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A DEGENERATE MONGE–AMPÈRE EQUATION AND THE
BOUNDARY CLASSES OF KÄHLER CONES

Damin Wu, Shing–Tung Yau, and Fangyang Zheng

1. Introduction

It is well known that a numerically effective (nef) line bundle on a compact complex
manifold Mn may not admit any smooth Hermitian metric whose curvature is every-
where nonnegative. The first such example were discovered by Demailly, Peternell,
and Schneider in 1994 [3]. They showed that for a non-splitting extension

0 → O → E → O → 0

on an elliptic curve C, the line bundle L dual to the tautological line bundle of the
projectivized bundle M2 = P(E) does not admit any smooth Hermitian metric with
nonnegative curvature. In fact, they showed that any singular Hermitian metric on L
with nonnegative curvature must have logarithmic singularity, so the metric cannot
even be continuous. Clearly, L is a nef line bundle on the ruled surface M , since E is
nef on C.

Here we should point out that, dated back to 1973, the second author in fact gave a
talk on this example in the AMS conference at Stanford. He thought that this would
give a counterexample to the Calabi conjecture. The mistake was found a few months
later. The mistake was due to different definitions of semipositivity in this example.

In this article, we are interested in knowing under what conditions, any nef line
bundles, or more generally any boundary classes of the Kähler cone, will always be
representable by a smooth (or C1,1) closed (1, 1) form that is everywhere nonnegative.
The existence of such forms often has direct geometric applications in the study of
Monge–Ampère foliations or Kähler submersions.

The existence problem can often be interpreted as a degenerate Monge–Ampère
equation, which in general would be difficult to solve. Here as an exploration and a
test case, we prove the existence of smooth nonnegative (1, 1) forms for any boundary
class of the Kähler cone when the manifold satisfies certain curvature conditions.

Theorem 1. Let (Mn, g) be a compact Kähler manifold satisfying the following cur-
vature condition: for any orthonormal tangent frame {e1, . . . , en} at any x ∈ M , and
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for any real numbers a1, . . . , an:
n∑

i,j=1

Riijj(ai − aj)2 ≥ 0 (∗)

Then any boundary class of the Kähler cone of Mn can be represented by a C∞ closed
(1, 1) form that is everywhere nonnegative.

Note that when n = 2, the condition (∗) simply means Ruuvv ≥ 0 for any pair of
orthogonal tangent vectors u, v of type (1, 0), namely, M2 has nonnegative orthogonal
bisectional curvature. This is certainly a very restrictive condition, and it is possible
that any such manifold actually admit Kähler metric with nonnegative bisectional
curvature, thus being one of the spaces in Mok’s solution to the generalized Frankel’s
conjecture [6].

For n > 2, the condition (∗) becomes much less restrictive than nonnegative or-
thogonal bisectional curvature. It would be an interesting question to try to classify
all manifolds satisfying the curvature condition (∗), as a generalization to Mok’s The-
orem.

The referee of the article kindly pointed out to us the following fact: The above
curvature condition (∗) appeared implicitly for the first time in the literature in 1965,
in the work [1] by Bishop and Goldberg. In that paper, the authors showed that
any compact Kähler manifold Mn with positive bisectional curvature must have its
second Betti number equal to 1.

It would be interesting to know what kind of restriction the second Betti number
must obey under the curvature condition (∗), say under the strict inequality case
(namely, the left hand side is positive whenever ai are not all equal). Notice that the
product of CP1 (equipped with a sufficiently positively curved metric) with another
curve always satisfies the curvature condition (∗) in the strict sense. So we cannot
expect the second Betti number to always be 1, even when n = 2. On the other hand,
as proved in [5] (see the proof in front of Lemma 1), on a compact Kähler manifold
Mn satisfying the curvature condition (∗), any harmonic (1, 1) form must be parallel.
So in particular, the Hodge number h1,1(M) is equal to 1 if M is locally irreducible.

Note that as a consequence of Theorem 1, we know that the ruled surface M2 in
the aforementioned example of the second author and Demailly–Peternell–Schneider
does not admit any Kähler metric with nonnegative orthogonal bisectional curvature.
On the other hand, M2 clearly has nef tangent bundle.

2. A degenerate Monge–Ampère Equation

Let (Mn, g0) be a compact Kähler manifold. Denote by

H(M) = H1,1
R (M) = H1,1(M) ∩H2(M,R)

the vector space of real (1, 1) classes. Write K(M) for the Kähler cone in H(M),
namely, the convex cone formed by all the cohomology classes that can be represented
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by smooth closed (1, 1) forms that are everywhere positive. We are interested in the
boundary set B = K \ K of the Kähler cone. We will call a (non-trivial) cohomology
class α in B a boundary Kähler class or simply a boundary class of M . We want to
know when α can be represented by a closed, smooth (1, 1) form that is everywhere
nonnegative.

As one could imagine, the case αn > 0 and the case αn = 0 behaves quite differently.
The former means the class α is ‘nef’ and ‘big’ in the algebraic geometry terminology,
and is in general easier to deal with. The latter case means α is nef but not big,
which is a more degenerate situation, corresponding to the volume collapsing case
under differential geometric terms. In this article we will deal with a special situation
in this latter case.

Let ω0 be the Kähler form of g0. Consider a path in H(M) from [ω0] to α:

αt := (1− t)[ω0] + tα, t ∈ [0, 1].

Note that for 0 ≤ t < 1, αt lies in the Kähler cone. Then

a(t) :=
1
V

∫
M

αn
t

is positive for 0 ≤ t < 1, and a(1) = 0. Here we denote by

V =
∫

M

ωn
0 .

Let us fix a smooth (1, 1)–form η in the class α (certainly if η happens to be non-
negative then we are done.). Since a(t)ωn

0 defines a smooth volume form on M , by a
theorem of the second author [7], there exists a smooth function ut on M , unique up
to a constant, satisfying the following equations

(ω0 + t(η − ω0) + ddcut)n = a(t)ωn
0 ,(2.1)

ω0 + t(η − ω0) + ddcut > 0,

for all 0 ≤ t < 1. If there is a smooth limit of ut, say u∗, as t → 1, then η + ddcu∗
will be a desired nonnegative (1, 1) form representing the nef class α.

From now on, let us consider a slightly more general case: Let ω0 be a Kähler
form on M . Let Φ be a d–closed (1, 1) form on M , such that the cohomology class
represented by ω0 + tΦ is positive for each 0 ≤ t < 1. In other words, for each
0 ≤ t < 1, there exists a smooth function ft on M such that

ω0 + tΦ + ddcft > 0 on M.

We assume that

(2.2)
∫

M

(ω0 + Φ)n = 0.

Our goal is to find a smooth solution v satisfying equations

(ω0 + Φ + ddcv)n = 0,(2.3)

ω0 + Φ + ddcv ≥ 0.(2.4)

We remark that (2.2) is exactly the compatibility condition for (2.3).
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Theorem 2. Let ω0 and Φ be given as above. Suppose that the curvature tensor of
ω0 satisfies the condition (∗) in Theorem 1. Then there exists a smooth solution v for
(2.3) and (2.4).

In particular, let Φ = η−ω0 in (2.1), we obtain a desired nonnegative smooth (1, 1)–
form η+ddch which represents the boundary class α. This will establish Theorem 1 for
the case of a (1, 1)–class α on the boundary of the Kähler cone such that αn = 0. But
the same proof works of course when αn > 0 in exactly the same way, so Theorem 1
follows.

Our approach for Theorem 2 is by the perturbation method. Let

γ(t) =
1
V

∫
M

(ω0 + tΦ)n, for all t ∈ R.

Then γ(t) is a smooth function which is positive on [0, 1); and (2.2) is equivalent to
γ(1) = 0. Again, for each 0 ≤ t < 1, by the second author’s theorem we have a
solution vt, unique up to a constant, satisfying

(ω0 + tΦ + ddcvt)n = γ(t)ωn
0 ,(2.5)

ω0 + tΦ + ddcvt > 0.(2.6)

To solve (2.3) and (2.4), it suffices to show that there is a smooth limit for a subse-
quence of {vt} as t → 1.

Let us normalize the solution by setting

(2.7)
∫

M

vtω
n
0 = 0,

for each 0 ≤ t < 1. We claim that the unique solution vt of (2.5), (2.6), and (2.7)
depends smoothly on t for 0 ≤ t < 1. This will be proved in the next section.
The argument is to apply the implicit function theorem, similar to the proof of the
openness in the continuity method (see [7]).

Then we can differentiate the equation (2.5) with respect to t. It turns out that
the function vt − tv̇t would be important in the a priori estimates. Here we denote
by ȧ = ∂a/∂t. In particular, we obtain that

(2.8) ∆′(vt − tv̇t) = C(t)− S.

Here ∆′ is the Laplacian for ωt = ω0 + tΦ + ddcvt, C(t) is a constant depending
on t, and S is the trace of ω0 with respect to ωt. On the other hand, motivated
by the second author’s generalized Schwarz Lemma ([8]), one can estimate S via the
Chern–Lu formula ([2] and [4]). Then the curvature condition (∗) and the maximum
principle will enable us to conclude that S depends only on t. Thus, by (2.8) and
solving an ordinary differential equation, we obtain a smooth solution for t = 1. This
finishes the proof of Theorem 2.
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3. A smooth family of solutions

Let vt be the unique smooth solution satisfying

(ω0 + tΦ + ddcvt)n = γ(t)ωn
0 ,(3.1)

ω0 + tΦ + ddcvt > 0,(3.2) ∫
M

vtω
n
0 = 0,(3.3)

for each 0 ≤ t < 1. We would like to show that vt depends smoothly on t. To see
this, we will use the implicit function theorem for Banach spaces. We denote by

Ek,α =
{

h ∈ Ck,α(M);
∫

M

hωn
0 = 0.

}
for each positive integer k and α ∈ (0, 1). Then each Ek,α is itself a Banach space, as
a closed subspace in the Hölder space Ck,α(M). Let us fix a k and an α. We define

M(t, u) =
(ω0 + tΦ + ddcu)n

γ(t)ωn
0

− 1,

for all u ∈ Ck+2,α(M) and 0 ≤ t < 1. Then M(t, u) defines a smooth map from
[0, 1)× Ek+2,α to Ek,α.

Now for an arbitrary t ∈ [0, 1) with vt satisfying (3.1), (3.2), and (3.3), we have
vt ∈ Ek+2,α and

M(t, vt) = 0.

We need to show that D2M(t, vt), the partial Fréchet derivative of M at (t, vt) with
respect to vt, is a linear isomorphism from Ek+2,α to Ek,α. Here we identify a Banach
space with its the tangent space at a point. Observe that, for any h ∈ Ek+2,α,

D2M(t, vt)(h) =
d

ds
M(t, vt + sh)

∣∣∣∣
s=0

=
n(ω0 + tΦ + ddcvt)n−1 ∧ ddch

γ(t)ωn
0

,

= ∆′h.

Here ∆′ is the Laplacian associated with the metric

ωt = ω0 + tΦ + ddcvt.

Note that the kernel of ∆′ consists of constant functions; so does its cokernel. Then
the former implies the injectivity of D2M(t, vt) on Ek+2,α; while the latter, together
with the Schauder theory imply the surjectivity of D2M(t, vt). Thus, D2M(t, vt)
is a linear isomorphism. It then follows from the implicit function theorem that vt

depends smoothly on t.
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4. Estimates

We denote by S the trace of ω0 with respect to ωt, where

ωt = ω0 + tΦ + ddcvt, 0 ≤ t < 1.

By differentiating (3.1) with respect to t we get

(4.1) nωn−1
t ∧ (Φ + ddcv̇t) = γ̇ωn

0 .

Here we denote by ȧ = ∂a/∂t. Moreover, observe that

(4.2) nωn−1
t ∧ (tΦ + ddcvt) = nωn

t − nωn−1
t ∧ ω0.

Combining (4.1) and (4.2) we obtain

nωn−1
t ∧ ddc(vt − tv̇t) = (nγ − tγ̇)ωn

0 − nωn−1
t ∧ ω0.

Dividing both sides by ωn
t yields

(4.3) ∆′(vt − tv̇t) = (n− tγ̇/γ)− S.

Next we will derive an estimate for S, motivated by the idea of the generalized
Schwarz Lemma by the second author [8].

Proposition 4.1. Let M be a Kähler manifold of complex dimension n. Let gij̄ and
g′

ij̄
be two Kähler metrics on M , and Rij̄, R′

ij̄
be, respectively, their Ricci curvature

tensors. Suppose that

(4.4) R′
ξξ̄ ≥ Rξξ̄.

for any type (1, 0) tangent vector ξ on M . We assume, in addition, that the curvature
tensor of gij̄ satisfies the condition (∗) in Theorem 1. That is, for any orthonormal
tangent frame {e1, . . . , en} at any x ∈ M , and for any nonnegative numbers a1, . . . , an,
we have

n∑
i,j=1

Rīijj̄(ai − aj)2 ≥ 0.

Let S be the trace of gij̄ with respect to g′
ij̄
. Then

∆′ log S ≥ 0.

where ∆′ is the Laplacian for g′
ij̄
.

Proof of Proposition 4.1. It is equivalent to show that

∆′S − |∇′S|2

S
≥ 0.
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Notice that

∆′S =
∑
k,l

g′kl̄ ∂2

∂zk∂z̄l

(∑
i,j

g′ij̄gij̄

)
=
∑

i,j,k,l

g′kl̄gij̄

∂2g′ij̄

∂zk∂z̄l
+
∑

i,j,k,l

g′kl̄g′ij̄
∂2gij̄

∂zk∂z̄l

+
∑

i,j,k,l

g′kl̄

(
∂g′ij̄

∂zk

∂gij̄

∂z̄l
+

∂g′ij̄

∂z̄l

∂gij̄

∂zk

)
.

(4.5)

We have, by direct computation,

∂g′ij̄

∂z̄l
= −

∑
p,q

g′iq̄g′pj̄
∂g′pq̄

∂z̄l
,

∂2g′ij̄

∂zk∂z̄l
= −

∑
p,q

g′iq̄g′pj̄
∂2g′pq̄

∂zk∂z̄l

+
∑

a,b,p,q

(
g′ib̄g′aq̄g′pj̄

∂g′
ab̄

∂zk

∂g′pq̄

∂z̄l
+ g′iq̄g′aj̄g′pb̄

∂g′
ab̄

∂zk

∂g′pq̄

∂z̄l

)
.

Observe that

−
∑
k,l

g′kl̄
∂2g′pq̄

∂zk∂z̄l
= R′

pq̄ −
∑

a,b,k,l

g′ab̄g′kl̄
∂g′aq̄

∂zk

∂g′
pb̄

∂z̄l
.

Thus, the first term on the right hand side of (4.5) is given by∑
i,j,k,l

g′kl̄gij̄

∂2g′ij̄

∂zk∂z̄l
=
∑

g′iq̄g′pj̄R′
pq̄gij̄ −

∑
gij̄g

′iq̄g′pj̄g′ab̄g′kl̄
∂g′aq̄

∂zk

∂g′
pb̄

∂z̄l

+
∑(

g′ib̄g′aq̄g′pj̄ + g′iq̄g′aj̄g′pb̄
)

gij̄g
′kl̄

∂g′
ab̄

∂zk

∂g′pq̄

∂z̄l

=
∑

g′iq̄g′pj̄R′
pq̄gij̄ +

∑
g′iq̄g′aj̄g′pb̄gij̄g

′kl̄
∂g′

ab̄

∂zk

∂g′pq̄

∂z̄l
.

Let us now choose a normal coordinate system (z1, . . . , zn) at a point of M such
that at the point

gij̄ = δij ,
∂gij̄

∂zk
=

∂gij̄

∂z̄l
= 0,

and
g′ij̄ = δijg

′
īi,

for i, j, k, l = 1, . . . , n. Then we have∑
i,j,k,l

g′kl̄gij̄

∂2g′ij̄

∂zk∂z̄l
=
∑

i

R′
īi

(g′
īi
)2

+
∑
i,p,k

|∂g′ip̄/∂zk|2

(g′
īi
)2g′pp̄g

′
kk̄

.

The second term on the right of (4.5) is given by∑
i,j,k,l

g′kl̄g′ij̄
∂2gij̄

∂zk∂z̄l
= −

∑
i,k

Rīikk̄

g′
kk̄

g′
īi

.
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Therefore, we have

∆′(S) = −
∑
i,k

Rīikk̄

g′
īi
g′

kk̄

+
∑

i

R′
īi

(g′
īi
)2

+
∑
i,j,k

|∂g′
ij̄

/∂zk|2

(g′
īi
)2g′

jj̄
g′

kk̄

.

(4.6)

Observe that

|∇′S|2 =
∑
k,l

g′kl̄ ∂S

∂zk

∂S

∂z̄l

=
∑

k

1
g′

kk̄

∣∣∣∣∣∑
i

∂g′
īi
/∂zk

(g′
īi
)2

∣∣∣∣∣
2

=
∑

k

1
g′

kk̄

∣∣∣∣∣∑
i

∂g′
īi
/∂zk

(g′
īi
)3/2

1
(g′

īi
)1/2

∣∣∣∣∣
2

.

Applying Cauchy–Schwarz inequality yields that

(4.7) |∇′S|2 ≤ S
∑
i,k

|∂g′
īi
/∂zk|2

(g′
īi
)3g′

kk̄

.

It follows from (4.6), (4.7), and (4.4) that

∆′S − |∇′S|2

S
≥ −

∑
i,k

Rīikk̄

g′
īi
g′

kk̄

+
∑

i

R′
īi

(g′
īi
)2

≥
∑
i,k

Rīikk̄

(g′
īi
)2
−
∑
i,k

Rīikk̄

g′
īi
g′

kk̄

=
1
2

∑
i,k

Rīikk̄

(g′
īi
)2

+
1
2

∑
i,k

Rīikk̄

(g′
kk̄

)2
−
∑
i,k

Rīikk̄

g′
īi
g′

kk̄

=
1
2

∑
i,k

Rīikk̄

( 1
g′

īi

− 1
g′

kk̄

)2

.

Now we apply condition (∗) to obtain that

S∆′ log S = ∆′S − |∇′S|2

S
≥ 0.

This finishes the proof. �

In our case, we actually only need ∆′S ≥ 0 to conclude that S is a function
depending only on t, since M is compact. Here we have assumed that the curvature
of ω0 satisfies (∗). By (3.1), we have

R′
ij̄ = Rij̄ .

Now observe that the right hand side of (4.3) depends only on t. Applying the
maximum principle to vt − tv̇t, we know that both sides of (4.3) will have to equal
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zero. Hence, vt − tv̇t depends only on t. But we also have the normalization (3.3);
differentiating (3.3) with respect to t yields that∫

M

v̇tω
n
0 = 0.

Putting these together, we obtain

vt − tv̇t = 0 on M.

By solving this ordinary differential equation we conclude that

vt = th,

where h is a function on M . This implies that h ∈ C∞(M) with

ω0 + tΦ + tddch > 0 on M,

for all 0 ≤ t < 1. Letting t → 1, we obtain a nonnegative smooth (1, 1)–form

ω1 = ω0 + Φ + ddch

which satisfies that

ωn
1 = 0.

This completes the proof of Theorem 2. �
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