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CANONICAL BUNDLES OF COMPLEX NILMANIFOLDS, WITH
APPLICATIONS TO HYPERCOMPLEX GEOMETRY

MARIA L. BARBERIS, ISABEL G. DOTTI AND MISHA VERBITSKY!

ABSTRACT. A nilmanifold is a quotient of a nilpotent group G by a co-compact discrete
subgroup. A complex nilmanifold is one which is equipped with a G-invariant complex
structure. We prove that a complex nilmanifold has trivial canonical bundle. This is
used to study hypercomplex nilmanifolds (nilmanifolds with a triple of G-invariant com-
plex structures which satisfy quaternionic relations). We prove that a hypercomplex
nilmanifold admits an HKT (hyperkahler with torsion) metric if and only if the under-
lying hypercomplex structure is abelian. Moreover, any G-invariant HKT-metric on a
nilmanifold is balanced with respect to all associated complex structures.

1. Introduction

1.1. Canonical bundle of complex nilmanifolds. Let G be a connected, simply
connected nilpotent Lie group, and I' C G a discrete, co-compact subgroup. The
quotient manifold T'\G is called a nilmanifold. Clearly, G acts on I'\G transitively
(from the right). Nilmanifolds are often defined as compact manifolds with a transitive
action of a nilpotent Lie group (see e.g. [H]). In this case, the above definition becomes
a theorem, proven by Mal’cev, who introduced this notion in 1949, in the influental
paper [M].

If N = T'\G is equipped with a complex structure Z induced by a left-invariant
complex structure on G, (N,Z) is called a complex nilmanifold.

It is important to note that G is not necessarily a complex Lie group. Indeed, for G
to be a complex Lie group, both left and right translations on G must be holomorphic.
In many examples of complex nilmanifolds, even the simplest ones (such as a Kodaira
surface), this condition is not satisfied.

Geometry of nilmanifolds is an important subject, much studied since Mal’cev
and Mostow started this work. The complex nilmanifolds are much less understood.
There are many papers dealing with special cases of nilpotent Lie groups and particu-
lar discrete co-compact subgroups, where the complex invariants of the corresponding
nilmanifolds (deformation space, Frolicher spectral sequence, and so on) have been
computed. However, general results about complex nilmanifolds remain scarce. In-
deed, nilmanifolds serve mostly as a rich source of counterexamples to all kinds of
general conjectures in geometry and topology ([Ab], [CFG1], [CFL]).

In the present paper, we prove that the canonical bundle of any complex nilmanifold
is holomorphically trivial (Theorem 2.7). This condition is quite strong. For instance,
any compact complex surface with trivial canonical bundle is isomorphic to a K3
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surface, a torus, or a Kodaira surface; the first two are Kéhler, and the latter is a
nilmanifold.

Kahler manifolds with trivial canonical bundle play an important role in mathe-
matics and physics, due to the nice behavior of their deformation spaces, guaranteed
by Bogomolov-Tian-Todorov theorem. This theorem states that the deformations of
a compact Kéhler manifold with trivial canonical bundle are non-obstructed, and the
deformation space is smooth.

For nilmanifolds obtained as quotients of complex nilpotent groups (“complex par-
allelisable nilmanifolds”), this is known to be false, as S. Rollenske proved ([Ro2]). For
other classes of nilmanifolds, for instance hypercomplex nilmanifolds, some version of
Bogomolov-Tian-Todorov theorem could still be true. In fact, the key ingredient of
the proof of Bogomolov-Tian-Todorov theorem, the so-called Tian-Todorov lemma
([BK]), remains valid for any complex manifold with trivial canonical bundle. The
rest of the proof, sadly, does not work, because it requires the degeneration of a
Frolicher spectral sequence, and (as shown in [CFG2] and [Rol]), this sequence can
be arbitrarily non-degenerate. Still, the vast empirical evidence (see e.g. [MPPS],
[Po]) shows that some analogue of Tian-Todorov formalism could exist on some (or
all) nilmanifolds.

For general compact non-Kéahler manifolds with trivial canonical bundle, an ana-
logue of Bogomolov-Tian-Todorov theorem is known to be false. In [G], it was shown
that the deformation space of a locally homogeneous manifold SL(2,C)/I" can be
obstructed, for a cocompact and discrete subgroup I' C SL(2,C).

One of the first examples of a complex manifold with obstructed deformations was
constructed by A. Douady, in [Do]. Douady used an Iwasawa manifold which is a
quotient M := G/T’, with G the group of complex upper triangular 3 x 3-matrices,
and I' the group of upper triangular matrices with coefficients in Gaussian integers.

Douady proved that a product M x CP! has obstructed deformation space. In
[Re], Douady’s construction was generalized, using Massey operations on cohomology
of M.

Another proof of triviality of the canonical bundle of a nilmanifold is given in [CG].

1.2. Hypercomplex nilmanifolds. An almost hypercomplex manifold is a smooth
manifold M equipped with three operators Z, J, K € End(T'M) satisfying the quater-
nionic relations Zo J = —J oZ = K, I? = J? = K? = —Idry. The operators Z,
J, K define almost complex structures on M if these almost complex structures are
integrable, M is called hypercomplex. A hypercomplex manifold is equipped with
a whole 2-dimensional sphere of complex structures.

Hypercomplex manifolds were defined by C.P. Boyer ([Bo]), who gave a classifica-
tion of compact hypercomplex manifolds for dimyg M = 1. Many interesting examples
of hypercomplex manifolds were found in the 90-ies, see e.g. [J], [PP], [BD1]. Inde-
pendently (and earlier) some of these constructions were obtained by string physicists;
see e.g. [SSTV].

As Obata has shown ([Ob]), a hypercomplex manifold admits a (necessarily unique)
torsion-free connection, preserving 7, J,/C. The converse is also true: if an almost
hypercomplex manifold admits a torsion-free connection preserving the quaternionic
action, it is hypercomplex. This implies that a hypercomplex structure on a manifold
can be defined as a torsion-free connection with holonomy in GL(n,H).
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Connections with restricted holonomy is one of the central notions in Riemann-
ian geometry, due to Berger’s classification of irreducible holonomy of Riemannian
manifolds. However, a similar classification exists for a general torsion-free connec-
tion ([MS]). In the Merkulov-Schwachhéfer list, only three subroups of GL(n,H) oc-
cur. In addition to the compact group Sp(n) (which defines hyperkdhler geometry),
also GL(n,H) and its commutator SL(n,H) appear, corresponding to hypercomplex
manifolds and hypercomplex manifolds with trivial determinant bundle, respectively.
Both of these geometries are interesting, rich in structure and examples, and deserve
detailed study.

Not much is known about SL(n,H)-manifolds. It is easy to see that (M,Z) has
holomorphically trivial canonical bundle, when (M,Z, 7, K) is a hypercomplex man-
ifold with holonomy in SL(n,H) ([V2]). For a hypercomplex SL(n,H)-manifold ad-
mitting a special kind of quaternionic Hermitian metric called HKT metric, a version
of Hodge theory was constructed ([V1]). Using this result, it was shown that a com-
pact hypercomplex manifold with trivial canonical bundle has holonomy in SL(n, H),
if it admits an HKT-structure ([V2])

It is not clear whether the last condition is necessary: for all known examples of
hypercomplex manifolds with trivial canonical bundle, holonomy lies in SL(n, H).

In the present paper, we prove that holonomy Hol(V) of a hypercomplex nilmani-
fold always lies in SL(n,H) (Theorem 3.2)

As shown in [AM], locally Hol(V) C SL(n,H) is equivalent to vanishing of the Ricci
curvature of V. However, the vanishing of Ricci curvature is weaker than Hol(V) C
SL(n,H). Consider for example the Hopf manifold H = Z\(H"™ — 0). The Obata
connection on H is obviously flat, hence the Ricci curvature vanishes. However,
Hol(V) does not lie in SL(n,H). In fact, the canonical bundle of H is holomorphically
non-trivial, and has no non-zero sections (see Subsection 2.2).

We give an independent proof of vanishing of Ricci curvature of a hypercomplex
nilmanifold (Section 3).

1.3. Abelian complex structures. A complex nilmanifold (V,Z), with N = T'\G,
gives rise to a splitting

g ®Rr C = g0,1 D 91,0’
where g%1, g% are the eigenspaces of the induced complex structure on the Lie al-
gebra g of G. By Newlander-Nirenberg theorem, the almost complex structure 7
is integrable if and only if g''* is a complex subalgebra of g ®g C. (N,Z) is called
abelian if the Lie subalgebra g™ is abelian.

Abelian complex structures were introduced in [B1], and much studied since then
(see, for example, [BDM], [BD1]). There are strong restrictions to the existence of
such structures. In fact, it has been shown by [Pe] that the Lie algebra must be
two-step solvable. However, a complete classification is still unknown, though there
exist some partial results ([BD2]). The complex geometry of nilmanifolds with abelian
complex structures is much more accessible than the general case. In particular, the
Dolbeault cohomology of an abelian nilmanifold can be expressed in terms of the
corresponding Lie algebra cohomology ([CF], [CFGU]), and the same is true for the
deformation space ([MPPS], [V2], [CFP]).

This notion is specially convenient when applied to hypercomplex nilmanifolds.
If (N,Z,J,K) is a hypercomplex nilmanifold, abelianness of the complex structure

1,0



334 MARIA L. BARBERIS, ISABEL G. DOTTI, AND MISHA VERBITSKY

T is equivalent to the abelianness of J and K ([DF3]). Some results on abelian
hypercomplex structures can be found in [DF1], [B3].

1.4. HKT-structures on nilmanifolds. Let (M,Z,J,K) be a hypercomplex man-
ifold. A “hyperkéhler with torsion” (HKT) metric on M is a special kind of a quater-
nionic Hermitian metric, which became increasingly important in mathematics and
physics during the last seven years. HKT-metrics were introduced by P. S. Howe and
G. Papadopoulos ([HP]) and much discussed in the physics and mathematics literature
since then. See [GP] for a treatment of HKT-metrics written from a mathematical
point of view. The term “hyperkéhler metric with torsion” is actually misleading,
because an HKT-metric is not hyperkahler. This is why we prefer to use the abbre-
viation “HKT-manifold”.

A quaternionic Hermitian metric is a Riemannian metric which is Hermitian under
7, J and K. There are three Hermitian forms associated with such a metric g:

wr =9(,1), wy=9(,7), wec=49(,K).

When these forms are closed (M,Z,J,K, g) is called a hyperkdhler manifold. In this
case, M is also holomorphically symplectic; indeed, the form wy + v/—1 wi lies in
A%0(M,T). Being closed, this (2,0) form is necessarily holomorphic.

The converse is also true: by Calabi-Yau theorem ([Bes|, [Yau]), a compact holo-
morphically symplectic Kdhler manifold admits a hyperkéahler metric, which is unique
in a given Kahler class. In algebraic geometry, the word “hyperkahler” is often used
as a synonym to “holomorphically symplectic”.

The condition d(wz + v/ —1wx) = 0 is equivalent to hyperkihlerianness. A weaker
condition

(1.1) 8(w5+\/j1w;c) =0

is often more useful. A quaternionic Hermitian metric g which satisfies (1.1) is called
HKT (hyperkahler with torsion). As in the Kéhler case, an HKT metric locally has
a potential (see [BS]).

For abelian hypercomplex nilmanifolds, any left-invariant quaternionic Hermitian
metric is automatically HKT ([DF2]) and for 2-step nilmanifolds a converse result was
proven in [DF2|. Using the triviality of the canonical bundle and the hypercomplex
version of Hodge theory [V1], we generalize the previous result, showing that any
hypercomplex nilmanifold which admits a left-invariant HKT-metric is in fact abelian
(Theorem 4.6). In [GP] the question whether any compact hypercomplex manifold
admits an HK'T metric was posed. In particular, a negative answer to this question is
given by a non-abelian hypercomplex nilmanifold, since it has been shown in [FG] that
existence of any HKT-metric compatible with a left-invariant hypercomplex structure
implies existence of a left-invariant one. In §4.3 a family of non-abelian hypercomplex
nilmanifolds is exhibited (see also the nilmanifold considered in the Remark of §4 in
[DF1] and Lemma 3.1 in [FG]).

We also obtain, as a consequence of Theorem 4.6 and Proposition 4.11, that any
invariant HKT-metric on a hypercomplex nilmanifold is balanced with respect to all
underlying complex structures.
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2. Geometry of complex nilmanifolds

2.1. Complex nilmanifolds: basic properties.

Definition 2.1: A nilmanifold is a quotient I'\G of a connected simply connected
nilpotent Lie group G by a co-compact discrete subgroup T

By Mal’¢ev theorem ([M]), for any simply connected nilpotent Lie group G with
rational structure constants there is a lattice I' of maximal rank.

Let G be a real Lie group, equipped with a left-invariant almost complex structure
T, acting on its Lie algebra as I : g——g, I? = —Id. It is well known that T is
integrable if and only if the /—1 -eigenspace g*! C gc := g ®r C is a subalgebra of
gc- In this situation, we shall say that G is equipped with a left-invariant complex
structure. When I : g — g satisfies the condition [Iz, Iy] = [z, y] for any x,y € g, T
is integrable and it is called an abelian complex structure. In this case, it turns out
that g° C g ®@g C is a complex abelian subalgebra of g ® C.

Let G be a nilpotent Lie group with a left-invariant complex structure Z. According

to Theorem 1.3 in [S], there exist left-invariant (1,0)-forms wy,...,w, and smooth
I-forms nf,...,n!_; on G for 2 < i < n, such that
(2.1) dw; = Zn; N wj.

j<i

We prove next an algebraic lemma, which will be useful to prove that a hypercom-
plex nilmanifold is Ricci flat (see Corollary 3.4). Its proof makes use of the existence
of the above basis of (1,0)-forms.

Lemma 2.2: Let J be a complex structure on a nilpotent Lie algebra g. Then

tr(Jadx) =0, for any X € g.

Proof: Let

Wi,...,Wn € Al,og
satisfy (2.1), and consider @y, ...,0, € A% g. If X;,...,X,,X1,..., X, is the basis
of gt dual to wi,...,wy,w1,...,wy, then the matrix of adx, relative to this basis

takes the form:

Ak k
0 B)’

where tr(Ag) = 0 and By, is strictly lower triangular. In fact, let By = (bY). Using
(2.1) one obtains

dw; =Y 75 A,

j<i
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then
bicl = Ww; ([Xk,yl]) = -2 dwl(Xk,Yl)
= —22 (75 (Xp)w; (X1) — 75(X 1)@, (X))
i<t
= =) 0UXn)m; (X)),
j<i

since w;(Xy) = 0 for any j,k. Observe that when i < [, @;(X;) = 0 for all j < i,
therefore bY, = 0 for ¢ < [, and it turns out that By is strictly lower triangular, as
claimed. This implies that tr(Ay) = 0 since ady, is nilpotent.

On the other hand, the matrix of 7 relative to X1,..., X,, X1,..., X, is given by:

i1d 0
0 —iId)’

therefore, the matrix of J adx, takes the following form:

iAk *
0 —iBy)’

and, in particular, it has zero trace. A similar argument, using that the matrix of
adx, is given by:
Cr. O
( * Dk) ’

with Cj, strictly lower triangular and tr(Dy) = 0, gives that tr(j adyk) = 0. There-
fore, tr(J adx) = 0 for any X € gc and the lemma follows. m

Let (M, J) be a complex manifold, g a Hermitian metric, w = g(-, J-) the Kéhler
form and 6 = d*w o J the Lee form of the Hermitian manifold (M, 7, g), where d* is
the adjoint of d.

Definition 2.3: A Hermitian metric g on a complex manifold (M, 7) is called bal-
anced if § = 0, where 0 is the associated Lee form.

On any Hermitian manifold (M, 7, g) there exists a unique connection V7 satis-
fying VBg = 0, VBJ = 0 and whose torsion tensor ¢ (considered as a (3, 0)-tensor)
cX,Y,Z) = g(X,T(Y, Z)) is totally skew-symmetric. Physicists call this connection
a K'T-connection; among mathematicians this connection is known as the Bismut con-
nection [Bi]. The Lee form can be expressed (locally) in terms of the torsion tensor ¢
as follows (see [IP]):

2n

1
(2.2) 0(X) =3 ;c(JX, Ei, JE;),
for an orthonormal basis F, ..., Ea, of (local) vector fields.

We restrict next to the case of a left invariant Hermitian structure on a Lie group.
The proof of the next lemma follows by using the properties of the Bismut connection
together with (2.2).
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Lemma 2.4: Let G be a Lie group with an abelian complex structure J and g an
arbitrary Hermitian left-invariant metric. Then the Bismut connection V? and the
Lee form 6 associated to (G, J,g) are given by

9(VRY. Z) = —g(X,[Y. Z)),

(23) Q(X) = tr <; JV?X - adX) 5

where X,Y, Z are left-invariant vector fields.

2.2. Canonical bundle of a complex nilmanifold. Definition 2.5: Let N =
I'\G be a nilmanifold and assume that G is equipped with a left-invariant complex
structure. This makes N into a complex manifold. In such a situation we say that N
is a complex nilmanifold.

Definition 2.6: A complex structure Z on a nilmanifold N = I'\G is called abelian
if it is induced from a left invariant abelian complex structure on G.

Theorem 2.7: Let N = I'\G be a complex nilmanifold, n = dim¢ G. Then G admits
a left-invariant, non-zero, holomorphic section of the canonical bundle A™°(G). In
particular, the canonical bundle K (N) of N is trivial, as a holomorphic line bundle.

Proof: Let wy,...,w, be the left-invariant (1, 0)-forms and ¢, ..., n¢_; the smooth
1-forms (2 < i < n), asin (2.1). If n = Al w; € A™(G), we show next that 7 is
closed, hence holomorphic. Indeed,

dr] = Z(—l)i+1wl VARERIAN Wi—1 A dwi A Wi+1 VARERIAN W,

)

DD A Awia A DY ni Awy | Awigr A Awy =0,
i j<i
Since d = 9 + 8 and 9 (A™°(G)) c A"T10(G) = 0, it follows that dn = 0, hence
holomorphic.
Finally, the fact that the lattice I' acts on the left implies that left invariant vector
fields and 1-forms on G induce global bases of TN and T*N [TO]. Moreover, the
canonical projection m : G — I'\G is holomorphic, hence the last assertion follows. m

Another proof of triviality of the canonical bundle of a nilmanifold is found in
Theorem 3.1 of [CG].

On a compact Kéahler manifold, topological triviality of the canonical bundle im-
plies that it is trivial holomorphically on some finite, unramified covering of M. This
follows from Calabi-Yau theorem. Indeed, by Calabi-Yau theorem, M admits a Ricci-
flat Kéhler metric ([Yau]). From Berger’s list of irreducible holonomies, de Rham
theorem, and Cheeger-Gromoll theorem on fundamental group of Ricci-flat mani-
folds, we obtain that a finite unramified covering M of M is a product of compact
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tori, hyperkéhler manifolds and simply connected Calabi-Yau manifolds (see [Bes] for
a detailed argument). Therefore, M has trivial canonical bundle.

On a non-Kahler manifold, this is no longer true. However, the above theorem
implies that the canonical bundle is holomorphically trivial for every nilmanifold,
which is never Kéahler unless it is a torus (see [BG]).

For hypercomplex manifolds, K (M,T) is always topologically trivial, which is easy
to see by taking a non-degenerate (2,0)-form associated with some quaternionic Her-
mitian structure (Subsection 4.1). The top exterior power of this (2, 0)-form trivializes
K(M,T). However, K(M,T) is quite often non-trivial as a holomorphic line bundle.

It is possible to show that K(M,Z) is non-trivial for all hypercomplex manifolds
(M,Z,J,K) such that (M,7) is a principal toric fibration over a base which is a Fano
manifold or orbifold (has ample anticanonical bundle). These include the quasiregular
locally conformally hyperkéhler manifolds (see [Or]), which are elliptically fibered over
a contact Fano orbifold, and compact Lie groups with the hypercomplex structure
constructed by D. Joyce ([J]), which are torically fibered over a homogeneous rational
manifold ([V3]).

Let M " B be such a fibration. The adjunction formula gives K (M) = 7* K (B),
because the canonical bundle of a torus is trivial. However, 7* K (B)~" has sections,
because K (B)~! is ample. Therefore, K (M) can never be trivial.

3. Hypercomplex nilmanifolds and holonomy

A manifold (M,Z,J,K) is called hypercomplex if Z, 7, K define integrable an-
ticommuting complex structures on M such that ZJ = K. The operators Z,7,K
define an action of the quaternion algebra H on the tangent bundle of M. As Obata
proved ([Ob]), the integrability condition of Z, 7, K is satisfied if and only if M admits
a torsion-free connection V preserving the quaternionic action:

VI=VJ=VK=0.

Such a connection, which is necessarily unique ([Ob]), is called the Obata connec-
tion on (M,Z,J,K). Setting J1 =Z, Jo = J, J3 = K, the Obata connection V is
given by (see [AM]):

Vx(¥) = 5= 3 Tl T Y]+ 55, X))

a,f,
(3.1) !
1

2[X’Y]7

3
L é;ja([ja)(, Y]+ [J.Y, X]) +

X,Y € X(M), where «, 8,7 is a cyclic permutation of 1,2,3.
We consider next hypercomplex nilmanifolds.

Definition 3.1: A hypercomplex structure Z, 7, on a Lie group G is called left-
invariant when left translations are holomorphic with respect to the complex struc-
tures Z, 7 and K. Let N = I'\G be a nilmanifold, with G a Lie group equipped with
a left-invariant hypercomplex structure. The quotient N = I'\G inherits a hypercom-
plex structure. In such situation, we say that IV is a hypercomplex nilmanifold.
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Let Hol(V) be the holonomy group associated with the Obata connection V. Since
V preserves the quaternionic structure, Hol(V) C GL(n,H). We define the determi-
nant of h € GL(n,H) in the following way. Let V = H" be the vector space over H,
and VIl’0 the same space considered as a complex space with the complex structure
I induced by Z. The Hodge decomposition gives V ®@g C = V;** @ V"', The top
exterior power A7"(V) := AQ"(VILO) =~ C is equipped with a natural real structure:
(3.2) n—J(7)
for n € A2™°(V) (the quaternions I and J anticommute, hence J exchanges A?%(V)
with A9P(V)). Since the real structure on A7™°(V') is constructed from the quaternion
action, any h € GL(V,H) preserves this real structure. Let det(h) denote the action

induced by h on A?"’O(V) = C. Then det(h) € R, as the above argument implies.
This defines a homomorphism

det : GL(n,H) — R*

to the multiplicative group of non-zero real numbers, which is clearly positive since
GL(n,H) is connected. Let SL(n,H) C GL(n,H) be the kernel of det, K(M,Z) the
canonical bundle of (M,Z) and V g the connection on K (M,T) induced by the Obata
connection V. Given h € Hol(V), the corresponding transformation in Hol(V ) acts
on sections of K(M,Z) by multiplication by det(h), hence

Hol(Vg) = {det(h) : h € Hol(V)}.
Therefore, V has trivial holonomy if and only if Hol(V) C SL(n,H). Moreover, the
last condition implies that K(M,T) is holomorphically trivial (see [V2], Claim 1.2).
We show in Corollary 3.3 that the converse of this statement holds in the case that

M is a nilmanifold, thereby giving an affirmative answer to a question raised in [V2].
The proof of this corollary makes use of Theorem 2.7 and the next result:

Theorem 3.2: Let (N,Z,7,K) be a hypercomplex nilmanifold, dim¢ N = 2n, and
n a holomorphic, left-invariant section of the canonical bundle A?**°(N,Z). Then
Vn =0, where V is the Obata connection.

Proof: Since the Obata connection is torsion-free, dn = Alt(Vn), where Alt = A :
A2 (M)@AY (M) — A?"+1(M) denotes the exterior product. Since 7 is holomorphic,
On = 0. The map Alt restricted to A2™"°(M) ® A% (M) is an isomorphism; therefore,
Voln =0.

Any left-invariant section of A?"’O(N ) is holomorphic, because such a section is
unique, up to a constant multiplier. Therefore, J(7]) € A?”’O(N ) is holomorphic. This
gives
(3.3) VoL (7) = 0.

Since V commutes with J, (3.3) implies V%7 = 0. However, V%5 = V1.0, and
this gives V1% = 0. We proved that V%15 + V10 =Vn =0. m
[

Comparing Theorem 3.2 with Theorem 2.7, we obtain the following important
corollary:
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Corollary 3.3: Let (N,Z,J,K) be a hypercomplex nilmanifold. Then Hol(V) C
SL(n,H), where Hol(V) is the holonomy of the Obata connection.

Proof: Theorem 2.7 implies that A?»?(N,T) has a holomorphic section and by The-
orem 3.2, Hol(V) C SL(n,H) where V is the Obata connection. m

As a consequence of the above result it follows that the Obata connection on any
hypercomplex nilmanifold is Ricci flat.

Corollary 3.4: Let (N,Z,7,K) be a hypercomplex nilmanifold. Then the Ricci
tensor of the Obata connection vanishes.

We give two proofs of this corollary; the first one is a consequence of Theorem
5.6 in [AM] and the second one makes use of Lemma 3.2 in [B2]. In both proofs
V denotes the Obata connection of the left-invariant hypercomplex structure on G,
where N =T'\G.

First Proof: It follows from Corollary 3.3 that Hol(V) C SL(n,H). It was proved in
[AM], Theorem 5.6, that for a simply connected hypercomplex manifold of dimension
4k, k > 1, the Obata connection V satisfies Hol(V) C SL(n,H) if and only if the
Ricci tensor of V vanishes. Therefore, the Ricci tensor of V vanishes on G, hence it
vanishes on N. m

Second Proof: Let g be the Lie algebra of G and set J1 =Z, Jo = J, J3 = K.
According to Lemma 3.2 in [B2],

Ric=0 if and only if tr (V[lexg]) =0,VX;, X5 €g.
The first step is to show that:
(3.4) tr (V[XI,XZ]) =tr (ja adja[XhXQ]) , X1,Xo€g, a=1,2,3.
We compute the trace of Vx, x,) (recall (3.1)):

3
1
tr (V[Xth]) ~ 6 o (Z Ja adja[Xl,X2]>

a=1
(3.5)
1
+ 13 tr Z (Jatd 7,1x, x0Ty — Jatd g, (x, x-2T3) | »
a,B,y
where «, (3, is a cyclic permutation of 1,2, 3.
Since
tr (jaadjg[xl,xz]j’Y) =tr (jﬂadjﬁ[Xth])
and

tr (Jaadyg, [x,,x,)75) = —tr (Fyadz, [x,,x.))

ITheorem 5.6 in [AM] holds for n > 1. For n = 1 it still holds if we assume that W, = 0, where
W4 is the self-dual part of the Weyl tensor W. This assumption is immediate for hypercomplex
manifolds, because the hypercomplex structure gives a parallel trivialization of the bundle AT (M).
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it follows that:

1 3
tr (Vix,,x,]) = gtr (Z Ja adja[X17Xz]> :

We show next that: -
(3.6) tr (ja adja[Xth]) is independent of o =1,2,3.
Set X = [X1, Xs] and let Y € g. Observe that:
(3.7) tr (Joadg, x) = tr(adg, x Jo) = —tr (Jy adg, x TaTy)
=tr(Jyadg, xJs) -

The integrability of J, gives:
Iy Ta X, TsY] = [T X, TpY] = [Ta X, TaY]| = T5[TsX, TaY],
which implies that:
tr (Jy adg, xJg) = tr (adg, x Jp) — tr (ad g, x Jo) — tr (T ad 7, x Ta) -
Using (3.7) we obtain:
tr (Jaadg, x) = tr (ad g, xJ3) — tr (adz, x Ja) + tr (Jpadg, x)
or equivalently,
2tr (Jaad g, x) = 2tr (Jpadg,x) ,

and (3.6) follows. This implies (3.4), which together with Lemma 2.2 imply that the
corollary holds on G, hence on N =T\G. m

Remark 3.5: Notice that the converse of Corollary 3.3 is not necessarily true. Indeed,
the vanishing of the Ricci curvature is equivalent to the flatness of the canonical bundle
K(N) of N. However, it might have global monodromy, as it happens in the case of
the Hopf surface. Corollary 3.3 implies that (for a nilmanifold), K(N) is trivial, both
locally and globally.

4. Quaternionic Hermitian structures on nilmanifolds

4.1. HKT structures on abelian nilmanifolds. Let (M,Z,J,K) be a hypercom-
plex manifold. A quaternionic Hermitian metric g on M is a Riemannian metric which
is Hermitian with respect to Z, J and K. This is equivalent to g being SU (2)-invariant
with respect to the SU(2)-action generated by the group of SU(2) = SU(H, 1) of uni-
tary quaternions,

SU(H, 1) = {a+bl +cJ +dK | a®> +b* +c* +d* = 1}.

Starting from an arbitrary Riemannian metric and averaging over SU(2), we obtain
a quaternionic Hermitian metric. Therefore, such metric always exists.

Definition 4.1: Let (N,Z,7,K) be a hypercomplex nilmanifold, where N = T'\G.
When the Lie group G is equipped with a left-invariant quaternionic Hermitian metric
we say that the hypercomplex nilmanifold N with the induced metric is a quater-
nionic Hermitian nilmanifold.
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Let (M,Z,J,K) be a hypercomplex manifold, g a quaternionic Hermitian metric,
and 2 a 2-form on M constructed from g as follows:

(4.1) Q:= g(-,j-)—&-ﬁg(-,l@)

Then, Q is a (2,0)-form on (M, ) as an elementary linear-algebraic argument implies
([Bes).

The hyperkahler condition can be written down as dQ2 = 0 ([Bes]). The HKT
condition is weaker:

Definition 4.2: A quaternionic Hermitian metric is called an HKT-metric if
(4.2) () =0,

where 9 : A2°(M) — A3°(M) is the Dolbeault differential on (M,Z), and Q the
(2,0)-form on (M,Z) constructed from g as in (4.1).

Definition 4.3: Let (N,Z,7,K) be a hypercomplex nilmanifold, where N = T'\G.
When the Lie group G is equipped with a left-invariant HKT-metric we say that the
hypercomplex nilmanifold N with the induced metric is an HKT nilmanifold.

Remark 4.4: It has been shown in [FG] that existence of any HKT-metric on
(N,Z,J,K), compatible with a left-invariant hypercomplex structure implies exis-
tence of a left-invariant one.

Definition 4.5: A hypercomplex nilmanifold (N,Z,J,K) with N = I'\G is called
abelian when Z, 7, K are induced by left-invariant abelian complex structures on G.

In [DF2], it was shown that for each invariant abelian hypercomplex structure on a
Lie group, any left-invariant quaternionic Hermitian metric is HK'T. This implies that
any abelian hypercomplex nilmanifold is HKT. We show next that as a consequence
of Theorem 2.7 the converse of this result holds. The case of 2-step nilmanifolds was
proved in [DF2].

Theorem 4.6: Let (N,Z,J,K,g) be a nilmanifold admitting an HKT-structure.
Then it is abelian.

The proof of the above theorem will follow from a Hard Lefschetz isomorphism on
the Dolbeault cohomology of (N,T).

Proposition 4.7: Let (N,Z, 7, K, g) be an HKT nilmanifold and Q the corresponding
(2,0)-form with respect to Z (see (4.1)). Then,

L™ Hy"(N.T) — Hy" (N, 1)
is an isomorphism, where Lg ([7]) = [ A 4]

Proof: Let wy,...,ws, be a basis of invariant (1,0)-forms on N as in the proof of
Theorem 2.7. Then 77 = Wy A -+ A Wy, is an invariant section of the line bundle
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A%27(N, T). Therefore, Q" is proportional (with a constant factor) to 7. Let 6 be the
(1,0)-form defined by

o =0A0".
Since 7 is closed, dQ" = 0, hence Q" = 0 and it follows that # = 0. This says that
the Dolbeault complex of the square root of the canonical bundle K (N,Z) determined

by the trivialization induced by Q" is identified with the complex (A*’O(N, 1), 8). The
proposition now follows from Theorem 10.2 in [V1]. m

As a consequence of the above result and Lemma 9 in [CF] we obtain:

Corollary 4.8: Let (N,Z,J,K, g) be an HKT nilmanifold, with N = I'\G. Then,
Ly Hy(ac, 1) — HY' ™ (ge, 1)

is an isomorphism, where gc¢ is the complexification of the Lie algebra of G.

Proof of Theorem 4.6: The aim is to show that g''¥ is abelian. If g™° were not
abelian, an analogous argument to that in [BG] would give that

Lyt HYY(N,T) — H' (N, 7)

is not surjective; this contradicts Corollary 4.8. Therefore, g must be abelian.
Repeating the argument with J and K the theorem follows. m

The next corollary is a straightforward consequence of Theorem 4.6 (compare with
Theorem 3.1 in [DF2]):

Corollary 4.9: The hypercomplex structure of a left-invariant HKT-metric on a
nilpotent Lie group admitting a lattice is abelian.

4.2. Quaternionic balanced metrics. Definition 4.10: A quaternionic Hermit-
ian metric g on a hypercomplex manifold is called quaternionic balanced if it is
balanced with respect to all complex structures.

Proposition 4.11: Let (N,Z,7,K, g) be a quaternionic Hermitian nilmanifold such
that the hypercomplex structure is abelian. Then g is quaternionic balanced.

Proof: Let N = I'\G; we still denote by Z, J, K, g the induced left-invariant quater-
nionic Hermitian structure on G. As shown in [DF2], g is HKT. Therefore, the Bismut
connections associated with Z, 7, K are equal (this is one of the alternative definitions
of HKT-structures, see [GP] for details). Denote the Bismut connection of N by VE.

Since G is nilpotent, formula (2.3) implies that the Lee form 6; corresponding to
(J,g) is given by

1
(4.3) 0;(X) = tr (2 JV?X) ., Xeg,

where J is the complex structure on g induced by 7. We show next that tr ( J V? X) =
0. Let Xq1,IX,,JX1,KXy,...,X,,,IX,,JX,, KX, be an orthonormal basis of g.
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From the definition of the Bismut connection it follows
VB =vBj=vBK =0.

Then
tr (JVI) =D g (JVIX;, X)) + > g (JVIIX;, IX;)
j=1 j=1
+> g (IVIIX; TX;) +> g (JVIYK X, KX;)
j=1 j=1
=3 g (IVIX; X))+ g (JIVI X, IX))
j=1 j=1
+) g (VIxIX;, X)) +> g (JEVE X;, KX;)
j=1 j=1
=3 g (IVIX;, X;) = g (1IVI X, IX))
j=1 j=1
+Y g (VI IX;, X)) = g (KIVE X, K X))
j=1 j=1
= Zg (VEcIX;, X;) — Z 9 (Vi IX;, X))
j=1 j=1

n

D9 (VEIX;, X5) =Y g (VEIX;, X5) =0,
j=1 j

j=1

therefore, 6;(X) = 0 and ¢ is balanced with respect to J. The same proof holds for
Iand K. m

As a consequence of Theorem 4.6 and Proposition 4.11 we obtain:

Corollary 4.12: Let (N,Z,J,K,g) be an HKT nilmanifold. Then g is quaternionic
balanced.

4.3. A family of non-abelian hypercomplex nilmanifolds. We end this section
by exhibiting a family of hypercomplex nilmanifolds which do not admit HKT met-
rics. This will follow from Theorem 4.6 since such hypercomplex nilmanifolds are not
abelian.

Let A be a finite dimensional associative algebra and aff(A) the Lie algebra A® A
with Lie bracket given as follows:

[(a,b),(a’,V)] = (ad’ — d’'a,abl — a'b), a,b,a’ b’ € A.

These Lie algebras have been considered in [BD2]. We note that aff(A) is a nilpotent
Lie algebra if and only if A is nilpotent as an associative algebra.
Let J be the endomorphism of aff(A) defined by

(4.4) J(a,b) = (b, —a), a,be A
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A computation shows that J defines a complex structure on aff(A4). Furthermore, if
one assumes the algebra A to be a complex associative algebra, this extra assumption
allows us to equip aff(A) with a pair of anti-commuting complex structures. Indeed,
the endomorphism K on aff(A) defined by K (a,b) = (—ia,b) for a,b € A is a complex
structure anticommuting with J, hence, J and K define a hypercomplex structure by
setting I = JK. Moreover, the hypercomplex structure is abelian if and only if A is
commutative. It then follows that the simply connected Lie groups with Lie algebra
aff(A), where A is a complex associative non-commutative algebra carry non-abelian
hypercomplex structures. In particular, let Ay be the algebra of k& x k strictly upper
triangular matrices with complex entries and Aff(Ay) the simply connected Lie group
with Lie algebra aff(Ay), which is (k—1)-step nilpotent. Since the structure constants
with respect to the standard basis of aff(Ay) are integers, there exists a lattice T'y,
in Aff(Ay), thus the hypercomplex nilmanifold Ny = T'p\Aff(Ax) does not carry an
HKT-metric.
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