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Abstract. We produce non-Kähler complete steady gradient Ricci solitons generalising
those constructed by Bryant and Ivey.
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0. Introduction

In this article we continue our investigation of reductions of the Ricci soliton equa-
tions to ordinary differential equations. Recall that a Ricci soliton consists of a com-
plete Riemannian metric g and a complete vector field X on a manifold satisfying the
equation:

(0.1) Ric(g) +
1
2

LXg +
ε

2
g = 0

where ε is a real constant and L denotes the Lie derivative.
This equation is a generalisation of the Einstein equation, and it is natural to look

for solutions by methods that have been fruitful in the Einstein case. In [DW] we set
up the formalism for cohomogeneity one Ricci solitons and wrote down the resulting
ODE system. We found families of explicit Kähler solutions generalising those of [Ko],
[Ca], [ChV], [G], [PTV], [FIK], [PS] and [ACGT].

Most of the known examples of Ricci solitons are indeed Kähler. The exceptions
of which we are aware are the homogeneous solitons on nilpotent Lie groups [La],
the rotationally symmetric Bryant solitons [Bry] on Rn (n > 2), Ivey’s generalization
of these solutions [Iv], as well as the expanding counterparts described in [Cetc] and
[GK]. (Note that if n = 2 the Bryant soliton is Hamilton’s famous cigar soliton [Ha1],
which is Kähler.) The Bryant solutions are warped products on a single factor, while
those of Ivey involve two factors.

In this paper we shall focus on steady gradient Ricci solitons and generalise the
Bryant-Ivey examples to produce complete steady solitons on warped products over
an arbitrary number of positive Einstein factors (see Theorem 4.17). An important
tool in our analysis is the observation that the general cohomogeneity one steady
soliton equations always admit a Lyapunov function. This generalises the Lyapunov
function in the Bryant-Ivey systems.

Recall that Hamilton has proved that steady gradient Ricci solitons occur as type
II singularity models for the Ricci flow when the curvature operator is non-negative
and the Ricci is positive ([Ha2] or Theorem 4.3.6 in [CaZ]). Our new steady solitons
have non-negative Ricci curvature (Theorem 4.18) and always some negative sectional
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curvatures. They have asymptotically paraboloid geometry (Theorem 3.10) and hence
zero asymptotic volume ratio. The asymptotic scalar curvature ratio is infinite (cf
Remark 4.19). Whether these steady solitons can be realised as blow-up limits of
non-trivial Ricci flows seems to be an interesting question.

1. Lyapunov functions

We recall the set-up from [DW]. We consider a manifold M with an open dense set
foliated by diffeomorphic hypersurfaces Pt of real dimension n. Assume the metric
can be written as g = dt2 + gt where gt is a metric on Pt. We can view t as arclength
along a geodesic orthogonal to the hypersurfaces. Let rt denote the Ricci tensor of
gt, viewed as an endomorphism via gt, and let Lt denote the shape operator of the
hypersurfaces (so ġt = 2gtLt). Assume that the scalar curvature Rt = tr(rt) and the
mean curvature tr(Lt) are constant on each hypersurface. Furthermore, assume that
the codifferentials δ∇

t

Lt vanish, where Lt is viewed as a TPt-valued 1-form on Pt.
The above assumptions are satisfied, for example, if M is of cohomogeneity one

with respect to an isometric group action, with no repeated summands in the isotropy
representation of the principal orbits Pt. They are satisfied also when M is a multiple
warped product over an interval, which will be the setting of this paper.

We consider solitons of gradient type, i.e., where X = grad u for a function u.
Equation (0.1) then becomes

(1.1) Ric(g) + Hess(u) +
ε

2
g = 0.

We will further suppose that u is a function of t only. In this setting, the above
equation become the system (cf §1 of [DW])

−tr(L̇)− tr(L2) + ü +
ε

2
= 0,(1.2)

rt − (trL)L− L̇ + u̇L +
ε

2
I = 0.(1.3)

We have a conservation law

ü + (trL)u̇− (u̇)2 − εu = C

for some constant C. Using the equations this may be rewritten as

(1.4) tr(rt) + tr(L2)− (u̇− trL)2 − εu +
1
2
(n− 1)ε = C.

We now specialise to the case of steady solitons, that is, ε = 0. The conservation
law is now

(1.5) tr(rt) + tr(L2)− (u̇− trL)2 = C.

Proposition 1.6. The function (u̇ − trL)−2 is a Lyapunov function, that is, it is
monotonic on each interval on which it is defined.

Proof.

d

dt

(
1

(u̇− trL)2

)
= −2(ü− tr L̇)

(u̇− trL)3

= − 2tr(L2)
(u̇− trL)3
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�

Remark 1.7. The conservation law (1.5) shows that our Lyapunov function is a
constant multiple of

tr(rt) + tr(L2)
(u̇− tr L)2

− 1.

Remark 1.8. Recall that the above conservation law was derived in [DW] from
the consequence ∆du = du ◦ Ric of the Ricci soliton equation upon application of
the contracted second Bianchi identity. In fact, we can also derive this conservation
law from Perelman’s F-functional (steady case) and W-functional (expanding and
contracting cases). From this point of view, the conservation law asserts that the
trajectories representing smooth gradient Ricci solitons must lie in the zero-energy
hypersurface of the Hamiltonians corresponding to Perelman’s functionals. Details of
the Hamiltonian formulation will be discussed elsewhere.

2. Multiple warped products

We now specialise to the class of examples, multiple warped products, that will
generalise the examples of Bryant and Ivey.

We look for metrics of the form

(2.1) dt2 +
r∑

i=1

g2
i (t) hi

on I ×M1 × ...×Mr where I is an interval in R and (Mi, hi) are Einstein manifolds
with positive Einstein constants λi. We let di denote the (real) dimension of Mi.

Recall that the soliton potential u is taken to be a function of t alone. The resulting
equations are equivalent to those coming from a cohomogeneity one ansatz, though
of course the Mi could be inhomogeneous.

The shape operator and Ricci endomorphism are now given by

Lt = diag
(

ġ1

g1
Id1 , · · · ,

ġr

gr
Idr

)
rt = diag

(
λ1

g2
1

Id1 , · · · ,
λr

g2
r

Idr

)
where Im denotes the identity matrix of size m. (We shall henceforth drop the sub-
script t of L for ease of notation.) Motivated by Ivey’s work, we introduce new
variables

Xi =
√

di

(−u̇ + trL)
ġi

gi
(2.2)

Yi =
√

diλi

gi

1
(−u̇ + trL)

(2.3)

for i = 1, . . . , r.
Notice that

r∑
j=1

X2
j =

tr(L2)
(u̇− trL)2

:
r∑

j=1

Y 2
j =

tr(rt)
(u̇− trL)2

.
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We can take our Lyapunov function, therefore, to be

(2.4) L :=
C

(u̇− trL)2
=

r∑
i=1

(X2
i + Y 2

i )− 1

where C is a nonzero constant to be specified later. Note further that

(2.5) L = C̃ig
2
i Y 2

i : i = 1, . . . , r

for nonzero constants C̃i = C
diλi

.
It is convenient to introduce a new independent variable s defined by

(2.6)
d

ds
:=

1
(−u̇ + trL)

d

dt
=

√
L
C

d

dt
=

giYi√
λidi

d

dt
,

in which the final expression is independent of i by (2.5). We use a prime ′ to denote
differentiation with respect to s.

We obtain from the Ricci soliton system the following equations in our new vari-
ables:

X ′
i = Xi

 r∑
j=1

X2
j − 1

+
Y 2

i√
di

,(2.7)

Y ′i = Yi

 r∑
j=1

X2
j −

Xi√
di

(2.8)

for i = 1, . . . , r. Note that these imply the equation

(2.9) L′ = 2L

(
r∑

i=1

X2
i

)
.

Conversely, if we have a solution of the above system, we may recover t and the gi

from

(2.10) dt =

√
L
C

ds, gi =

√
L
C

√
diλi

Yi
,

which are equivalent to (2.6) and (2.3) respectively. The soliton potential is recovered
from integrating

(2.11) u̇ = tr(L)−
√

C

L
,

where tr(L) is calculated using

(2.12)
ġi

gi
=

√
C

L
Xi√
di

.

Differentiating the above, which is equivalent to (2.2), one gets

(2.13)
g̈i

gi
=

C

L

(
X2

i + Y 2
i −

√
diXi

di

)
.

Putting (2.11)-(2.13) together one obtains (1.3). Finally, differentiating (2.11) gives
(1.2). We then obtain a smooth solution of the Ricci soliton equation provided that
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appropriate smoothness conditions at the endpoints (formulated in the next section)
are satisfied.

Remark 2.14. In (2.11) if we take the derivative with respect to s instead, we have

u′ =
trL√
C/L

− 1 =
r∑

i=1

√
diXi − 1,

where we have used (2.12). Observe that u′ ≡ 0 iff the soliton is trivial (Ricci-flat in
the steady case). This motivates the definition of the quantity H :=

∑r
i=1

√
diXi, so

that the Ricci-flat trajectories lie in the subspace H = 1. For these trajectories the
conservation law (1.5) becomes L = 0.

3. Trajectories of the equations

Recall that by applying the maximum principle to consequences of the Ricci soliton
equation one can show that on a closed manifold a steady Ricci soliton is Ricci-
flat (see e.g. Proposition 1.66 in [Cetc]). Hence we are interested in constructing
complete non-compact steady soliton metrics where there is a smooth collapse at one
end, corresponding to t = 0 without any loss of generality, onto a lower-dimensional
submanifold. This can be achieved if we take one factor, say M1, to be a sphere Sd1 .
The submanifold would then be M2× · · · ×Mr. With the normalization λ1 = d1− 1,
the boundary conditions for the soliton solution to be C2 are the existence of the
following limits:

(3.1) g1(0) = 0 : gi(0) = li 6= 0 (i > 1),

(3.2) ġ1(0) = 1 : ġi(0) = 0 (i > 1),

(3.3) g̈1(0) = 0 : g̈i(0) finite (i > 1),

(3.4) u(0) finite : u̇(0) = 0 : ü(0) finite.

In order to get a smooth solution, it suffices to show further that the third deriva-
tives of gi tend to finite limits at t = 0. Once this is done, we can write the trace of
the soliton equation (1.1) as

∆u = R +
nε

2
.

The right-hand side of this elliptic equation for u lies in C0,α. Since u is in C2, it
follows from Lemma 6.16 in [GT] that u is in C2,α. Using the contracted second
Bianchi identity and the weak form of Bochner’s formula for the Laplacian of a one-
form (verified for example by smooth approximation in W 1,2) we can then show
that the 1-form ω := du is a weak solution of ∆ω = 2ω ◦ r (Eq. (2.1) in [DW]).
The argument in the proof of Lemma 2.2 there shows that ω is actually in C2,α.
The smoothness (in fact real analyticity) of the solution then follows from Morrey’s
theorem.
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With the above remarks in mind, we consider trajectories emanating from the
critical point of (2.7) and (2.8) given by

X1 = β, Y1 = β̂, Xi = Yi = 0 (i > 1)

where β = 1√
d1

and β̂ = +
√

1− β2. This critical point lies on the unit sphere in
XY -space, i.e., on the level set L = 0.

Linearising about this critical point gives a system whose matrix has a 2× 2 block(
3β2 − 1 2ββ̂

ββ̂ 0

)
corresponding to X1, Y1 : the remaining entries are diagonal, with β2 and β2−1 each
occurring r−1 times. The eigenvalues are therefore β2 (r−1 times), β2−1 (r times),
and 2β2.

We shall assume from now on that d1 > 1. The above critical point is then
hyperbolic.

We will parametrise trajectories emanating from this critical point so that the
critical point corresponds to s = −∞. Note that there is some δ > 0 such that for
i > 1, the differential inequality

d

ds
Y 2

i ≤ 2(β2 + δ)Y 2
i

holds near s = −∞ for any such trajectory. A comparison argument then shows that if
Yi(s∗) > 0 for all i > 1, then on (−∞, s∗] we have Yi > 0. Since lims→−∞ Y1 = β̂ > 0
we may assume that Y1 > 0 on (−∞, s∗] as well.

Now by standard facts in dynamical systems (cf [CL], proofs of Theorems 4.1, 4.3
and 4.5) and the fact that the system (2.7)-(2.8) is invariant under the symmetries
Yi 7→ −Yi, there is an (r − 1)-parameter family of trajectories lying in the unstable
manifold of this critical point having the above positivity properties and flowing into
the open unit ball L < 0.

Remark 3.5. In [Bo] an r − 2 parameter family of complete Ricci-flat metrics was
constructed on the manifolds under consideration here. These correspond to trajec-
tories emanating from the above critical point and lying in the sphere L = 0. In fact,
the unstable manifold intersects this sphere transversely, and this accounts for the
parameters in the Ricci-flat metrics.

We now work with one of the trajectories going into L < 0.
Eq. (2.9) shows that the trajectory stays in the region L < 0. Hence all the

variables are bounded by 1 and the flow exists for all s ∈ R. Moreover, L decreases
monotonically to some negative constant κ. Note that as a result of the above choices,
the constant C in (2.4) is fixed and is negative.

Now Eq. (2.8) and Xi ≤ 1 imply that Y 2
i satisfies the differential inequality

d

ds
Y 2

i ≥ − 2√
di

Y 2
i .

By a standard comparison argument it follows from Yi(s∗) > 0 that Yi > 0 on
[s∗,+∞). Hence for all finite s, gi can be defined by (2.10) (so is nonzero) and (2.5)
holds.
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Lemma 3.6. The metric corresponding to our trajectory is complete at s = +∞.

Proof. From (2.10) it follows that as s tends to infinity the arclength t does also. The
definition of gi shows that gi remain nonzero on s > s∗. �

We can refine our analysis to study the asymptotics of the metric as s tends to
+∞.

Proposition 3.7. The trajectory converges to the origin as s tends to +∞.

Proof. Recall that the ω-limit set of the trajectory is the set

Ω = {(X∗, Y ∗) : ∃ sn → +∞ with (X(sn), Y (sn)) → (X∗, Y ∗)}.

As our trajectory ultimately lies in a compact set, we know from standard theory
([Pk] §3.2) that Ω is a compact, connected, non-empty set that is invariant under the
flow of our equations. Moreover, Ω is contained in the sphere L = κ.

Now if Ω contains a point (X∗, Y ∗) with X∗ 6= 0, we see from (2.9) that L′ at this
point is nonzero, contradicting the flow-invariance of Ω. Hence Ω is contained in the
set Xi = 0 (i = 1, . . . , r). Furthermore, if Ω contains a point (0, Y ∗) with Y ∗ 6= 0, we
see from (2.7) that some X ′

i is nonzero, again contradicting flow-invariance.
Hence Ω = (0, 0), and the limiting value κ of L is −1, showing that the trajectory

does indeed converge to the origin. �

Lemma 3.8. We have lims→∞
Xi

Y 2
i

= 1√
di

.

Proof. Observe that Xi/Y 2
i satisfies the differential equation

(3.9)
(

Xi

Y 2
i

)′
=

−1−
r∑

j=1

X2
j +

2Xi√
di

 Xi

Y 2
i

+
1√
di

.

By Prop 3.7, the coefficient of Xi

Y 2
i

tends to −1 as s → +∞. In particular, if Xi

Y 2
i

tends

to a limit a, then its derivative tends to −a + 1√
di

, so a must equal 1√
di

.

Let 0 < δ < 1, and pick s∗(δ) so that the absolute value of −
∑r

j=1 X2
j + 2Xi√

di
is

less than δ for s > s∗(δ). It follows that if Xi

Y 2
i

(s0) ≥ 1√
di(1−δ)

for some s0 > s∗(δ),

then
(

Xi

Y 2
i

)′
< 0 at s0. Similarly, if Xi

Y 2
i

(s0) ≤ 1√
di(1+δ)

, then
(

Xi

Y 2
i

)′
> 0 at s0.

So if Xi

Y 2
i

enters the horizontal strip 1√
di(1+δ)

< y < 1√
di(1−δ)

at some s > s∗(δ) it
is trapped there. Hence one of the following must hold:

(i) Xi

Y 2
i

(s) ≥ 1√
di(1−δ)

for all s > s∗(δ),

(ii) Xi

Y 2
i

(s) ≤ 1√
di(1+δ)

for all s > s∗(δ), or

(iii) 1√
di(1+δ)

< Xi

Y 2
i

< 1√
di(1−δ)

for s sufficiently large.

In Case (i), Xi

Y 2
i

is monotonic decreasing and bounded below by 1√
di(1−δ)

, so it tends

to a finite limit which must be at least 1√
di(1−δ)

> 1√
di

, contradicting the discussion
above. Case (ii) is eliminated similarly.

The remaining possibility is that (iii) holds for all δ; hence Xi

Y 2
i
→ 1√

di
as claimed.

�
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We deduce that giġi asymptotically approaches the constant λi/
√
−C, and obtain

the following theorem.

Theorem 3.10. The metric corresponding to our trajectory is, to leading order in t
as t → +∞,

dt2 + t h∞

where the homothety class of h∞ is that of the product Einstein metric on M1× · · · ×
Mr. So our metric has an asymptotically paraboloid geometry.

Remark 3.11. The Bryant solitons on Rn (for n > 2) also have asymptotically pa-
raboloid geometry. On the other hand the complete steady Kähler solitons considered
in [DW] are asymptotically circle bundles of constant radius over paraboloids.

These two kinds of asymptotics may be viewed as the Ricci soliton analogues of the
Asymptotically Conical (AC) and Asymptotically Locally Conical (ALC) conditions
satisfied by many of the known complete non-compact Ricci-flat metrics (see [CGLP]
for example).

4. Analysing the flow

To check smoothness at the collapsing submanifold, we must now analyse the
trajectory as s tends to −∞. Recall that X1 → β = 1√

di
, Y1 → +

√
1− β2 and the

remaining variables tend to 0.

Remark 4.1. Observe from (2.9) that L (and hence g2
i Y 2

i ) tend to zero exponentially
fast as s tends to −∞.

The following lemma is often useful.

Lemma 4.2. Suppose a function F satisfies a differential equation

(4.3) F ′ = HF + K

where H,K are functions tending respectively to finite limits h, k as s tends to −∞,
where h < 0 and k 6= 0.

Then either lims→−∞ F (s) = − k
h or F tends to ∞ or −∞ as s tends to −∞.

Moreover in the case of infinite limit F is monotonic for sufficiently large negative s.

Proof. We give the proof for the case k > 0 below; obvious modifications yield the
proof for the case k < 0.

Let 0 < δ < min(−h, k), and choose s∗(δ) so that for all s ≤ s∗(δ) we have

h− δ < H(s) < h + δ < 0 : 0 < k − δ < K(s) < k + δ.

If F (s0) ≤ k−δ
−h+δ for some s0 ≤ s∗(δ), then F ′(s0) > 0. Hence these inequalities

for F, F ′ actually hold for all s ≤ s0. So as s tends to −∞, either F tends to −∞
(monotonically on (−∞, s0]) or to a finite limit ξ < k−δ

−h+δ < − k
h . But in the latter

case F ′ tends to a nonzero limit, which is impossible.
If F (s0) ≥ k+δ

−h−δ , then we similarly see that F tends monotonically to +∞ as s
tends to −∞.

So if F does not tend monotonically to ±∞, we see that for all such δ we have
k−δ
−h+δ < F (s) < k+δ

−h−δ on (−∞, s∗(δ)]. Hence F tends to − k
h as s tends to −∞. �
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Lemma 4.4. The function Xi/Y 2
i is positive, and remains bounded as s tends to

−∞.

Proof. (i) Positivity. Note that (
∑r

j=1 X2
j ) − 1 is bounded above by L so it is

negative. Now since Yi > 0 for all s, if Xi ≤ 0 at some s0, we see that X ′
i is positive

at s0. Hence Xi is negative and X ′
i positive on (−∞, s0), which contradicts the fact

that lims→−∞Xi = 0 (if i > 1), or β = 1√
d1

> 0 if i = 1. We deduce that Xi is
positive for all finite s.

(ii) Boundedness. This is trivial if i = 1, so in what follows we take i > 1. We
know that (

∑r
i=1 X2

j )−1 tends to β2−1 and (
∑r

j=1 X2
j )− Xi√

di
tends to β2 as s tends to

−∞. Pick s∗ so that (
∑r

j=1 X2
j )−1 < 1

2 (β2−1) < 0 and (
∑r

j=1 X2
j )− Xi√

di
> 1

2β2 > 0
for s ≤ s∗. Note that this implies that Y ′i is positive on (−∞, s∗], since, as discussed
in §3, we can take the Yi to be positive.

Suppose that Xi

Y 2
i

> 2√
di(1−β2)

at some s0 ≤ s∗. It follows from our choice of s∗

that X ′
i is negative at s0. As remarked above, Yi and Y ′i are positive on (−∞, s∗]. It

follows that these inequalities for Xi/Y 2
i and the derivatives of Xi, Yi actually hold

on (−∞, s0]. But this contradicts the fact that Xi tends to zero as s tends to −∞.
So we have the desired bound on Xi/Y 2

i . �

Proposition 4.5. For i > 1, we have

lim
s→−∞

Xi

Y 2
i

=
1√

di(1 + β2)
.

Proof. The differential equation (3.9) is of the form (4.3), with h = −(1 + β2) and
k = 1√

di
. The desired result now follows from Lemma 4.2 and Lemma 4.4. �

Corollary 4.6. As s tends to −∞, the arclength t can be chosen to tend to zero.
Moreover, we have the following limiting values for gi(t) as t tends to 0.

g1(0) = 0 : ġ1(0) = 1 : ġi(0) = 0 (i > 1).

Proof. The first statement follows from Remark 4.1 and equation (2.6). The statement
about g1 comes from (2.10) using this Remark and the fact that Y1 tends to a nonzero
value as s tends to −∞.

Since ġi =
√

λi(Xi/Yi), the remaining limits follow from Lemma 4.4, the known
limits of Xi, Yi, and the fact that λ1 = d1 − 1. �

Proposition 4.7. For i > 1, gi(0) is finite and nonzero.

Proof. Observe that d
ds (g2

i ) = 2g2
i Xi/

√
di, which is positive for all s. So g2

i tends to
a finite, nonnegative limit at s = −∞.

To get positivity, we consider

g′i
gi

=
Xi√
di

=
1

2
√

di

Xi

Y 2
i

(Y 2
i )′

(
∑r

j=1 X2
j )− Xi√

di

.

Integrating, using Prop. 4.5, and observing that the denominator in the last factor
tends to β2, we get a bound

gi(s∗)
gi(s)

≤ exp
(

Y 2
i (s∗)− Y 2

i (s)
2di(β2 − δ)(1 + β2 − δ)

)
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(for some positive δ), giving the desired positive lower bound on gi(s). �

We shall next obtain some estimates that will be useful for studying the second
derivatives of gi and u.

Lemma 4.8. We have X1 < β for all finite s.

Proof. We can rewrite the equation (2.7) for X1 as

X ′
1 = (X1 − β)

L − r∑
j=1

Y 2
j

+ β

L − r∑
j=2

Y 2
j

 .

The terms in the second and third brackets are negative for finite s, since L is. Hence
if X1 ≥ β at some s0 we see X ′

1 is negative at s0, and hence these inequalities hold on
(−∞, s0]. It follows that X1 cannot tend to β as s tends to −∞, a contradiction. �

Recalling that L is negative on our trajectory, this shows that X1−β
L is positive.

We note next that (X1 − β)/L satisfies the differential equation(
X1 − β

L

)′
=
(

X1 − β

L

)−1−
r∑

j=1

X2
j

+ β

(∑r
j=1 X2

j + Y 2
1 − 1

L

)
.

Observe also that

ρ := lim
s→−∞

∑r
j=1 X2

j + Y 2
1 − 1

L
exists and is a finite number greater than 1, because the numerator is L −

∑r
j=2 Y 2

j ,
and we know for j > 1 that Y 2

j /L tends to a finite negative limit as s tends to −∞
(as this is a negative constant times g−2

j ).
Now Lemma 4.2 shows that as s tends to −∞, X1−β

L either tends to infinity or
tends to the positive limit βρ

1+β2 . Moreover, because it cannot tend to −∞, Lemma
4.2 gives a positive lower bound on X1−β

L .

Remark 4.9. We can make some statements about the decay rates of our variables
as s tends to −∞. From (2.8) we see that for i > 1 we have Yi ∼ eβ2s, hence, by Prop.
4.5, we also have Xi ∼ e2β2s. It follows from (2.9) that L ∼ e2β2s. Now the remarks
in the previous paragraph show that X1 − β decays more slowly than e(2β2+δ)s, for
any positive δ.

Lemma 4.10. The quantity X1−β
L cannot tend to ∞ as s tends to −∞.

Proof. Observe that

(4.11)
(Y1 − β̂)′

L′
=

Y1

2
∑r

j=1 X2
j

(∑r
j=2 X2

j

L
+

X1(X1 − β)
L

)
.

Now the term outside the bracket tends to a nonzero finite limit, and the first term
in the bracket tends to zero. So if X1−β

L tends to +∞, so does (Y1−β̂)′

L′ , and hence, by

L’Hôpital’s rule, so does Y1−β̂
L . But∑r

j=1 X2
j + Y 2

1 − 1
L

=
2β(X1 − β) + 2β̂(Y1 − β̂) + (X1 − β)2 + (Y1 − β̂)2 +

∑r
j=2 X2

j

L
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The discussion in Remark 4.9 shows the first two terms are the dominant ones, so
we deduce the expression on the left-hand-side tends to +∞, which we saw above is
false. �

We now have

Proposition 4.12.

lim
s→−∞

(
X1 − β

L

)
=

βρ

1 + β2
.

Proposition 4.13. As s tends to −∞, e−2β2sL tends to a finite negative limit.

Proof. Letting F = e−2β2sL, (so that F is negative), we see that

F ′ = 2F ((
r∑

j=1

X2
j )− β2).

As in the proof of Lemma 4.10, we see that the dominant term in the bracket is
2β(X1 − β), which is negative by Lemma 4.8. So F is monotonic increasing for large
negative s.

The proposition is proved if we can show that F is bounded below near s = −∞.
This follows by estimating the integral of the right-hand side of the above equation
over an interval (−∞, s∗] on which we have bounds of the form

|X1 − β| ≤ A exp(2(β2 − δ)s), |Xj(s)| ≤ Cj exp(2(β2 − δ)s)

|X1 + β| ≤ 2β + δ, |L| ≤ B exp(2(β2 − δ)s)

where δ,A, B, Cj , 2 ≤ j ≤ r are appropriate positive constants (cf Remark 4.9). �

We can now check the second derivatives of gi at t = 0. Recall that from (2.13) we
have

g̈i =
λi

giY 2
i

(X2
i + Y 2

i −
√

diXi).

It is now clear from Prop 4.5 and Prop 4.7 that for i > 1, g̈i tends to a finite limit as
t tends to zero.

If i = 1, we rewrite this expression, using (2.3)-(2.5), as

g̈1 =
λ1

Y1

(
1−

√
d1X1

g1Y1

)
+ g1

C

d1
−

r∑
j=2

djλj

d1

1
g2

j

(
X2

j

Y 2
j

+ 1

) .

The quantities in the bracket after g1 tend to finite limits, so g1 times that bracket
tends to zero. As Y1 tends to β̂ 6= 0, we see from Prop 4.12 and (2.5) that the first
term also tends to zero.

We have therefore shown the metric is C2.
Similarly we can study the potential u. From the relation (2.11) we obtain

(4.14)

u̇ =

√
C

L

 r∑
j=1

√
djXj

− 1

 =
√

d1

(
(X1 − β)√

L/C

)
+

r∑
i=2

√
di

(
Xi

Y 2
i

)(
Y 2

i√
L/C

)
.
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By Prop 4.5, Remark 4.9, and Prop 4.12, it follows that u̇ tends to zero as t tends to
0. Next, by integrating (2.11) we get

(4.15) eu(0) = (positive constant)
r∏

i=2

gi(0)di

(
lim

s→−∞
e−2β2s L

C

) d1
2

,

which is finite by Prop 4.13. If we differentiate (2.11) and use (2.9) we get

(4.16) ü =
r∑

i=1

di
g̈i

gi
=

r∑
i=1

λidi

g2
i Y 2

i

(
X2

i + Y 2
i −

√
diXi

)
.

The right-hand side tends to a finite limit (as t tends to 0) by Props 4.7, 4.12, the
relation (2.5) and the discussion after Prop 4.13.

For the third derivatives, we calculate

d3gi

dt3
=

√
C

L
λi

gi

Xi

Y 2
i

−3Xi +
X2

i√
di

+
√

di +
√

di

r∑
j=1

X2
j

+
Xi√
di

− 1

 .

If i > 1, we know that the terms in Xi√
L ,

X2
i

Y 2
i

√
L ,

X3
i

Y 2
i

√
L tend to zero (cf Remark 4.9).

Our task thus reduces to showing that

1√
L

Xi

Y 2
i

(1 +
r∑

j=1

X2
j )− 1√

di


tends to zero.

Now, 1 +
∑r

j=1 X2
j = 1 + β2 modulo terms approaching zero at least as fast as L,

so we just have to check that

lim
s→−∞

1√
L

(
Xi

Y 2
i

− 1√
di(1 + β2)

)
= 0.

In fact we shall show the stronger statement that

Qi :=
1
L

(
Xi

Y 2
i

− 1√
di(1 + β2)

)
tends to a finite limit. We find that Qi satisfies the equation

Q′i = −

1 + 3
r∑

j=1

X2
j

Qi +
1

(
√

di(1 + β2))L

2(1 + β2)
X2

i

Y 2
i

+ β2 −
r∑

j=1

X2
j

 .

By arguments similar to those above, one sees that the second term on the right-hand
side tends to a finite negative limit as s → −∞ since X1 < β and L < 0. So the
hypotheses of Lemma 4.2 are satisfied, and Qi either tends to a finite limit or to +∞
or −∞. But(

Xi

Y 2
i
− 1√

di(1+β2)

)′
L′

=

(
Xi

Y 2
i
− 1√

di(1+β2)

)
L

(
−(1 + β2)
2
∑r

j=1 X2
j

)
+ Ri

where Ri tends to a finite limit. So if the limit of Qi is infinite, L’Hôpital’s rule gives
a contradiction, as the term in the final bracket is negative.
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For i = 1, by (2.10) and Y1(0) = β̂, it is enough to check that

−3(X1
Y1

)2 + β
X3

1
Y 2
1

+ βX1 − 1 + X1
βY 2

1
(1 +

∑r
j=1 X2

j )

L
has a finite limit. Recall that 1+

∑r
j=1 X2

j = 1+β2 modulo terms which have a finite
limit when divided by L. Similarly Xk

1 = βk modulo such terms. So we are left with

checking that the limit of Y 2
1 −β̂2

L is finite, which follows on applying L’Hôpital’s rule,
equation (4.11) and Prop. 4.12.

We have shown that the metric is C3 and so by the discussion on regularity near
the beginning of §3, the soliton is smooth.

Theorem 4.17. Let M2, . . . ,Mr be compact Einstein manifolds with positive scalar
curvature. For d1 > 1 there is an r − 1 parameter family of complete smooth steady
Ricci solitons on the trivial rank d1 + 1 vector bundle over M2 × . . .×Mr. �

The examples of Ivey and Bryant have nonnegative Ricci curvature. This is also
true for our more general examples.

Proposition 4.18. The soliton metrics have nonnegative Ricci curvature.

Proof. It is enough to show that the Ricci curvature is positive on the complement
of the submanifold at t = 0, i.e., on the finite part of the trajectory. The Hessian
of u is given by ü evaluated on directions normal to the hypersurface and by u̇ġi

gi

evaluated on directions tangent to Mi. From the soliton equation (1.1) (with ε = 0),
the formulae (4.15), (4.14), (4.16), (2.5) above for u̇, ü and the fact, proved in Prop
(4.7), that ġi

gi
is positive, it is enough to check that

H =
r∑

i=1

√
diXi,

introduced in Remark 2.14, satisfies H < 1 and L+ 1−H < 0 for all s.
Now it is easy to check that we have equations

(H− 1)′ = (H− 1)(
r∑

j=1

X2
j − 1) + L

and

(L+ 1−H)′ = (L+ 1−H)(
r∑

j=1

X2
j − 1) + L(

r∑
j=1

X2
j ).

Moreover
∑

j=1 X2
j − 1 and L are negative. So if H ≥ 1 at s0 then H′ < 0 and H > 1

on (−∞, s0), contradicting the fact that H tends to 1 as s tends to −∞. Similarly if
L+ 1−H is non-negative at s0, then we see it is positive with negative derivative on
(−∞, s0), contradicting the fact that L+ 1−H tends to zero. �

Remark 4.19. For a multiply-warped product I ×M1× · · · ×Mr with metric of the
form (2.1) it is easy to compute the sectional curvatures, e.g., by considering it as a
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Riemannian submersion over I. If U, V are respectively tangent to Mi and Mj , one
has

K(U ∧ ∂

∂t
) = − g̈i

gi

K(U ∧ V ) = − ġiġj

gigj
, i 6= j,

K(U ∧ V ) =
1
g2

i

(
Khi(U ∧ V )− ġi

2
)
, i = j,

where Khi
denotes the sectional curvature of (Mi, hi).

It now follows from the asymptotics described in Theorem 3.10 that if r > 1 there
are always 2-planes with negative sectional curvature. If r = 1, we are in the case
of the Bryant solitons, which are known to have positive curvature ([Bry] or [Cetc
Lemma 1.37]). The above formulas also show that the sectional curvatures decay
like t−1 as t tends to +∞. Recall that the asymptotic scalar curvature ratio of a
complete, non-compact Riemannian manifold is defined as lim supd→+∞Rd2, where
R is the scalar curvature and d is the distance from a fixed origin in the manifold.
Since t is the geodesic distance in our examples, it follows that their asymptotic scalar
curvature ratios are all +∞.
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