof of our
main theorem, we pause to consider two simple examples in which our index theorem
may be applied.

4. Examples

The simplest examples of an elliptic group action on a contact manifold involve
free circle actions. A particularly simple example is discussed in [14]: that of a circle
acting on itself by multiplication.

Example 1: S!

Consider the circle S* = {€?|0 € R}. The form df is a contact form on S!, with
the zero section as the contact distribution. The group U(1) = {e'*} acts freely on
S' by multiplication. The action is elliptic, since TS = 0 (while E° = T*S1).

Here, our operator is P, = 0, and since T5S* = 0, even the zero operator on S* is
U(1)-transversally elliptic. The U(1)-equivariant index is given simply by

index®(0)(e™) = [ 7(6) = 2m00(0) = 3 e,

g1 mEeZ
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where the last equality is valid for ¢ sufficiently small, using the Poisson summation
formula for dg.

Example 2: $°
Let M = S3 be the unit sphere in R* with co-ordinates (21, y1, 72,%2), and consider
the frame {X,Y, T} for T'S? given by

X = xif 9 —x g + 0
) b2 oy oy ylayz
Y =- i 0 + 0 +x
= y28x1 8 y182 18y2
0 0 0 0
szli

dr; oy Pom oy

A contact structure is given by E = TS®/RT. If we let {£,(,a} denote the
corresponding co-frame, then « is a contact form on S3. In co-ordinates we have

a = y1dzy — x1dy1 + yadre — x2dys2,
and one readily sees that a(T) = 2% + y? + 23 + y3 = 1, so that T is the Reeb field
for a.

We let U(1) act on S®, with action given in complex co-ordinates as follows: identify
R* 2 C? via z; = 2 +iy;, j = 1,2. The action of ¢'* € U(1) on C? by €' - (21, 22) =
(€21, €' 25) restricts to an action of U(1) on S3. Let g = iR denote the Lie algebra
of G, and note that the infinitesimal action of g on M is given by i¢ +— ¢T'. The orbits
of the action are thus transverse to the contact distribution E, whence the action of
U(1) on S? is elliptic.

The almost-CR structure on M is given by taking F o = CZ, where Z = %(X +
1Y"). The corresponding covector in E*®C is § = %(572{). The associated complex
structure on E comes from the complex structure on C2, and is given by J(X) = =Y
and J(Y) = X, so that J(§) = ¢, and J({) = —& on E*. Since this structure is
integrable, M is a CR manifold, and B, = v/2(d) + 9j,).

Writing 1 € T S? as n = a& + b + ca, the symbol of [ is given by

ov(z,n) = =iV2((a +ib)(Z) — (a — ib)e(B)),

from which we see that o7 (z,n) = a? + b?.
Finally, for ¢ sufficiently small, the U(1)-equivariant index of [, is given by

indexU(l)(Db)(ei¢) — 271T Td(E, )T (E ¢) — 2(50(¢) — i§6(¢))
g3
(11) — Z (1 _ m)eiM¢ — Z QL /Td(52)e—im(w—¢)
meZ meZ 71—252

since

J(E,¢) = a Ado(da — ¢) = a(do(—¢) + 6y(—¢)da),
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while, if 7 : §3 — S? denotes the projection onto the orbit space, then
Td(E, ¢) = Td(x*TS?, ¢) = 7* Td(S?)
=7"(1 4 iw) = 1 +ida.
Note that the last equality in (11) is an instance of Corollary 6.6.

5. Equivariant differential forms with generalized coefficients

Let N be a smooth manifold, not necessarily compact. Let .4°°(g, N) denote the
complex of smooth equivariant differential forms on NN; that is, the space of smooth
maps « : g = Lie(G) — A(N) that commute with the actions of G on g and N.

The space A>(g, N) is equipped with the equivariant differential D, given by

(Da)(X) = d(a(X)) — o(Xn)a(X),

for any X € g, where ¢(X ) is contraction by the vector field on N generated by the
infinitesimal action of X € g. We have D? = 0 on A>(g, N), whence we can define
the equivariant cohomology H> (g, N).

We can define further the complex A~>°(g, N) of equivariant differential forms
with generalized coefficients: this is the space of G-equivariant generalized functions
from g to A(N) [8]. Thus, for any oo € A~*°(g, N) and any compactly supported test
function ¢ € C*(g), fg a(X)¢p(X)dX is a smooth differential form on N.

The equivariant differential D extends to A~>°(g, N), with D? = 0, and so it is
possible to define the space the space H™>°(g, N) of equivariant cohomology with
generalized coefficients. See [8, 12, 14] for examples where this space is computed.

For non-compact N, we may consider as well the cohomology of (generalized)
equivariant differential forms with compact support on N, denoted by HX>(g, N).

5.1. Forms in A~ >°(g, N) derived from distributions on R. It will be useful in

our computation of the equivariant index to work in terms of the following generalized
functions on R: ) )
1 —1

04 (2) = lim 0_(z) = lim .

+(z) lim (z) = lim —

Note that we have

04(x) +6-(2) = lim PERpCE

which we identify as the Dirac delta distribution dqg(x), giving the first of the following
identities:

(12) 5y +0_ = do,

(13) —ixdy(x) =ixd_(x) =1, xdo(xz) =0,
and for any a € R\ {0}, we have

do(z), fa>0
—6o(x), ifa<0’

Oi(xz) ifa>0

(14) ado(ax) = { o) fa<0’

ady(ax) = {
The integral representations of these generalized functions given by

1 OO ixt 1 0 ixt
04 () ; ertdt, 6_(x) etdt

:% :% -
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will be helpful in the computation of the index formulas to follow.

Distributions on R, such as the above, can be used to define equivariant differential
forms with generalized coefficients. For example, given an invariant 1-form 3 on N,
the form &,(Dg), which we may view as the oscillatory integral [* e~ "PAdt, is
well-defined as a generalized equivariant form wherever the pairing X — ((Xy) is
non-zero.

Let us explain in general how such a form is well-defined: Let u € C7°°(R) be a
distribution on R. We may consider its pull-back by a smooth, proper map h : g — R,
which will give a well-defined distribution h*u = uwo h on g provided

(15) B (WF(u) 1 (g % {0}) = 0 < T*,
where W F(u) denotes the wavefront set of u [6].

Remark 5.1. Note that for the resulting distribution on g, we have WF(h*u) C
h*W F(u). Furthermore, for any derivative uU) of u, we have WF(u)) ¢ WF(u),

so that if a map h satisfies the condition above with respect to u, it does so for all
the derivatives of u as well.

Now, if § is an invariant 1-form on M, then for a fixed point m € M, fg(m) gives
us a linear map from g to R. If fz(m) satisfies (15) for all m € M, then we may set

u(—
(16) u(D)(X) = u(df — f(X)) = 3 L8]

: (dB)’,
i 7t

which is well-defined by Remark 5.1
On a contact manifold (M, E) on which a Lie group G acts elliptically, consider
the form

(17) j(E,X):O[/\do(DOé(X))7
where « is any contact form.

The ellipticity hypothesis ensures that the pairing X — «(X)s) is non-zero: We
have WF(3p) = {0} x (R\ 0), while f;1(0) = (. Thus for all m € M, n = f,(m) is
non-zero, and

T WE()) = {(X, 1) € 0 x °|0(X). ) € {0} x (R\0)).
Since tn is never zero, (15) is satisfied.
Using the properties of the delta distribution given above, we obtain the following:

Proposition 5.2. Let (M, a) be a co-oriented contact manifold on which a Lie group
G acts elliptically. Then the form J(E,X) is equivariantly closed, and independent
of the choice of contact form.

Proof. We have:
D(a A dp(Da)) = Da A do(Da) =0 by (13)
while if we change « to efa for some f € C°°(M) we have using (14) that
efa N do(D(efa)) = efa A dy(ef (df A a+ Da))
=aAd(df Na+ Da) =aAdy(Da),
where in the last equality we have used (16), and the fact that o A a = 0. O
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Remark 5.3. Recall [7] that given a symplectic manifold (NV,w) of dimension 2n and
a Hamiltonian action of a Lie group G on N with moment map ¥ we may define the
Duistermaat-Heckman distribution upgy on C2°(g*) by

1

< ¢7UDH >= ¢UDH = Ton (\P*¢)€w
Jron=r ]

The Fourier transform of upy is given, for h € C°(g) by

<Upm,h >=<upg,h>= /h(X)I(X)dX,
g
so that upg = I(X)dX, where
. 1 _ _
I(X) _ /671<X,§>UDH(£) _ - /671<X,\I/>ew _ (27(2‘)7”/67'“}()().

(2)
g% N N

Now, given a co-oriented contact manifold (M, E) of dimension 2n + 1, consider
the annihilator E° of E. Although not quite a symplectic manifold, since the form
w = d(ta) is degenerate for t = 0, we have the moment map ¥ = tf,, and if we
compute [(X) in this case, we find

_ 1 eiw(X) — 1
I(X) = @riy T / @i A[ J(E, X).

EO

Similarly, on the symplectic manifold E9r we obtain an expression for the Fourier
transform of the Duistermaat-Heckman distribution by replacing o by 0.

5.2. Cohomology with support. We give here a quick summary of the material
in [11] and [12] that is relevant to the proof of our index theorem.

Suppose F' is a closed, G-invariant subset of N. Then there are two cohomology
spaces associated to F defined in [11]: H>(g, N, N \ F), the relative equivariant
cohomology of N, and H% (g, V), the equivariant cohomology with compact support
in N.

Representatives of cohomology classes in the former are pairs (n,&), where 7 €
A>®(g,N) and & € A>®(g, N \ F'), that are closed under the relative equivariant dif-
ferential D,.ci(n,§) = (Dn,n|n\r — D), while cohomology classes in the latter are
defined as follows:

Let U C N be any open, G-invariant subset containing F'. We may consider the
spaces AP (g, N) of equivariant differential forms with support contained in U, and
their corresponding cohomology spaces Hgs (g, V).

If we have two open subsets V and U with F' C V' C U, the inclusion AP (g, N) —
A% (g, N) induces a map

fU,V : H‘O/O(Q’N) - H?(g,N),

and so we obtain the inverse system (HgP(g, N), fu,v,U,V € Fr), where Fp is the
family of all open, G-invariant neighbourhoods of F', letting us define the space of
cohomology with support contained in F' as the inverse limit of this system.
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By [12], all of the above can be extended to equivariant cohomology with general-
ized coefficients, including the morphism

(18) pr: HE®(g,N,N \ F) — HE>®(g,N)

defined in [11] as follows:

Let U be any open, G-invariant neighbourhood of F', and choose a cutoff function
x € C®(N)% with support contained in U, such that y = 1 on a smaller neighbour-
hood of F. Let (n,&) represent a class in HE*(g, N, N \ F) (so that n|x\r = DY),
and set

(19) pX(1,€) = xn + dxé.

By Proposition 3.14 in [11], pX(n, £) is an equivariantly closed form with support in
U, whose class py(n,§) in Héoo(g, N) does not depend on x. Moreover, fyy opy =
pu, so that we may define pr(n,€) to be the element defined by taking the inverse
limit over invariant neighbourhoods of F'.

Remark 5.4. An element of HI{EOO (g, N) in the image of pr may be represented in
computations by one of the forms pX (1, £).

If F' is compact, there is a natural map
(20) M9, N) — H:> (g, N).

The composition of pr with (20) defines a map denoted p. in [11].

In the case where N is a G-equivariant vector bundle we introduce two other
complexes of differential forms: the complexes Afdﬁ(g, N) of differential forms that
are rapidly decreasing in mean:

Definition 5.5. Suppose N — B is a G-equivariant vector bundle over the compact
base B, and suppose B : g — N is an equivariant differential form on N (possibly
with generalized coefficients). We say that [ is rapidly decreasing in mean if
for any smooth, compactly supported density p(X) on g, the differential form 3, =
fg B(X)p(X)dX and all its derivatives are rapidly decreasing along the fibres of N —
B.

The equivariant differential D is well-defined on A_® (g, N), and so we may define
the cohomology space H, (g, N).
Note that we have the inclusions

(21) vam (8, N) — A= (g, N) < A;>(g,N).

5.3. Chern characters. Suppose £ = £ET @ E™ is a Zy-graded G-equivariant vector
bundle over N, and let A be a G-invariant superconnection on &, in the sense of
Quillen [13]; see also [10] or [2]. Thus A is an odd invariant operator on A(N, &)
which preserves the Zs-grading of £, and satisfies the derivation property

Alws) = dws + (—1)48“wAs,
for any form w on N, and any section s of £. One example is the superconnection

A =V + L on & considered in [10], where V is a G-invariant connection on & in the
usual sense, and L is an odd G-invariant endomorphism of £.
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Definition 5.6 (]2, 12]). Given a G-invariant superconnection A on &, we define the
moment of A to be the map p* : g — A(N,End(€))t given by

/J'A(X) = ‘C(X) - [LXNVAL

where L(X) = [d,1xy] is the Lie derivative in the direction of Xn.

In the case A = V + L mentioned above, the moment of A becomes simply p(X) =
L(X)—-Vx.

The equivariant curvature of A is the map F(A) : g — A(N,End(€))" given
by F(A)(X) = A% + *(X), and the equivariant Chern character of (£,A) is the
equivariant differential form Ch(A, X) = Str(eF® (X)),

The equivariant Chern character is equivariantly closed, so that Ch(A, X) defines
a class in H*°(g, N) equal to the Chern character of &.

Now, if we are given a smooth, G-equivariant morphism o : £t — £, define o*
using an invariant Hermitian metric on £. Then the map

(0 o
Yo=\s 0

defines an odd Hermitian endomorphism of £, and we can associate to it a differential
form given by

(22) Ch(A%, X) = Ch(A(0, 1), X) = Str(f®a X)),

where A(o,t) = A + itv,, and F(A,0,t)(X) is the equivariant curvature of A(o,t).
Explicitly, we have

(23) F(A, 0,t)(X) = —t?02 + it[A, v,] + F(A)(X).

We remark that in the non-equivariant setting, the Chern character (22) is essentially
the form considered by Mathai-Quillen [10], in the case where N is a vector bundle.
We will denote by Chasg (o, X) the corresponding equivariant Chern character studied
in [11].

If we define as well the transgression form n(A,o,t) = —iStr(veef®o)  then
on N \ Supp(c), we have the well-defined equivariant differential form SB(A, o) €
A>(g, N \ Supp(c)) given by

8o = [ (ot
Then Ch(A)|n\supp(s) = DB(A, o) [11], so that
(24) (Ch(A), (A, 0)) € H*(g, N, N \ Supp(0)).

This is the relative Chern character Chye (o, X) of [11]. With F' = Supp(o), we can
use the map (18) to obtain a class

Chsup(aa X) =Pr (Chrel (U; X)) € Hchlnlpp(a) (ga N)7

which is independent of the superconnection A, and can be represented in computa-
tions by an equivariant form

C(Uv A, X) =X Ch(A) + dXﬁ(Aa U)v
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where x € C°(N) is a G-invariant cutoff function equal to 1 on a neighbourhood
of Supp(o), with support contained in U, for some G-invariant neighbourhood of

Supp(o).

Remark 5.7. If o is elliptic, so that Supp(c) is compact, then we obtain a class
Ch.(0) € H2°(g, N) under the the natural map (20) given in the previous subsection.

Furthermore, we have the following theorem [12]:

Theorem 5.8. Suppose N is G-equivariant vector bundle over a manifold B. Then
if o satisfies suitable growth conditions along the fibres of N (see [12]), the form
Chao(o,X) is an element of AP, (9,N) and represents the image of the class
Chyyp(o, X) € Hgipp(g)(g,N) in Mo, (g, N).

Moreover, if the fibres of m : N — B are oriented, and the action of G preserves
the orientation, then we have 7, Chyg(o, X) = i Chgyp(o, X) in H™(g, B).

We now move from forms with smooth coefficients to those with generalized coef-
ficients, which will allow us to shrink the support of our Chern character by using a
G-invariant 1-form to modify the superconnection.

In [12] we see that the above results carry over to equivariant cohomology with
generalized coefficients.

Let A € Al(g, N) be a G-invariant 1-form. We use \ to deform the part of our super-
connection of exterior degree one, obtaining a new superconnection A = Ao, A\ 1),
according to

Ao\ t) =A—+it(c+ ), for tER and vy + A = (UA ‘;)

As before, we set F(A, 0, A\, 1) = (A +it(vs + \))% + p®, so that F(A, o, \, 1) is the
equivariant curvature of A”*, Ch(A%*) = Str(ef(4-7*1) is the associated character
form, and

n(a, A\, A t) = —i Str((v, 4+ A)ef (o)

the transgression form.
Then we may define S(A,0,\) = fooo n(A, o, A, t)dt, which is now well-defined on
N\ (Supp(c) N Cy), but only as a differential form with generalized coefficients [12].
We thus obtain a class

Chrel(o'v >‘) = (Ch(A)a ﬁ(Av g, )‘)) € H—oo(97 N7 N \ (Supp(U) N C)\)),
giving us
(25) Chgyp(o,A) = pr(Chyer(o, X)) € H (g, N, N \ F),

where F' = Supp(o) N Cx. The class Chyyp(o, A) is independent of A, and can be
represented by a differential form

c(o, A\ A, x) = x Ch(A) + dxB(o, A\, A),

where y € C*(N)Y is equal to 1 on a neighbourhood of Supp(c) N Cy, and has
support contained in a G-invariant neighbourhood U of Supp(c) N Cl.
As in the smooth case, we have the following [12]:
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Theorem 5.9. Suppose that N is a G-equivariant vector bundle over a G-manifold
B. If 0 and X satisfy suitable growth conditions along the fibres of N — B, then
Ch(A™*) € A%, (9, N) and B(A,0,)\) € A7 (g, N \ (Supp(c N Cy)), and Ch(A%?)
represents the image of Chgyp(o, X) in H, = (g, N).

Moreover, if the fibres of 1 : N — B are oriented, and the action of G preserves
the orientation, then the morphism m, : H, > (g, N) — H™ (g, B) is well-defined,
and 7, Ch(A%?*) = 7, Chgy, (o, A) in H=°°(g, B).

In the case of a trivial bundle, we can define a class P, € H;™(g, N) via P, =
pr(2m, B(k)), where F = C, and B(k) = —ik [, "P"dt = —2mird,(Dk), so that
DB = 2x by (13). If U is a G-invariant neighbourhood of C,, and x € C>®(U)%
is equal to 1 on a neighbourhood of C,, then P, can be represented by the form
Py (k, x) = 2mx + dx ().

5.4. The case of a contact manifold. We return now to the case of a compact,
co-oriented contact manifold (M, E). Consider the complex vector bundle p : E®! —
M obtained from a G-invariant almost-CR structure on M. Equip E%! with a G-
invariant Hermitian metric A compatible with the symplectic structure on E and the
almost-CR structure. Let V be a G-invariant Hermitian connection on E%! and let
F(X) be its equivariant curvature.

The symbol o} (10) on 73,€ is just the pullback by ¢ : T*M — E* of the equivariant
morphism 0o, @ p*(A E%Ue) — p*(A\ E%°9) defined in [11]. Furthermore, we
have o} = o, with respect to the metric h, so that vf,b = 021d, giving Cha(0p, X)
“Gaussian shape” along the fibres of E* as in [10].

If we define the equivariant Todd form of (E%!, V) for X € g sufficiently small by

F(X)
0,1 _
TA(E"", X) = detc <eF<X>—1)’

then we have [11]
Charg (6501, X) = (2mi)"p* (TA(E®Y, X)™1) Thaso(E™Y) in HES,, (g, E®Y),

rdm

where Thysq(E%!) is an equivariant version of the Thom form defined in [10], and n
is the complex rank of E%!.
If we pull back the above result to T*M, then we obtain

(26) Charg(oy, X) = (2mi)" s, (TA(E™, X) ™ )q" (Tharg(EYY)),

where Ch]uQ(O’b, X) = Ch(Ag, X)

Let 6 be the canonical 1-form on T*M. Since the action of G on M is assumed to
be elliptic, we know that F' = Supp(op) N Cp = TEM N E° = {0} is compact. Thus
Chgyp(op, 8) defines a class in H_*°(g, T* M) under the mapping (20).

Denote by Chpy (0p, X) the Chern character of [3], given by

Chpy (03, X) = Str(efAoe0:DX))

which is an element of A%, (g, T*M).
By Theorem 5.9, the images of Chpy (0, X) and Chgyp(op, 8) under the maps
induced by the inclusions (21) coincide in H_;* (g, T* M).

rdm
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Similarly, by Theorem 5.8, a representative of Chgy,(0p) in H5, (g, T*M), is given
by Charg(op, X), which we relate to Chpy (04, X) using following two lemmas from
[12]:

Lemma 5.10. Let k be a G-invariant 1-form on N, and define P, as above. Then:
(1) Under the natural map Hs>°(g, N) — H™>(g, N), the image of P, is equal
to 1.
(2) Ch(o,k) = P; A Ch(o) in HS_1;>;p(J)ﬂC,<, (g,N).
Lemma 5.11. If 0|supp(o) = Alsupp(o), then Supp(o) NCy = Supp(c) NCx = TEM N
E°, and Ch(o,0) = Ch(o, ) in H;EOMHEO (g, T*M).

Together, the two above lemmas give:

Proposition 5.12. Let i : E° — T*M be the inclusion of E°, and define X\ = i*0.
Using the splitting T*M = E* @ E°, consider X as a form on all of T*M, by taking
MEe =0, and X\ go = i*0.

Then, X and 6 agree on Supp(op) = E°, and we have

(27) Cth(Ub,X) = PA(X) A Ch]\/jQ(O'b,X) m H;do;l(g,T*M)

6. Calculation of the index

We now apply the results of the previous section, in the case of a compact, co-
oriented contact manifold (M, E) to the Berline-Vergne index formula (3).

Recall that the equivariant A-class is defined for any real G-equivariant vector
bundle &€ — M, with G-equivariant connection V and corresponding equivariant

curvature F(X) by
. 12 F(X)
A(f,X)—detR <6F(X)/2—€_F(X)/2 ’

with the choice of square root depending on orientation. The equivariant A-class of

TM — M is denoted by A(M, X).
The form Dr(N(g), X) associated to the normal bundle is defined in [3] as follows:

Definition 6.1. For g € G, let Fn(X), X € g(g), denote the equivariant curvature
of N(g) with respect to a G(g)-equivariant connection. Then Dr(N(g),X) is the
G(g)-equivariantly closed from on M(g) given for X € g(g) by

DR(N(Q)vX) = detR(l — gNeFN(X))7

where gV denotes the lifted action of g € G on N(g).

We similarly define Dc(N(g), X) using the complex determinant in place of the
real determinant used above. Note that using the complex structure on N(g) induced
from that on E(g), we may write N(g) ® C = N(g) ® N(g) and obtain:

Dg(N(g), X) = Dc(N(g) © C, X) = De(N(g), X)De(N(g), X).

We are now ready to state the main theorem of this article:
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Theorem 6.2. Let (M, E) be a compact, co-oriented contact manifold of dimension
2n+1, and let G be a compact Lie group acting elliptically on M. Let g € G, and let
k(g) be the locally constant function defined by dim M (g) = 2k(g) + 1.

The G-equivariant index of Dy is the generalized function on G whose germ at
g € G, is given, for X € g(g) sufficiently small, by

index® eX) = i _k(g)Td(E(g),X)j(E(g),X)
= dex”(Ps){ge™) M(/ )(2 ) De(N(g),X)

6.1. The formula near the identity. We first consider the index formula for group
elements eX, for X € g sufficiently small. The calculation in this case is simpler, and
employs the results of [12] directly. The general result will then follow an analogous
approach.

Theorem 6.3. For X € g sufficiently small, we have

. 1
(29) index® () (eX) = i /Td(E,X)j(M,X).

M

Proof. The formula of Berline-Vergne for the equivariant index of a transversally
elliptic operator is given by

(30) index® () (eX) = ! ) / 7 (A2(M, X)) Chpy (03, X).

(27m')(2n+1
T+ M

Using the splitting TM = E ® R, and the almost-complex structure on F, we have
that

(31)  A%(M,X)= A%*(E,X)=Td(E®C,X)=Td(E", X) Td(E"!, X).
By (26) and (27), we have
(32) Cth(O'b,X):P)\(X) ChMQ(Ub,X)
= (27mi)" Py (X) 73, (TA(E®Y, X) 1) g* (Tharg (E™1)).
Combining (31) and (32), we find

(33) 73, (A%(M, X)) Chpy (o, X) =
(2mi)"mh, (TA(EY, X)™)g" (Tharq(E™)) Pa(X)
inH, > (g, T"M).
Lemma 6.4. In terms of the projections q : T*M — E* and p : E* — M we have
¢ Pr(X) = 2mip* T (E, X).
That is, (Tpr)« Py = psqs Py = 2mi T (E, X) in H™>°(g, M).
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Proof. A representative of Py is given by
P =21y +dx A B(N) = 2mx — 2midx A Aoy (D),
where x is a cutoff function with support in a neighbourhood of E*, and x = 1, on
E*.
Since A is a form on E°, and  is constant on E*, Py is independent of E*, and so it
remains to calculate the integral over the fibre of E® = M xR. Let ¢ be the co-ordinate
along the fibre, and write x = x(¢). Then x(¢) is supported on a neighbourhood of

t =0, with x(0) = 1, and A may be written as A = —tq, for « a contact form on M.
Thus DA = D(—ta) = a A dt — tDa, and Py becomes

Py =271y (t) — 2mix'(t) dt A (—ta)dy (o A dt — tDa)
= 27mx(t) — 2mia A tX'(t) dté, (—tDa).
Thus, the integral over R becomes, with the help of the identities in Section 5.1,

/ P\ = —2m'a/ X' ()td4 (—tDa) dt

— _oria { /O T (05 (Da)dt — / (6, (Da) dt

= —2mia [—0_(Da) — 04 (Da)]
= 2miady(Da),
and we obtain our result. ]
Let Td(E, X) denote the cohomology class of the Todd form Td(E°, X), and
write Thaq(E%!') = Thaq(E*) using the isomorphism (7). Then using Lemma 6.4
and (33) in the index formula (30), we obtain
index® (D) (eX) = (2mi)~n+D) / (27mi) "7 (TA(E, X))q* Tharg(E*) Py (X)

T*M

p*(TA(E, X)J (E, X)) Thaq(E")

Ea
= (QWi)nIZTd(E,X)j(E,X). O

6.2. Fixed Point Formula. The general calculation of the push-forward of (3) from
T*M(g) to M(g) is analogous to the proof given above, since by Proposition 2.7, we
know that (M (g), E(g)) is again a contact manifold on which G(g) acts elliptically.
The primary added difficulty comes from the appearance of the action of ¢ € G in
the Chern character form of [3].

Proof of Theorem 6.2: By Proposition 2.7, (M(g), E(g)) is again a contact manifold,
and we have the splitting
T*M(g) = E*(g) & Ra.
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Let dim M(g) = 2k(g) + 1, so that E(g) is a vector bundle over M(g) of complex
rank k(g).

Denote by j : T*M(g) — T*M the inclusion of the g-fixed point set in T*M.
Let H = G(g), with Lie algebra h. Let AY = j*A, 09 = j*0 and o] = j*o}, denote
the restrictions of the superconnection, canonical 1-form and symbol of the previous
section to T*M(g). Let p,q denote the projections p : E*(g) — M(g) and ¢ :
TM(g) — E*(g).

The Chern character Ch¥,,(03)(X) of Berline and Vergne is given by

Cthv(Ub)(X) = Str(95 -j*(e]F(AvUbﬂ)(X)))_

By [3], since 0}, is G-transversally elliptic, of is H-transversally elliptic, and Ch%,, (o)
defines a class in HS, (h, T*M (g)).

Let 7V = Vg ® V denote the decomposition of the restriction of the invariant
Hermitian connection V on E%! into connections on E%1(g) and N(g), respectively.
Since A = ¢*V, we have A9 = Ag & V, where Agp = ¢*Vg.

By Lemma 19 of [3], the canonical 1-form on T*M(g) is simply the restriction 69
of the canonical 1-form 6 on T*M. Since 69 is invariant under the action of g, we
have

Ch¥y, (00, X) = P Str(gf - FAEOVNa)(X))y,

Lemma 6.5. Let V be a complex vector space of dimension k, and let a Lie group
G act on V', such that the action commutes with the natural U(k) action on V. Let
p : U(k) — AV* denote the representation of U(k) on AV™* as in [10], and let

w € u(k) be a skew-symmetric Hermitian matriz. Then for any g € G, we have

Str(g - e”™)) = dete(1 —g-e™v).

Proof. Since the action of G on A\ V* commutes with the representation p, the actions
of g and w can be simultaneously diagonalized. O

Using the above Lemma we may write
(34) Chizy (01, X) = ¢'P” Ch(Ap, of, X) De(N(g), X),
using
detc(1 — g€ - (j*e FAEEVIY)) = dete (1 — e FED X)) dete (1 — gV - e F VM)
since g acts trivially on T*M(g).

The form Ch(Ag,of,X) appearing in (34) is simply the Mathai-Quillen form
Chuyg(of, X) on E%!(g). We again use Theorem 5.9 and Lemmas 5.10 and 5.11
as follows:

The class P (X) Chysq (o], X) = Ch(Ag,a),09, X) € A%, (h,T*M(g)) is a rep-

resentative of Chy,, (07,609, X) € H;uozfp(o'f)ﬂc(;g (h,T*M(g)) inH, > (h,T*M(g)), and

3

we have
Chyyp(09,67, X) = Chsyp(c9, A9, X) = Pyo(X) Chgyp(o?, X).
Since a representative of Chyyy, (o, X) is Charg(of, X ), we have

(35) Chpy (03, X) = Pxs(X) Chuq(oi, X)Dc(N(g), X)
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in Hfoo (o’f)ﬂcsg (b7 T*M(g))

supp
As before, Ch{,,(0p) is the pull-back of a form on E*(g), while Pys depends only

on RaY. Integrating Pys over R proceeds the same as in the proof of Theorem 6.3,
giving 2miJ (E(g), X) as the result.
Finally, we substitute (35) into (3) and use (26) and Lemma 6.4 to obtain (28). O

Suppose now that (B,w, ®) is a Hamiltonian G-manifold, which is prequantizable
in the sense of [7]. Let L — B be a G-equivariant prequantum line bundle, and let
m: M — B be the unit circle bundle inside of I with respect to a Hermitian metric.
A G-equivariant prequantization of (B,w,®) is defined in [7] to be the pair (M, &),
where @ is a connection form on M, such that iD&(X) = 7*(w — ®(X)).?

Let I denote the Dolbeault-Dirac operator on sections of A T%!'B, and let o,, =
O'(D) ® Id]L®m .

Since the form « = i@ is a contact form on M, and the action of G x U(1) on
M is elliptic with respect to E = ker(a), our index formula in this case provides the
following:

Corollary 6.6. We have the following equality of generalized functions on G x U(1):

(36) index®*Y M (B,) (g, u) = Z u” ™ index% (o, ) (9).
mEeZ

Proof. With the right identifications, this result can be viewed as a special case of
Théoreme 25 in [4] for H = U(1), and the details of the proof are similar.

We need to check that, for any fixed (g,u) € G x U(1), the formula holds in a
sufficiently small neighbourhood of (g,u) in G(g) x U(1). That is, for X € g(g) and
¢ € R sufficiently small, we need to show that

(37) index® VM (B,) (ge™, ue') = Z e index® (0, ) (ge).
meZ
For any v € U(1), we have M(g,v) = {y € Mlg-y = y-v}. When M(g,v) is
non-empty, U(1) acts freely on M (g,v), and we denote B(g)” = M(g,v)/U(1). The
fixed-point set B(g) is a (finite) disjoint union of the spaces B(g)".
Since . = M xy (1) C, the action of g € G on the fibres of L|p(4)» is scalar
multiplication by v € U(1). Thus, Chy(L®™, X)|p(g)» = v™e(X) " and we have
. \—k(g) TABG)", X) 1 i
lndeXG Om eX = / 27 k(!])—’vmezmw(X).
o) = 2 | e () %)

veU (1) v
M(g.)20 29

Thus, the only contribution to the right-hand side of (37) comes from B(g)" (provided
M (g,u) is non-empty), in which case we can apply the Poisson summation formula
to obtain

Zu_me_im‘ﬁindexG(am)(geX): /(27ri)

mek B(g)"

—k(9) Td(B(g)u, X)(So(wg(X) — ¢>
D(C(NB(g)aX) .

2We are using the convention here that M is a principal U(1)-bundle, and that u(1) = iR.
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Using the index formula (28), the left-hand side of (37) is given by

[ w0 T D)o Do) )
D(C(NM(gvu)’(Xv(b)) .

M(g,u)

The prequantization condition implies that Da?* (X, i¢) = 7*w?(X)—¢, and since the
forms Td(E(g,u)) and D¢(Nas(g,w)) are the pullback to M(g, u) of the corresponding
forms on B(g)“, the result follows. O
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