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A COMPLEX SURFACE OF GENERAL TYPE WITH pg = 0, K2 = 2
AND H1 = Z/2Z

Yongnam Lee and Jongil Park

Abstract. As the sequel to [4], we construct a minimal complex surface of general

type with pg = 0, K2 = 2 and H1 = Z/2Z using a rational blow-down surgery and
Q-Gorenstein smoothing theory. We also present an example of pg = 0, K2 = 2 and

H1 = Z/3Z.

One of the fundamental problems in the classification of complex surfaces is to find
a new family of surfaces of general type with pg = 0 and K2 > 0. In this paper we
construct new complex surfaces of general type with pg = 0 and K2 = 2. The first
example of a minimal complex surface of general type with pg = 0 and K2 = 2 was
constructed by Campedelli [3] in the 1930’s as a ramified double cover of P2; more
precisely as the double cover of P2 branched along a reducible curve of degree 10
with 6 [3, 3] points not lying on a conic. Nowadays minimal surfaces of general type
with pg = 0 and K2 = 2 are called (numerical) Campedelli surfaces. For Campedelli
surface X, the number of elements in the torsion subgroup of H2(X; Z) is bounded
by 9 [8]. Although many families of non-simply connected complex surfaces of general
type with pg = 0 and K2 = 2 have been constructed (refer to Chapter VII, [1]) and
the classifications are completed for some torsion groups [6], until now it is not known
whether there is a minimal complex surface of general type with pg = 0, K2 = 2 and
H1 = Z/2Z.

Recently we constructed a simply connected surface of general type with pg = 0 and
K2 = 2 using a rational blow-down surgery and Q-Gorenstein smoothing theory [4].
In this paper we continue to construct a minimal complex surface of general type with
pg = 0, K2 = 2 and H1 = Z/2Z using the same technique. The first key ingredient
of this paper is to find a right rational surface Z which makes it possible to get such
a complex surface. Once we have a right rational surface Z, then we can obtain
a minimal complex surface of general type with pg = 0 and K2 = 2 by applying a
rational blow-down surgery and Q-Gorenstein smoothing theory developed in [4] to Z.
And then we show that the surface has H1 = Z/2Z, which is the second key ingredient
of this article. Since almost all the proofs except the computation of homology groups
are basically the same as the proofs of the main construction in [4], we only explain
how to construct a such surface and how to compute the first homology group in
Section 2. The main result of this paper is the following

Theorem 1. There exists a minimal complex surface of general type with pg = 0,
K2 = 2 and H1 = Z/2Z.
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Furthermore, using the same method as above, we are also able to construct a
Campedelli surface with H1 = Z/3Z which will be addressed in Section 3.

Corollary 1. There exists a minimal complex surface of general type with pg = 0,
K2 = 2 and H1 = Z/3Z.

Remark. Recently I. Bauer, F. Catanese, F. Grunewald and R. Pignatelli also
constructed two Campedelli surfaces with fundamental group Z/3Z using completely
different methods [2].

1. The main construction of a surface with K2 = 2 and H1 = Z/2Z

We begin with a rational elliptic surface Y = P2]9P2
which has one Ẽ6-singular

fiber, one I2-singular fiber, and two nodal singular fibers used in Section 3 in [4]
(Figure 1).
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Figure 1. A rational elliptic surface Y = P2]9P2

Notations. We denote a line in P2 by H and exceptional curves in Y = P2]9P2

by E1, E2, . . . , E9. Equivalently we use the same notation H,E1, E2, . . . , E9 for the
standard generators of H2(Y ; Z) which represent a line and exceptional curves in Y

respectively. We also denote the rational curves lying in the Ẽ6-singular fiber by
S1, S2, . . . , S7 and two nodal fibers by F1, F2 and two rational curves lying in the
I2-singular fiber by Ã, B̃ respectively. In fact Ã and B̃ are proper transforms of a line
A and a conic B lying in P2 respectively.

Main Construction. We first blow up at two singular points in the nodal fibers
F1, F2 on Y . Then the proper transforms F̃1, F̃2 of F1, F2 will be rational (−4)-curves
whose homology classes are [F̃1] = [F1] − 2e1 and [F̃2] = [F2] − 2e2, where e1, e2

are new exceptional curves in Y ]2P2
coming from two blowing ups. Next, we blow

up six times at the intersection points between two sections E7, E8 and F̃1, F̃2, B̃.
It makes the self-intersection number of the proper transforms E7, E8 and B̃ to be
−4 respectively. Let us denote six new exceptional curves arising from six times
blowing ups by e3, e4, . . . , e8 respectively. Now we blow up twice successively at the
intersection point between the proper transform of E7 and the exceptional curve e3

in the total transform of F1. It makes a chain of P1’s,
−6◦ − −2◦ − −2◦ , lying in the

total transform of F1. Let us denote two new exceptional curves arising from twice
blowing ups by e9, e10 respectively. We blow up again four times successively at the
intersection point between the proper transform of E7 and the exceptional curve e4 in
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the total transform of F2, so that a chain of P1’s,
−6◦ −−2◦ −−2◦ −−2◦ −−2◦ , lies in the total

transform of F2. Let us denote four new exceptional curves arising from four times
blowing ups at this step by e11, e12, e13, e14 respectively. We note that it makes the
self-intersection number of the proper transform of E7 to be −10. Then we blow up
twice successively at the intersection point between rational (−2)-curve in the end of

linear chain
−6◦ −−2◦ −−2◦ −−2◦ −−2◦ and the exceptional curve e14. Let us denote two new

exceptional curves arising from twice blowing ups at this step by e15, e16 respectively.
It changes

−6◦ −−2◦ −−2◦ −−2◦ −−2◦ to
−6◦ −−2◦ −−2◦ −−2◦ −−4◦ , and it produces a chain of

P1’s,
−2◦ −−2◦ −−10◦ −−2◦ −−2◦ −−2◦ −−2◦ −−2◦ −−4◦ , which contains the proper transform of

two sections E7, E8 and a linear chain of P1’s in the Ẽ6-singular fiber. We also blow
up twice successively at one of the two intersection points between rational (−6)-curve

in
−6◦ − −2◦ − −2◦ − −2◦ − −4◦ and the exceptional curve e2 appeared by the blowing up

at the singular point of one nodal fiber F2. Let us denote two new exceptional curves
arising from twice blowing ups at this step by e17, e18 respectively. Then the chain
−6◦ −−2◦ −−2◦ −−2◦ −−4◦ changes to

−2◦ −−2◦ −−8◦ −−2◦ −−2◦ −−2◦ −−4◦ by adding two new
rational (−2)-curves. Finally, we have a rational surface Z := Y ]18P2

which contains

four disjoint configurations: C22,15 =
−2◦ − −2◦ − −10◦ − −2◦ − −2◦ − −2◦ − −2◦ − −2◦ − −4◦ ,

C4,1 =
−6◦ −−2◦ −−2◦ , C16,11 =

−2◦ −−2◦ −−8◦ −−2◦ −−2◦ −−2◦ −−4◦ , and C2,1 =
−4◦ (Figure 2).
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Figure 2. A rational surface Z = Y ]18P2

Notations. We use the same notation Cp,q for both a smooth 4-manifold obtained

by plumbing disk bundles over the 2-sphere instructed by
−bk◦
uk

−
−bk−1◦
uk−1

−· · ·−−b2◦
u2

−−b1◦
u1

and a linear chain of 2-spheres, {uk, uk−1, . . . , u1}. Here p2

pq−1 = [bk, bk−1, . . . , b1] is a
continued fraction with all bi ≥ 2 uniquely determined by p, q, and ui represents an
embedded 2-sphere as well as a disk bundle over 2-sphere whose Euler number is −bi.
Note that the boundary of a configuration Cp,q is a lens space L(p2, 1−pq), which also

bounds a rational ball Bp,q. Similarly we use a notation D2,3 for
−2◦ − −3◦ − −4◦ . Note

that the boundary of a configuration D2,3 is a lens space L(18,−11), which bounds
a Milnor fiber M2,3. It is well known that the Milnor fiber M2,3 is not a rational ball
but a negative definite 4-manifold with second Betti number 1 (cf. [5]).
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Then we contract these four disjoint chains of P1’s from Z so that it produces
a normal projective surface, denoted by X, with four permissible singularities. Us-
ing the same technique as in [4], we are able to prove that X has a Q-Gorenstein
smoothing and a general fiber Xt of the Q-Gorenstein smoothing is a minimal com-
plex surface of general type with pg = 0 and K2 = 2. Furthermore, the general fiber
Xt is diffeomorphic to a rational blow-down 4-manifold Z22,16,4,2 which is obtained
from Z = Y ]18P2

by replacing four disjoint configurations C22,15, C16,11, C4,1 and
C2,1 with corresponding rational balls B22,15, B16,11, B4,1 and B2,1 respectively. In
the next section we will prove that the rational blow-down 4-manifold Z22,16,4,2 has
H1(Z22,16,4,2; Z) = Z/2Z. Hence we obtain the main result of this paper - Theorem 1.

2. Proof of H1(Z22,16,4,2; Z) = Z/2Z

In this section we compute the first homology group of a rational blow-down 4-
manifold Z22,16,4,2 using geometric arguments and some elementary homology se-
quences.

First note that the rational surface Z = Y ]18P2
contains four disjoint configura-

tions - C22,15, C16,11, C4,1 and C2,1. Let us decompose the rational surface Z into

Z = Z0 ∪ {C22,15 ∪ C16,11 ∪ C4,1 ∪ C2,1}.
Then the rational blow-down 4-manifold Z22,16,4,2 can be decomposed into

Z22,16,4,2 = Z0 ∪ {B22,15 ∪B16,11 ∪B4,1 ∪B2,1}.

Before we prove that H1(Z22,16,4,2; Z) = Z/2Z, we introduce several lemmas which
are critical in the computation of H1(Z22,16,4,2; Z). Let us first consider the following
two sets of homology classes lying in H2(Z; Z): D = {Ã, E3 −E6, E6 −E9} and E =
{E9, e1, e5, e6, e7, e8, e10, e16, e18}. Then one can easily get the following lemmas.

Lemma 2.1. (i) The homology classes of {ui | 1 ≤ i ≤ 9} in C22,15 can be represented
by {e15 − e16, e14 − e15, E7 − e3 − e4 − e5 − e9 − · · · − e14, E4 − E7, E1 − E4, H −
E1 − E2 − E3, E2 − E5, E5 − E8, E8 − e6 − e7 − e8}.
(ii) The homology classes of {ui | 1 ≤ i ≤ 7} in C16,11 can be represented by {e17 −
e18, e2 − e17, F2 − 2e2 − e4 − e7 − e17 − e18, e4 − e11, e11 − e12, e12 − e13, e13 − e14 −
e15 − e16}.
(iii) The homology classes of {ui | 1 ≤ i ≤ 3} in C4,1 can be represented by {F1 −
2e1 − e3 − e6, e3 − e9, e9 − e10}.
(iv) The homology classes of u1 in C2,1 can be represented by {B̃ − e5 − e8}.

Lemma 2.2. The set of homology classes representing all generators in C22,15 ∪
C16,11 ∪ C4,1 ∪ C2,1 ∪ D ∪ E spans H2(Z; Z).

Lemma 2.3. H2(Z0, ∂B22,15∪∂B16,11∪∂B4,1∪∂B2,1; Z) is spanned by the images of
homology classes representing all generators in C22,15∪C16,11∪C4,1∪C2,1∪D∪E under
a composition of homomorphisms H2(Z; Z) → H2(Z,C22,15∪C16,11∪C4,1∪C2,1; Z) ∼=
H2(Z0, ∂B22,15 ∪ ∂B16,11 ∪ ∂B4,1 ∪ ∂B2,1; Z).

Proof. Since an induced homomorphism H2(Z; Z) → H2(Z,C22,15 ∪ C16,11 ∪ C4,1 ∪
C2,1; Z) by an inclusion is surjective, which follows from the long exact homology
sequence of the pair (Z,C22,15∪C16,11∪C4,1∪C2,1), and since H2(Z,C22,15∪C16,11∪



A COMPLEX SURFACE OF GENERAL TYPE WITH pg = 0, K2 = 2 AND H1 = Z/2Z 327

C4,1 ∪C2,1; Z) is isomorphic to H2(Z0, ∂C22,15 ∪ ∂C16,11 ∪ ∂C4,1 ∪ ∂C2,1; Z) = H2(Z0,
∂B22,15 ∪ ∂B16,11 ∪ ∂B4,1 ∪ ∂B2,1; Z) by an excision principle, the statement follows
from Lemma 2.2. �

Lemma 2.4. Suppose that ∂∗ : H2(Z0, ∂B22,15 ∪ ∂B16,11 ∪ ∂B4,1 ∪ ∂B2,1; Z) →
H1(∂B22,15∪∂B16,11∪∂B4,1∪∂B2,1; Z) = Z222⊕Z162⊕Z42⊕Z22 is a homomorphism
induced by a boundary map ∂ : (Z0, ∂Z0) → ∂Z0. And let i∗ : H1(∂B22,15 ∪ ∂B16,11 ∪
∂B4,1 ∪ ∂B2,1; Z) = Z222 ⊕Z162 ⊕Z42 ⊕Z22 → H1(B22,15 ∪B16,11 ∪B4,1 ∪B2,1; Z) =
Z22 ⊕ Z16 ⊕ Z4 ⊕ Z2 be a homomorphism induced by an inclusion i. Then we have
(0) ∂∗(ui) = (0, 0, 0, 0) i∗−→ (0, 0, 0, 0) for any class ui ∈ C22,15 ∪ C16,11 ∪ C4,1 ∪ C2,1

(i) ∂∗(Ã) = (0, 0, 0, 2) i∗−→ (0, 0, 0, 0)
(ii) ∂∗(E3 − E6) = (10, 0, 0, 0) i∗−→ (10, 0, 0, 0)
(iii) ∂∗(E6 − E9) = (0, 0, 0, 0) i∗−→ (0, 0, 0, 0)
(iv) ∂∗(E9) = (0, 13, 3, 0) i∗−→ (0, 13, 3, 0)
(v) ∂∗(e1) = (0, 0, 6, 0) i∗−→ (0, 0, 2, 0)
(vi) ∂∗(e5) = (19, 0, 0, 1) i∗−→ (19, 0, 0, 1)
(vii) ∂∗(e6) = (1, 0, 3, 0) i∗−→ (1, 0, 3, 0)
(viii) ∂∗(e7) = (1, 13, 0, 0) i∗−→ (1, 13, 0, 0)
(ix) ∂∗(e8) = (1, 0, 0, 1) i∗−→ (1, 0, 0, 1)
(x) ∂∗(e10) = (19, 0, 1, 0) i∗−→ (19, 0, 1, 0)
(xi) ∂∗(e16) = (329, 1, 0, 0) i∗−→ (21, 1, 0, 0)
(xii) ∂∗(e18) = (0, 188, 0, 0) i∗−→ (0, 12, 0, 0).

Proof. (0) and (iii) follow from the fact that they do not intersect with ∂Z0. For
the rest, we choose generators {α = (1, 0, 0, 0), β = (0, 1, 0, 0), γ = (0, 0, 1, 0), δ =
(0, 0, 0, 1)} of H1(B22,15; Z)⊕H1(B16,11; Z)⊕H1(B4,1; Z)⊕H1(B2,1; Z) so that α, β, γ
and δ are represented by circles ∂C22,15∩e6 (equivalently ∂C22,15∩e7 or ∂C22,15∩e8),
∂C16,11 ∩ e16, ∂C4,1 ∩ e10 and ∂C2,1 ∩ e5 (equivalently ∂C2,1 ∩ e8), respectively. Then
one can easily see that the rest of computation follows from Figure 2. For example,
we can compute (iv) as follows: Note that an exceptional curve E9 intersects with
(−8)-curve in C16,11 and it also intersects with (−6)-curve in C4,1. Since ∂∗(E9)(=
a normal circle of (−8)-curve) is 13β ∈ H1(∂B16,11) and ∂∗(E9)(= a normal circle of
(−6)-curve) is 3γ ∈ H1(∂B4,1), we have ∂∗(E9) = (0, 13, 3, 0). The images of i∗ follow
from the fact that i∗ : H1(∂Bp,q) = Zp2 → H1(Bp,q) = Zp sends a generator to a
generator, i.e. i∗(1) = 1. �

Finally, we are now in a position to compute H1(Z22,16,4,2; Z).

Proposition 2.1. H1(Z22,16,4,2; Z) = Z/2Z.

Proof. First let us consider the following commutative diagram between two exact
homology sequences with Z-coefficients for pairs (Z0, ∂Z0) and (Z22,16,4,2, B22,15 ∪
B16,11 ∪B4,1 ∪B2,1):

H2(Z0, ∂B22,15 ∪ ∂B16,11 ∪ ∂B4,1 ∪ ∂B2,1)
∂∗→ H1(∂B22,15 ∪ ∂B16,11 ∪ ∂B4,1 ∪ ∂B2,1)

j∗→ H1(Z0) → 0

i∗ ↓∼= ↓ i∗

H2(Z22,16,4,2, B22,15 ∪ B16,11 ∪ B4,1 ∪ B2,1)
∂∗→ H1(B22,15 ∪ B16,11 ∪ B4,1 ∪ B2,1)

j∗→ H1(Z22,16,4,2) → 0
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where i∗ and j∗ are induced homomorphisms by inclusions i and j respectively, and
∂∗ is an induced homomorphism by a boundary map ∂. Note that the first i∗ is an
isomorphism by an excision principle and the second i∗ is surjective. Hence it follows
from the diagram above that

H1(Z22,16,4,2; Z) ∼= H1(B22,15 ∪B16,11 ∪B4,1 ∪B2,1; Z)/ Im(i∗ ◦ ∂∗)
= Z22 ⊕ Z16 ⊕ Z4 ⊕ Z2/ Im(i∗ ◦ ∂∗).

Note that, by Lemma 2.3 and Lemma 2.4 above, Im(i∗ ◦ ∂∗) is spanned by a set of
columns of the following matrix

10 0 0 19 1 1 1 19 21 0
0 13 0 0 0 13 0 0 1 12
0 3 2 0 3 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0

 .

Applying elementary column operations to the matrix above, we obtain a reduced
form 

10 0 6 18 10 14 1 19 21 12
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0

 .

Therefore it is easy to see that Im(i∗ ◦ ∂∗) is spanned by

{(10, 0, 0, 0), (6, 0, 0, 0), (1, 0, 0, 1), (19, 0, 1, 0), (21, 1, 0, 0)}
and {(10, 0, 0, 0), (6, 0, 0, 0), (1, 0, 0, 1), (19, 0, 1, 0), (21, 1, 0, 0)}∪{(0, 0, 0, 1)} spans the
space H1(B22,15∪B16,11∪B4,1∪B2,1; Z) = Z22⊕Z16⊕Z4⊕Z2. Note that (0, 0, 0, 1) 6∈
Im(i∗ ◦ ∂∗) but 2(0, 0, 0, 1) = 2(10, 0, 0, 0) + 2(1, 0, 0, 1) ∈ Im(i∗ ◦ ∂∗). Hence we get

H1(Z22,16,4,2; Z) ∼= Z22 ⊕ Z16 ⊕ Z4 ⊕ Z2/ Im(i∗ ◦ ∂∗) = 〈(0, 0, 0, 1)〉 = Z/2Z. �

3. A surface with K2 = 2 and H1 = Z/3Z

In this section we construct a surface of general type with pg = 0,K2 = 2 and
H1 = Z/3Z using the same technique. As we mentioned in the Introduction, the key
ingredient in the construction of such a surface is to find a right rational elliptic surface
Z ′. Once we have a right rational elliptic surface Z ′ for K2 = 2 and H1 = Z/3Z, the
remaining argument is the same as before. Hence we describe here only how to get
such a rational elliptic surface Z ′ which is following.

Main Construction. We begin with a rational elliptic surface Y ′ = P2]9P2
which

has one I8-singular fiber, one I2-singular fiber, and two nodal singular fibers used in
Section 3 in [7] (Figure 3). From this rational elliptic surface Y ′, we first blow up at
two singular points in the nodal fibers F1, F2 on Y ′. Then the proper transforms F̃1, F̃2

of F1, F2 will be rational (−4)-curves whose homology classes are [F̃1] = [F1]−2e1 and
[F̃2] = [F2]− 2e2, where e1, e2 are new exceptional curves in Y ′]2P2

coming from two
blowing ups. Next, we blow up at two black circled points lying in an I8-singular fiber
and we also blow up at four black circled points which are intersection points between
sections Si and nodal fibers Fi in Figure 3 above. We blow up again twice at one of
the two intersection points between the proper transform of Fi and the exceptional
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Figure 3. A rational elliptic surface Y ′ = P2]9P2

curve ei in the total transform of Fi for i = 1, 2. Then we get a rational surface Z ′ :=
Y ′]10P2

which contains three disjoint configurations: C9,5 =
−2◦ − −7◦ − −2◦ − −2◦ − −3◦

(which consists of ẽ1, F̃1, S̃3, G1, G̃2), C9,5 =
−2◦ −−7◦ −−2◦ −−2◦ −−3◦ (which consists of

ẽ2, F̃2, S̃2, G5, G̃4) and D2,3 =
−2◦ − −3◦ − −4◦ (which consists of B̃, S̃1, G̃3) (Figure 4).

Note that the boundary of a configuration C9,5 is a lens space L(81,−44) which also
bounds a rational ball B9,5, and the boundary of a configuration D2,3 is a lens space
L(18,−11) which bounds a Milnor fiber M2,3.

ee1�2 ee2�2
fS1�3fS3�2

fS2�2
eB�2fF1�7 fF2�7G1 �2fG2�3fG3�4 fG4�3 G5 �2

Figure 4. A rational surface Z ′ = Y ′]10P2

Then we contract these three disjoint chains C9,5, C9,5, D2,3 of P1’s from Z ′ so
that it produces a normal projective surface, denoted by X, with three permissible
singularities. Using the same technique as in [4], we are able to prove that X has
a Q-Gorenstein smoothing and a general fiber Xt of the Q-Gorenstein smoothing is
a minimal complex surface of general type with pg = 0 and K2 = 2. Furthermore,
the general fiber Xt is diffeomorphic to a rational blow-down 4-manifold Z ′

9,9,2 which

is obtained from Z ′ = Y ′]10P2
by replacing three disjoint configurations C9,5, C9,5

and D2,3 with corresponding Milnor fibers B9,5, B9,5 and M2,3 respectively. Finally,
using a similar technique in Section 2, it is easy to prove that the rational blow-down
4-manifold Z ′

9,9,2 has H1(Z ′
9,9,2; Z) = Z/3Z, which is Corollary 1.
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