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ON MULTILINEARITY AND SKEW-SYMMETRY OF CERTAIN
SYMBOLS IN MOTIVIC COHOMOLOGY OF FIELDS

Sung Myung

Abstract. The purpose of the present article is to show the multilinearity for symbols

in Goodwillie-Lichtenbaum motivic complex in two cases. The first case shown is where
the degree is equal to the weight. In this case, the motivic cohomology groups of a

field are isomorphic to the Milnor’s K-groups as shown by Nesterenko-Suslin, Totaro

and Suslin-Voevodsky for various motivic complexes, but we give an explicit isomor-
phism for Goodwillie-Lichtenbaum complex in a form which visibly carries multilinear-

ity of Milnor’s symbols to our multilinearity of motivic symbols. Next, we establish

multilinearity and skew-symmetry for irreducible Goodwillie-Lichtenbaum symbols in

Hl−1
M

`
Spec k, Z(l)

´
. These properties have been expected to hold from the author’s con-

struction of a bilinear form of dilogarithm in case k is a subfield of C and l = 2. The
multilinearity of symbols may be viewed as a generalization of the well-known formula

det(AB) = det(A) det(B) for commuting matrices.

1. Introduction

When R is a commutative ring, the group K1(R) is an abelian group generated
by invertible matrices with entries in R. In particular, when R is a field, it is well-
known that the determinant map det : K1(R) → R× is an isomorphism. An im-
portant consequence of this fact is that (AB) = (A) + (B), i.e., the product AB of
two invertible matrices A and B represents the element obtained by adding two ele-
ments in K1(R), which are represented by the matrices A and B, respectively, since

det
(
A 0
0 B

)
= detA detB. In the present article, we endeavor to generalize this

property to the case of commuting matrices in terms of motivic cohomology. The
motivic chain complex proposed by Goodwillie and Lichtenbaum as follows will be
perfectly suitable for our purpose.

In [4], a chain complex for motivic cohomology of a regular local ring R, by Good-
willie and Lichtenbaum, is defined to be the chain complex associated to the sim-
plicial abelian group d 7→ K0(R∆d, G∧t

m ), together with a shift of degree by −t.
Here, K0(R∆d, G∧t

m ) is the Grothendieck group of the exact category of projective
R-modules with t commuting automorphisms factored by the subgroup generated by
classes of the objects one of whose t automorphisms is the identity map. The motivic
cohomology of a regular scheme X is given by hypercohomology of the sheafification
of the complex above. Walker showed, in Theorem 6.5 of [15], that it agrees with
motivic cohomology given by Voevodsky and thus various other definitions of motivic
cohomology for smooth schemes over an algebraically closed field.
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In [4], Grayson showed that a related chain complex Ω−t|d 7→ K⊕
0 (R∆d, G∧t

m )|,
which uses direct-sum Grothendieck groups instead, arises as the consecutive quotients
in K-theory space K(R) when R is a regular noetherian ring and so gives rise to a
spectral sequence converging to K-theory. Suslin, in [11], showed that Grayson’s
motivic cohomology complex is equivalent to the other definitions of motivic complex
and consequently settled the problem of a motivic spectral sequence. See also [5] for
an overview.

The main results of this article are multilinearity and skew-symmetry properties
for the symbols of Goodwillie and Lichtenbaum in motivic cohomology. First, we
establish them forHn

M
(
Spec k,Z(n)

)
of a field k in Corollary 2.4. We also give a direct

proof of Nesterenko-Suslin’s theorem ([9]) that the motivic cohomology of a field k,
when the degree is equal to the weight, is equal to the Milnor’s K-group KM

n (k) for
this version of motivic complex in Theorem 2.11. Even though Nesterenko-Suslin’s
theorem have already appeared in several articles including [9], [14] and [13], we believe
that the theorem is a central one in the related subjects and it is worthwhile to have
another proof of it. Moreover, multilinearity and skew-symmetry properties for the
symbols of Goodwillie and Lichtenbaum motivic cohomology Hn

M
(
Spec k,Z(n)

)
and

the similar properties for the symbols in Milnor’s K-groups are visibly compatible
through our isomorphism. Secondly, we establish multilinearity and skew-symmetry
of the irreducible symbols for H l−1

M
(
Spec k,Z(l)

)
in Theorem 3.3 and Proposition 3.7.

These results are particularly interesting because these are the properties which have
been expected through the construction of the author’s regulator map in [8] in case
k is a subfield of the field C of complex numbers and l = 2. These properties may
provide the Goodwillie-Lichtenbaum complex with a potential to be one of the better
descriptions of motivic cohomology of fields.

2. Multilinearity for Goodwillie-Lichtenbaum motivic complex and
Milnor’s K-groups

For a ring R, P(R, Gl
m) is the exact category each of whose objects (P, θ1, . . . , θl)

consists of a finitely generated projective R-module P and commuting automorphisms
θ1, . . . , θl of P . A morphism from (P, θ1, . . . , θl) to (P ′, θ′1, . . . , θ

′
l) in this category is

a homomorphism f : P → P ′ of R-modules such that fθi = θ′if for each i. Let
K0(R, Gl

m) be the Grothendieck group of this category and let K0(R, G∧l
m ) be the

quotient of K0(R, Gl
m) by the subgroup generated by those objects (P, θ1, . . . , θl)

where θi = 1 for some i.
For each d ≥ 0, let R∆d be the R-algebra

R∆d = R[t0, . . . , td]/(t0 + · · ·+ td − 1).

It is isomorphic to a polynomial ring with d indeterminates over R. We denote by
Ord the category of finite nonempty ordered sets and by [d] where d is a nonnegative
integer the object {0 < 1 < · · · < d}. Given a map ϕ : [d] → [e] in Ord, the map
ϕ∗ : R∆e → R∆d is defined by ϕ∗(tj) =

∑
ϕ(i)=j ti. The map ϕ∗ gives us a simplicial

ring R∆•.
By applying the functor K0(−, G∧l

m ), we get the simplicial abelian group

[d] 7→ K0(R∆d, G∧l
m ).
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The associated (normalized) chain complex, shifted cohomologically by −l, is called
the motivic complex of Goodwillie and Lichtenbaum of weight l.

For each (P, θ1, . . . , θl) in K0(R, G∧l
m ), there exists a projective module Q such that

P ⊕Q is free over R. Then (P ⊕Q, θ1⊕ 1Q, . . . , θl⊕ 1Q) represents the same element
of K0(R, G∧l

m ) as (P, θ1, . . . , θl). Thus K0(R∆d, G∧l
m ) can be explicitly presented with

generators and relations involving l-tuples of commuting matrices in GLn(R∆d), n ≥
0.

For a regular local ring R, the motivic cohomology Hq
M
(
SpecR, Z(l)

)
will be the

(l − q)-th homology group of the Goodwillie-Lichtenbaum complex of weight l. In
particular, when k is any field,

Hq
M
(
Spec k, Z(l)

)
= πl−q|d 7→ K0(k∆d, G∧l

m )|.

K0(k∆d, G∧l
m ) (l ≥ 1) may be considered as the abelian group generated by

l-tuples of the form (θ1(t1, . . . , td), . . . , θl(t1, . . . , td)) and certain explicit relations,
where θ1(t1, . . . , td), . . . , θl(t1, . . . , td) are commuting matrices in GLn(k[t1, . . . , td])
for various n ≥ 1.

When d = 1, we set t = t1 and the boundary map ∂ on the motivic complex
sends (θ1(t), . . . , θl(t)) in K0(k∆1, G∧l

m ) to (θ1(1), . . . , θl(1)) − (θ1(0), . . . , θl(0)) in
K0(k∆0, G∧l

m ). We will denote by the same notation (θ1, . . . , θl) the element in
K0(k∆0, G∧l

m )/∂K0(k∆1, G∧l
m ) = H l

M
(
Spec k, Z(l)

)
represented by (θ1, . . . , θl), by

abuse of notation, whenever θ1, . . . , θl are commuting matrices in GLn(k).

Lemma 2.1. Let a1, a2, . . . , an and b1, b2, . . . , bn be elements in k̄ (an algebraic clo-
sure of k) not equal to either 0 or 1. Suppose also that a1a2 · · · an = b1b2 · · · bn and
(1− a1)(1− a2) · · · (1− an) = (1− b1)(1− b2) · · · (1− bn). If all the elementary sym-
metric functions evaluated at a1, a2, . . . , an and b1, b2, . . . , bn are in k, then there is a
matrix θ(t) in GLn(k[t]) such that 1n − θ(t) is also invertible and the eigenvalues of
θ(0) and θ(1) are a1, a2, . . . , an and b1, b2, . . . , bn, respectively.

Proof. Let

p(λ) = (1− t)
n∏

i=1

(λ− ai) + t
n∏

i=1

(λ− bi)

be a polynomial in λ with coefficients in k[t]. It is a monic polynomial with the
constant term equal to (−1)na1a2 · · · an. It has roots b1, b2, . . . , bn and a1, a2, . . . , an

when t = 1 and t = 0, respectively.
Now let θ(t) be its companion matrix in GLn(k[t]). Then det (1n − θ(t)) = p(1)

since det (λ1n − θ(t)) = p(λ). But p(1) = (1− a1)(1− a2) · · · (1− an) = (1− b1)(1−
b2) · · · (1− bn) is in k×, and so 1n − θ(t) is invertible. It is clear that the eigenvalues
of θ(t) are a1, a2, . . . , an and b1, b2, . . . , bn when t = 0 and t = 1, respectively. �

Definition 2.2. For l ≥ 2, let Z be the subgroup of K0(k∆1,G∧l
m ) generated by the

elements of the following types for various n ≥ 1 :
(Z1) (θ1, . . . , θl), where θ1, . . . , θl ∈ GLn(k[t]) commute and θi is in GLn(k) for

some i;
(Z2) (θ1, . . . , θl), where θi = θj ∈ GLn(k[t]) for some i 6= j;
(Z3) (θ1, . . . , θl), where θi = 1n − θj ∈ GLn(k[t]) for some i 6= j.
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Lemma 2.3. Let ∂Z denote the image of Z under the boundary homomorphism
∂ : K0(k∆1, G∧l

m ) → K0(k∆0, G∧l
m ) when l ≥ 2. Then ∂Z contains all elements of the

following forms:
(i) (ϕψ, θ2, . . . , θl)−(ϕ, θ2, . . . , θl)−(ψ, θ2, . . . , θl), for all commuting ϕ,ψ, θ2, . . . , θl

in GLn(k) and similarly (θ1, . . . , θi−1, ϕψ, θi+1, . . . , θl)− (θ1, . . . , θi−1, ϕ, θi+1, . . . , θl)
−(θ1, . . . , θi−1, ψ, θi+1, . . . , θl) for commuting ϕ,ψ, θ1, . . . , θi−1, θi+1, . . . , θl ∈ GLn(k);

(ii) (θ1, . . . , θi, . . . , θj , . . . , θl) + (θ1, . . . , θj , . . . , θi, . . . , θl), for all commuting
θ1, . . . , θl ∈ GLn(k);

(iii) (θ1, . . . , θi, . . . , θj , . . . , θl), when θi = −θj for commuting θ1, . . . , θl ∈ GLn(k);
(iv) (c1, . . . , b, . . . , 1− b, . . . , cl)− (c1, . . . , a, . . . , 1− a, . . . , cl), for a, b ∈ k − {0, 1}

and ci ∈ k× for each appropriate i.

Proof. (i) We first observe the following identities of matrices:(
1n 0
ψ 1n

)(
ψ 1n

0 ϕ

)(
1n 0
−ψ 1n

)
=
(

0 1n

−ϕψ ϕ+ ψ

)
,(1) (

1n 0
1n 1n

)(
1n 1n

0 ϕψ

)(
1n 0
−1n 1n

)
=
(

0 1n

−ϕψ 1n + ϕψ

)
.(2)

Let Θ(t) be the 2n× 2n matrix(
0 1n

−ϕψ t(1n + ϕψ) + (1− t)(ϕ+ ψ)

)
.

Then, Θ(t) is in GL2n(k[t]),
(
Θ(t), θ2 ⊕ θ2, . . . , θl ⊕ θl

)
is in Z by Definition 2.2 (Z1)

and the boundary of
(
Θ(t), θ2 ⊕ θ2, . . . , θl ⊕ θl

)
is, by (1) and by (2), (1n ⊕ ϕψ, θ2 ⊕

θ2, . . . , θl ⊕ θl) − (ϕ ⊕ ψ, θ2 ⊕ θ2, . . . , θl ⊕ θl) = (ϕψ, θ2, . . . , θl) − (ϕ, θ2, . . . , θl) −
(ψ, θ2, . . . , θl).

The proof is similar for other cases.
(ii) We let Θ(t) be the matrix(

0 1n

−θiθj t(1n + θiθj) + (1− t)(θi + θj)

)
.

Then
(
θ⊕2
1 , . . . ,Θ(t), . . . ,Θ(t), . . . , θ⊕2

l

)
is in Z by Definition 2.2 (Z2) and the

boundary of
(
θ⊕2
1 , . . . ,Θ(t), . . . ,Θ(t), . . . , θ⊕2

l

)
is

(θ1, . . . , θiθj , . . . , θiθj , . . . , . . . , θl)

− (θ1, . . . , θi, . . . , θi, . . . , θl)− (θ1, . . . , θj , . . . , θj , . . . , θl)

= (θ1, . . . , θj , . . . , θi, . . . , θl) + (θ1, . . . , θj , . . . , θi, . . . , θl) modulo ∂Z by (i).

(iii) We note that((
θ1 0
0 θ1

)
, . . . ,

(
−θ 0
0 −θ

)
, . . . ,

(
0 1n

−θ t(θ + 1n)

)
. . . ,

(
θl 0
0 θl

))
is an element of Z by Definition 2.2 (Z1). So its boundary((

θ1 0
0 θ1

)
, . . . ,

(
−θ 0
0 −θ

)
, . . . ,

(
0 1n

−θ θ + 1n

)
, . . . ,

(
θl 0
0 θl

))
−
((

θ1 0
0 θ1

)
, . . . ,

(
−θ 0
0 −θ

)
, . . . ,

(
0 1n

−θ 0

)
, . . . ,

(
θl 0
0 θl

))
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=
((

θ1 0
0 θ1

)
, . . . ,

(
−θ 0
0 −θ

)
, . . . ,

(
θ 1n

0 1n

)
, . . . ,

(
θl 0
0 θl

))
−
((

θ1 0
0 θ1

)
, . . . ,

(
−θ 0
0 −θ

)
, . . . ,

(
0 1n

−θ 0

)
, . . . ,

(
θl 0
0 θl

))
= (θ1, . . . ,−θ, . . . , , θ, . . . , θl)

−
((

θ1 0
0 θ1

)
, . . . ,

(
−θ 0
0 −θ

)
, . . . ,

(
0 1n

−θ 0

)
, . . . ,

(
θl 0
0 θl

))
is in ∂Z. Thus it suffices to prove that((

θ1 0
0 θ1

)
, . . . ,

(
−θ 0
0 −θ

)
, . . . ,

(
0 1n

−θ 0

)
, . . . ,

(
θl 0
0 θl

))
is in ∂Z. But it is equal to((

θ1 0
0 θ1

)
, . . . ,

(
0 1n

−θ 0

)2

, . . . ,

(
0 1n

−θ 0

)
, . . . ,

(
θl 0
0 θl

))

= 2
((

θ1 0
0 θ1

)
, . . . ,

(
0 1n

−θ 0

)
, . . . ,

(
0 1n

−θ 0

)
, . . . ,

(
θl 0
0 θl

))
,

which is in ∂Z by (ii) above.
(iv) Apply Lemma 2.1 to a1 = a, a2 =

√
b, a3 = −

√
b, b1 = −

√
a, b2 =√

a, b3 = b to get θ(t) ∈ GL3(k[t]) with the properties stated in the lemma. Then
z = 2

(
c⊕3
1 , . . . , θ(t), . . . , 13− θ(t), . . . , c⊕3

l

)
is in Z by Definition 2.2 (Z3). But, by the

theory of rational canonical form, we see that ∂z is equal to

2(c1, . . . , b, . . . , 1− b, . . . , cl)− 2(c1, . . . , a, . . . , 1− a, . . . , cl)

+ 2
((

c1 0
0 c1

)
, . . . ,

(
0 1
a 0

)
, . . . ,

(
1 −1
−a 1

)
, . . . ,

(
cl 0
0 cl

))
− 2

((
c1 0
0 c1

)
, . . . ,

(
0 1
b 0

)
, . . . ,

(
1 −1
−b 1

)
, . . . ,

(
cl 0
0 cl

))
= −2(c1, . . . , a, . . . , 1− a, . . . , cl) + 2(c1, . . . , b, . . . , 1− b, . . . , cl)

−

((
c1 0
0 c1

)
, . . . ,

(
0 1
b 0

)2

, . . . ,

(
1 −1
−b 1

)
, . . . ,

(
cl 0
0 cl

))

+

((
c1 0
0 c1

)
, . . . ,

(
0 1
a 0

)2

, . . . ,

(
1 −1
−a 1

)
, . . . ,

(
cl 0
0 cl

))

=
((

c1 0
0 c1

)
, . . . ,

(
b 0
0 b

)
, . . . ,

(
1− b 0

0 1− b

)
, . . . ,

(
cl 0
0 cl

))
−
((

c1 0
0 c1

)
, . . . ,

(
b 0
0 b

)
, . . . ,

(
1 −1
−b 1

)
, . . . ,

(
cl 0
0 cl

))
−
((

c1 0
0 c1

)
, . . . ,

(
a 0
0 a

)
, . . . ,

(
1− a 0

0 1− a

)
, . . . ,

(
cl 0
0 cl

))
+
((

c1 0
0 c1

)
, . . . ,

(
a 0
0 a

)
, . . . ,

(
1 −1
−a 1

)
, . . . ,

(
cl 0
0 cl

))
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=

((
c1 0
0 c1

)
, . . . ,

(
b 0
0 b

)
, . . . ,

(
1− b 0

0 1− b

)(
1 −1
−b 1

)−1

, . . . ,

(
cl 0
0 cl

))

−

((
c1 0
0 c1

)
, . . . ,

(
a 0
0 a

)
, . . . ,

(
1− a 0

0 1− a

)(
1 −1
−a 1

)−1

, . . . ,

(
cl 0
0 cl

))

=
((

c1 0
0 c1

)
, . . . ,

(
b 0
0 b

)
, . . .

(
1 1
b 1

)
, . . . ,

(
cl 0
0 cl

))
−
((

c1 0
0 c1

)
, . . . ,

(
a 0
0 a

)
, . . . ,

(
1 1
a 1

)
, . . . ,

(
cl 0
0 cl

))
=

((
c1 0
0 c1

)
, ...,

(
b 0
0 b

)
, ...,

( −b
1−b

1
1−b

0 1

)(
1 1
b 1

)( −b
1−b

1
1−b

0 1

)−1

, ...,

(
cl 0
0 cl

))

−

((
c1 0
0 c1

)
, ...,

(
a 0
0 a

)
, ...,

( −a
1−a

1
1−a

0 1

)(
1 1
a 1

)( −a
1−a

1
1−a

0 1

)−1

, ...,

(
cl 0
0 cl

))

=
((

c1 0
0 c1

)
, . . . ,

(
b 0
0 b

)
, . . . ,

(
0 1

b− 1 2

)
, . . . ,

(
cl 0
0 cl

))
−
((

c1 0
0 c1

)
, . . . ,

(
a 0
0 a

)
, . . . ,

(
0 1

a− 1 2

)
, . . . ,

(
cl 0
0 cl

))
.

By taking the boundary of the element((
c1 0
0 c1

)
, . . . ,

(
b 0
0 b

)
, . . . ,

(
0 1

b− 1 (2− b)t+ 2(1− t)

)
, . . . ,

(
cl 0
0 cl

))
−
((

c1 0
0 c1

)
, . . . ,

(
a 0
0 a

)
, . . . ,

(
0 1

a− 1 (2− a)t+ 2(1− t)

)
, . . . ,

(
cl 0
0 cl

))
,

which is in Z by Definition 2.2 (Z1), we see that

∂z =
((

c1 0
0 c1

)
, . . . ,

(
b 0
0 b

)
, . . . ,

(
0 1

b− 1 2− b

)
, . . . ,

(
cl 0
0 cl

))
−
((

c1 0
0 c1

)
, . . . ,

(
a 0
0 a

)
, . . . ,

(
0 1

a− 1 2− a

)
, . . . ,

(
cl 0
0 cl

))
=
((

c1 0
0 c1

)
, . . . ,

(
b 0
0 b

)
, . . . ,

(
1− b 0

0 1

)
, . . . ,

(
cl 0
0 cl

))
by (1), which then is equal to

−
((

c1 0
0 c1

)
, . . . ,

(
a 0
0 a

)
, . . . ,

(
1− a 0

0 1

)
, . . . ,

(
cl 0
0 cl

))
= (c1, . . . , b, . . . , 1− b, . . . , cl)− (c1, . . . , a, . . . , 1− a, . . . , cl)

in K0(k∆0, G∧l
m )/∂Z. Therefore, (iv) lies in ∂Z. �

Corollary 2.4. (Multilinearity and Skew-symmetry for H l
M
(
Spec k, Z(l)

)
)

(i) (θ1, . . . , θi−1, ϕψ, θi+1, . . . , θl) = (θ1, . . . , θi−1, ϕ, θi+1, . . . , θl)
+ (θ1, . . . , θi−1, ψ, θi+1, . . . , θl) in H l

M
(
Spec k, Z(l)

)
, for all commuting ϕ,ψ, θ1, . . . ,

θi−1, θi+1, . . . , θl ∈ GLn(k)
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(ii) (θ1, . . . , θi, . . . , θj , . . . , θl) = −(θ1, . . . , θj , . . . , θi, . . . , θl) in H l
M
(
Spec k, Z(l)

)
for all commuting θ1, . . . , θl ∈ GLn(k)

If θ1, . . . , θl and θ′1, . . . , θ
′
l are commuting matrices in GLn(k) and GLm(k), respec-

tively, then (θ1, . . . , θl) + (θ′1, . . . , θ
′
l) = (θ1 ⊕ θ′1, . . . , θl ⊕ θ′l) in H l

M
(
Spec k, Z(l)

)
.

Therefore, we obtain the following result from Corollary 2.4.

Corollary 2.5. Every element in H l
M
(
Spec k, Z(l)

)
can be written as a single symbol

(θ1, . . . , θl), where θ1, . . . , θl are commuting matrices in GLn(k).

Thanks to Lemma 2.3, we can construct a map from Milnor’s K-groups to the
motivic cohomology groups.

Proposition 2.6. For any field k, the assignment {a1, a2, . . . , al} 7→ (a1, a2, . . . , al)
for each Steinberg symbol {a1, a2, . . . , al} gives a well-defined homomorphism ρl from
the Milnor’s K-group KM

l (k) to H l
M
(
Spec k, Z(l)

)
.

Proof. This proposition turns out to be straightforward when l = 1. So we assume
that l ≥ 2. By Corollary 2.4 (i), the multilinearity is satisfied by our symbol ( , . . . , ).
Therefore all we need to show is that for every α ∈ k−{0, 1} and cr ∈ k× for 1 ≤ r ≤ l,
r 6= i, j, (c1, . . . , α, . . . , 1−α, . . . , cl) is in ∂K0(k∆1, G∧l

m ). We will actually show that
it is contained in ∂Z.

The proposition is immediate for a prime field Fp because KM
l (Fp) = 0 for l ≥

2. So we may assume that there exists an element e ∈ k such that e3 − e 6= 0.
By Lemma 2.3 (iv) with a = e, b = 1 − e, we have (c1, . . . , e, . . . , 1 − e, . . . , cl) −
(c1, . . . , 1 − e, . . . , e, . . . , cl) = 2(c1, . . . , e, . . . , 1 − e, . . . , cl) = 0 modulo ∂Z. With
a = −e, b = 1 + e, we have 2(c1, . . . , e, . . . , 1 + e, . . . , cl) = 2(c1, . . . ,−e, . . . , 1 +
e, . . . , cl) = 0. Hence, (c1, . . . , e2, . . . , 1− e2, . . . , cl) = 2(c1, . . . , e, . . . , 1− e, . . . , cl) +
2(c1, . . . , e, . . . , 1 + e, . . . , cl) = 0.

On the other hand, by Lemma 2.3 (iv) with a = e2, b = α, we see that

−(c1, . . . , e2, . . . , 1− e2, . . . , cl) + (c1, . . . , α, . . . , 1− α, . . . , cl)

is in ∂Z and we’re done.
More explicitly, let z = 2

(
c⊕3
1 , . . . , θ(t), . . . , 1− θ(t), . . . , c⊕3

l

)
∈ Z, where

θ(t) =

 0 1 0
0 0 1

−e2α (e2 − α)t+ α (α− e2)t+ e2

 .

This matrix θ(t) is constructed with Lemma 2.1 with a1 = e2, a2 =
√
α, a3 =

−
√
α, b1 = −e, b2 = e, b3 = α. Hence, by the computation we have done in the

proof of Lemma 2.3 (iv),

∂z = 2(c1, . . . ,−e, . . . , 1 + e, . . . , cl) + 2(c1, . . . , e, . . . , 1− e, . . . , cl)

+ 2(c1, . . . , α, . . . , 1− α, . . . , cl)− 2(c1, . . . , e2, . . . , 1− e2, . . . , cl)

− 2
((

c1 0
0 c1

)
, . . . ,

(
0 1
α 0

)
, . . . ,

(
1 −1
−α 1

)
. . . ,

(
cl 0
0 cl

))
= −(c1, . . . , e2, . . . , 1− e2, . . . , cl) + (c1, . . . , α, . . . , 1− α, . . . , cl)

= ((c1, . . . , α, . . . , 1− α, . . . , cl).

�
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For Goodwillie-Lichtenbaum motivic complex, there is a straightforward functorial
definition of the norm map for the motivic cohomology for any finite extension k ⊂ L.

Definition 2.7. If θ1, . . . , θl are commuting automorphisms on a finitely generated
projective L∆d-module P , then by identifying L∆d as a free k∆d-module of finite
rank, we may consider P as a finitely generated projective k∆d-module and θ1, . . . , θl

as commuting automorphisms on it. This gives a simplicial map K0(L∆d, G∧l
m ) →

K0(k∆d, G∧l
m ). The resulting homomorphism

NL/k : Hq
M
(
SpecL,Z(l)

)
→ Hq

M
(
Spec k,Z(l)

)
is called the norm map.

We summarize some basic results for the norm in the following lemma.

Lemma 2.8. (i) NL′/L ◦ NL/k = NL′/k whenever we have a tower of finite field
extensions k ⊂ L ⊂ L′.

(ii) If [L : k] = d, the composition

Hq
M
(
Spec k,Z(l)

) iL/k // Hq
M
(
SpecL,Z(l)

) NL/k // Hq
M
(
Spec k,Z(l)

)
,

where iL/k is induced by the inclusion of the fields k ⊂ L, is multiplication by d.
(iii) For α1, . . . , αl ∈ k× and β ∈ L×, NL/k (α1, . . . , αl, β) =

(
α1, . . . , αl, NL/k(β)

)
in H l+1

M
(
Spec k,Z(l + 1)

)
, where NL/k(β) ∈ k× is the image of β under the usual

norm map NL/k : L× → k×.

Proof. (i) and (ii) are immediate from Definition 2.7. (iii) follows from the observa-
tion that, in H1

M
(
Spec k,Z(1)

)
, the two elements represented by two matrices with

same determinants are equal since any matrix with determinant 1 is a product of
elementary matrices and an element represented by an elementary matrix vanishes in
H1
M
(
Spec k,Z(1)

)
. �

We also have the norm maps NL/K : KM
l (L) → KM

l (k) for the Milnor’s K-groups
whenever L/k is a finite field extension, whose definition we recall briefly as follows.
(See [1] or [6] §1.2)

For each discrete valuation v of the field K = k(t) of rational functions over k, let
πv be a uniformizing parameter and kv = Rv/(πv) be the residue field of the valua-
tion ring Rv = {r ∈ K|v(r) ≥ 0}. Then we define the tame symbol ∂v : KM

l+1(K) →
KM

l (kv) to be the epimorphism such that ∂({u1, . . . , ul, y}) = v(y){u1, . . . , ul} when-
ever u1, . . . , ul are units of the valuation ring Rv.

Let v∞ be the valuation on K = k(t), which vanishes on k, such that v∞(t) =
−1. Every simple algebraic extension L of k is isomorphic to kv for some discrete
valuation v 6= v∞ which corresponds to a prime ideal p of k[t]. The norm maps
Nv : KM

l (kv) → KM
l (k) are the unique homomorphisms such that, for every w ∈

KM
l+1(k(t)),

∑
v

Nv (∂vw) = 0 where the sum is taken over all discrete valuations,

including v∞ on k(t), vanishing on k. This equality is called the Weil reciprocity law.
Note that we take Nv∞ = Id for v = v∞.

Kato ([6] §1.7) has shown that these maps, if defined as compositions of norm
maps for simple extensions for a given tower of simple extensions, depend only on the
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field extension L/k, i.e., that it enjoys functoriality. See also [12]. It also enjoys a
projection formula similar to (iii) of Lemma 2.8. The following key lemma shows the
compatibility between these two types of norm maps.

Lemma 2.9. For every finite field extension k ⊂ L, we have the following commu-
tative diagram, where the vertical maps are the norm maps and the horizontal maps
are the homomorphisms in Proposition 2.6:

KM
l (L)

ρl //

NL/k

��

H l
M
(
SpecL,Z(l)

)
NL/k

��
KM

l (k)
ρl // H l

M
(
Spec k,Z(l)

)
Proof. We will follow the same procedure which is used in [7] for the proof. Be-
cause of the functoriality property of the norm maps, we may assume that [L : k] is
a prime number p. First, let us assume that k has no extensions of degree prime
to p. By Lemma (5.3) in [1], KM

l (L) is generated by the symbols of the form
x = {x1, . . . , xl−1, y} where xi ∈ k and y ∈ L. Then, by the projection formula
for Milnor’s K-groups, ρlNL/k ({x1, . . . , xl−1, y}) = ρl

(
{x1, . . . , xl−1, NL/k(y)}

)
=

(x1, . . . , xl−1, NLk
(y)). Also, by (iii) of Lemma 2.8, NL/kρl ({x1, . . . , xl−1, y}) =

NL/k

(
(x1, . . . , xl−1, y)

)
= (x1, . . . , xl−1, NLk

(y)) and so we’re done in this case.
Next, for the general case, let k′ be a maximal prime-to-p extension of k. Then, by

the previous case applied to k′ and by (i) of Lemma 2.8, we see that z = NL/kρl(x)−
ρlNL/k(x), which is in the kernel of ik′/k : H l

M
(
Spec k,Z(l)

)
→ H l

M
(
Spec k′,Z(l)

)
, is

a torsion element of H l
M
(
Spec k,Z(l)

)
of exponent prime to p. In particular, if L/k

is a purely inseparable extension of degree p, then yp ∈ k and so z is clearly killed by
p, i.e., z = 0. Hence we may assume that L/k is separable.

Since the kernel of iL/k : H l
M
(
Spec k,Z(l)

)
→ H l

M
(
SpecL,Z(l)

)
has exponent p,

it suffices to prove that iL/k(z) = 0 to conclude z = 0. Now L⊗k L is a finite product
of fields Li with [Li : L] < p and we have the following commutative diagrams.

KM
l (L)

⊕iLi/L//

NL/k

��

⊕iK
M
l (Li)P

i NLi/L

��
KM

l (k)
iL/k // KM

l (L)

H l
M
(
SpecL,Z(l)

) ⊕iLi/L//

NL/k

��

⊕iH
l
M
(
SpecLi,Z(l)

)
P

i NLi/L

��
H l
M
(
Spec k,Z(l)

) iL/k // H l
M
(
SpecL,Z(l)

)
The left diagram is the diagram (15) in p.387 of [1] and the right diagram follows easily
from Definition 2.7. By induction on p, we have iL/k(z) = ⊕NLi/Lρl(iLi/L(x)) −
⊕ρlNLi/L(iLi/L(x)) = 0 and the proof is complete. �

Lemma 2.10. For any field k, there is a homomorphism φl : H l
M
(
Spec k, Z(l)

)
→

KM
l (k) such that, for each element z ∈ H l

M
(
Spec k,Z(l)

)
, there is an expression

z =
r∑

j=1

NLi/k ((α1j , . . . , αlj)) where L1, . . . , Lr are finite field extensions of k, αij ∈
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GL1(Lj) = L×j (1 ≤ i ≤ l, 1 ≤ j ≤ r) and φl(z) =
∑

j

NLj/k ({α1j , . . . , αlj}) holds in

KM
l (k).

Proof. For a tuple z = (θ1, θ2, . . . , θl), where θ1, θ2, . . . , θl are commuting matrices in
GLn(k), consider the vector space E = kn as an R = k[t1, t−1

1 . . . , tl, t
−1
l ]-module,

on which ti acts as θi. Since E is of finite rank over k, it has a composition series
0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E with simple factors Lj = Ej/Ej−1 (j = 1, . . . , r).

Then, there exists a maximal ideal mj of R such that Lj ' R/mj . So we see that

Lj is a finite field extension of k, and z =
r∑

j=1

(θ1|Lj , . . . , θl|Lj), where θi|Lj is the

automorphism on Lj induced by θi.
Let us denote by αij the element of L×j which corresponds to ti (mod mj) for

i = 1, . . . , l, then (θ1|Lj , . . . , θl|Lj) = NLj/k ((α1j , . . . , αlj)).
Since these factors Lj are unique up to an order and a Milnor symbol vanishes if

one of its coordinates is 1, the assignment (θ1, θ2, . . . , θl) 7→
∑

j NLj/k ({α1j , . . . , αlj})
gives us a well-defined homomorphism from K0(k, G∧l

m ) to KM
l (k).

It remains to show that this homomorphism vanishes on ∂K0(k∆1, G∧l
m ). Let

A1(t), . . . , Al(t) be commuting matrices in GLn(k[t]), where t is an indeterminate.
Then M = k(t)n can be considered as an S = k(t)[t1, t−1

1 , . . . , tl, t
−1
l ]-module, on

which ti acts as Ai(t). Then find a composition series 0 = M0 ⊂M1 ⊂ · · · ⊂Ms = M
with simple S-modules Qj = Mj/Mj−1 (j = 1, . . . , s) and maximal ideals nj of S
such that Qj ' S/nj . We also denote by βij the element of Q×j which corresponds
to ti (mod nj) for i = 1, . . . , l and j = 1, . . . , s. Each Qj is a finite extension field
of k(t) and let x =

∑s
j=1NQj/k(t)({β1j , . . . , βlj}) ∈ KM

l (k(t)). Now consider the
element y = {x, (t− 1)/t} in KM

l+1(k(t)), where the symbol {x, (t− 1)/t} denotes∑
u{x1u, . . . , xlu, (t− 1)/t} if x =

∑
u{x1u, . . . , xlu} in KM

l (k(t)). Then ∂v(y) =
−φl

(
(A1(0), . . . , Al(0))

)
if πv = t and ∂v(y) = φl

(
(A1(1), . . . , Al(1))

)
if πv = t − 1.

Also, the image ∂v(y) is zero unless v is the valuation associated with either πv = t−1
or πv = t.

Hence we have φl

(
(A1(0), . . . , Al(0))

)
= φl

(
(A1(1), . . . , Al(1))

)
by the Weil reci-

procity law for the Milnor’s K-groups. �

The isomorphism in the following theorem was first given by Nesterenko and Suslin
([9]) for Bloch’s higher Chow groups. Totaro, in [14], gave another proof of the
theorem. Suslin and Voevodsky, in Chapter 3 of [13], gave a proof of it for their motivic
cohomology. Here, we present another version of it for the Goodwillie-Lichtenbaum
motivic complex such that the isomorphism is given explicitly in the form which
transforms the multilinearity of the the symbols of Milnor into the corresponding
properties of the symbols of Goodwillie and Lichtenbaum.

Theorem 2.11. For any field k and l ≥ 1, the assignment

{a1, a2, . . . , al} 7→ (a1, a2, . . . , al)

for each Steinberg symbol {a1, a2, . . . , al} gives rise to an isomorphism KM
l (k) '

H l
M
(
Spec k, Z(l)

)
.
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Proof. The case l = 1 is straightforward and we assume l ≥ 2. By Proposition 2.6, the
assignment {a1, a2, . . . , al} 7→ (a1, a2, . . . , al) gives rise to a homomorphism ρl from
the Milnor’s K-group KM

l (k) to the motivic cohomology group H l
M
(
Spec k, Z(l)

)
.

We also have a well-defined map φl : H l
M
(
Spec k, Z(l)

)
→ KM

l (k) in Lemma 2.10
and it suffices to show that they are the inverses to each other.

It is clear that φl ◦ ρl is the identity map on KM
l (k) since each Steinberg sym-

bol is fixed by it. On the other hand, for each z ∈ H l
M
(
Spec k, Z(l)

)
, z is equal to

r∑
j=1

NLj/k ((α1j , . . . , αlj)) for some finite field extensions L1, . . . , Lr of k and αij ∈ Lj

(1 ≤ i ≤ l, 1 ≤ j ≤ r). Then (ρl ◦ φl)(z) = ρl

(∑
j

NLj/k ({α1j , . . . , αlj})
)

=∑
j

NLj/k (ρl ({α1j , . . . , αlj})) =
∑

j

NLj/k ((α1j , . . . , αlj)) = z by Lemma 2.9. There-

fore, ρl ◦ φl is also the identity map and the proof is complete. �

3. Multilinearity and Skew-symmetry for H l−1
M
(
Spec k, Z(l)

)
In [8], the author constructed a dilogarithm mapD : H1

M
(
Spec k, Z(2)

)
→ R when-

ever k is a subfield of C such that D satisfies certain bilinearity and skew-symmetry.
(See Lemma 4.8 in [8]). Since D can detect all the torsion-free elements of the motivic
cohomology group, e.g., if k is a number field ([3], [2]), we have expected that bilin-
earity and skew-symmetry for symbols should hold for D : H1

M
(
Spec k, Z(2)

)
→ R in

such cases.
In this section, we extend multilinearity and skew-symmetry results of the previous

section to the symbols in the motivic cohomology groups H l−1
M
(
Spec k, Z(l)

)
when k

is a field.
K0(k∆1, G∧l

m ) (l ≥ 1) can be identified with the abelian group generated by l-tuples
(θ1, . . . , θl) (= (θ1(t), . . . , θl(t))) and certain explicit relations, where θ1, . . . , θl are
commuting matrices in GLn(k[t]) for various n ≥ 1. K0(k∆2, G∧l

m ) is identified with
the abelian group generated by the symbols (θ1(x, y), . . . , θl(x, y)) with commuting
θ1(x, y), . . . , θl(x, y) ∈ GLn(k[x, y]) and certain relations, and the boundary map ∂
on the motivic complex sends (θ1(x, y), . . . , θl(x, y)) to (θ1(1− t, t), . . . , θl(1− t, t))−
(θ1(0, t), . . . , θl(0, t)) + (θ1(t, 0), . . . , θl(t, 0)) in K0(k∆1, G∧l

m ). The same symbol
(θ1, . . . , θl) will denote the element in K0(k∆1, G∧l

m )/∂K0(k∆2, G∧l
m ) represented by

(θ1, . . . , θl), by abuse of notation. The motivic cohomology group H l−1
M
(
Spec k, Z(l)

)
is a subgroup of this quotient group, which consists of the elements killed by ∂.

Lemma 3.1. In H l−1
M
(
Spec k, Z(l)

)
, we have the following two simple relations of

symbols for any commuting matrices θ1, . . . , θl and any other commuting matrices
ψ1, . . . , ψl in GLn(k[t]):

− (θ1(t), . . . , θl(t)) = (θ1(1− t), . . . , θl(1− t))

(θ1(t), . . . , θl(t)) + (ψ1(t), . . . , ψl(t)) = (θ1(t)⊕ ψ1(t), . . . , θl(t)⊕ ψl(t)) .

Proof. The second relation is immediate from definition of the motivic complex.
The first relation can be shown by applying the boundary map ∂ to the element
(θ1(x), . . . , θl(x)) regarded as in K0(k∆2, G∧l

m ) and by noting that (θ1, . . . , θl) = 0 in
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H l−1
M (Spec k, Z(l)) when θ1, . . . , θl are constant matrices. The fact that (θ1, . . . , θl) =

0 for constant matrices θ1, . . . , θl is obtained simply by applying the boundary map
∂ to the element (θ1, . . . , θl) regarded as in K0(k∆2, G∧l

m ). �

Corollary 3.2. Any element of the cohomology group H l−1
M
(
Spec k, Z(l)

)
can be

represented by a single expression (θ1, . . . , θl), where θ1, . . . , θl are commuting matrices
in GLn(k[t]) for some nonnegative integer n.

Note that the symbol (θ1(t), . . . , θl(t)) represents an element in H l−1
M
(
Spec k, Z(l)

)
only when its image under the boundary map ∂ vanishes in K0(k∆0, G∧l

m ).
A tuple (θ1(t), . . . , θl(t)) where θ1, . . . , θl are commuting matrices in GLn(k[t]) is

called irreducible if k[t]n has no nontrivial proper submodule when regarded as a
k[t, x1, x

−1
1 , . . . , xl, x

−1
l ]-module where xi acts on k[t]n via θi(t) for each i = 1, . . . , l.

Note that if k(t)n is regarded as a k(t)[x1, x
−1
1 , . . . , xl, x

−1
l ]-module with the same ac-

tions and if M is a nontrivial proper submodule of k(t)n, then M ∩k[t]n is a nontrivial
proper k[t, x1, x

−1
1 , . . . , xl, x

−1
l ]-submodule of k[t]n. Therefore, k(t)n is irreducible as

a k(t)[x1, x
−1
1 , . . . , xl, x

−1
l ]-module if (θ1(t), . . . , θl(t)) is irreducible.

It can be easily checked that, if two matrices A,B ∈ GLn(k) commute and A is a

block matrix of the form A =
(
I 0
0 C

)
where I is a square matrix whose characteristic

polynomial is a power of x− 1 and C does not have 1 as an eigenvalue, then B must

be a block matrix B =
(
B1 0
0 B2

)
, where the blocks B1 and B2 are of compatible

sizes with the blocks I and C of A. Therefore, we may easily relax the notion of
irreduciblity of a symbol (θ1(t), . . . , θl(t)) as an element in K0(k∆1, G∧l

m ) by declaring
it irreducible when its restriction to the largest submodule V ⊂ k[t]n, where none of
the restrictions of θ1(t), . . . , θl(t) has 1 as an eigenvalue, is irreducible.

Theorem 3.3. (Multilinearity) Suppose that ϕ(t), ψ(t) and θ1(t), . . . , θl(t) (with θi(t)
omitted) are commuting matrices in GLn(k[t]) such that the symbol represented by
one of these matrices is irreducible in K0(k∆1, G∧1

m ). Assume further that the sym-
bols

(
θ1(t), . . . , ϕ(t), . . . , θl(t)

)
and

(
θ1(t), . . . , ψ(t), . . . , θl(t)

)
represent elements in

H l−1
M
(
Spec k, Z(l)

)
. Then

(
θ1(t), . . . , ϕ(t)ψ(t), . . . , θl(t)

)
represents an element in

H l−1
M
(
Spec k, Z(l)

)
and

(
θ1(t), . . . , ϕ(t), . . . , θl(t)

)
+
(
θ1(t), . . . , ψ(t), . . . , θl(t)

)
=
(
θ1(t), . . . , ϕ(t)ψ(t), . . . , θl(t)

)
in H l−1

M
(
Spec k, Z(l)

)
.

Proof. For simplicity of notation, we may assume that i = 1 and prove the multilin-
earity on the first variable, i.e., we will want to show that(

ϕ(t), θ2(t), . . . , θl(t)
)

+
(
ψ(t), θ2(t), . . . , θl(t)

)
=
(
ϕ(t)ψ(t), θ2(t), . . . , θl(t)

)
.

In this proof, all equalities are in K0(k∆1, G∧l
m )/∂K0(k∆2, G∧l

m ) unless mentioned
otherwise and 1 denotes the identity matrix 1n of rank n whenever appropriate.

Let p(t) and q(t) be matrices with entries in k[t] such that p(t) is invertible and
p(t), q(t) and θ2(t), . . . , θl(t) commute. Then the boundary of the element((

0 1
−p(y) xyq(y)

)
,

(
θ2(y) 0

0 θ2(y)

)
, . . . ,

(
θl(y) 0

0 θl(y)

))
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of K0(k∆2, G∧l
m ) vanishes in H l−1

M
(
Spec k, Z(l)

)
by the definition of the cohomology

group. Hence we have

0 =
((

0 1
−p(t) (1− t)tq(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
−
((

0 1
−p(t) 0

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
+
((

0 1
p(0) 0

)
,

(
θ2(0) 0

0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
.

But, as in the proof of Lemma 3.1, the last term, which is a tuple of constant matrices,
is 0 and we have

(3)
((

0 1
−p(t) (1− t)tq(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
=
((

0 1
−p(t) 0

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
.

Next, by taking the boundary of((
0 1

−p(y) (x+ y)q(y)

)
,

(
θ2(y) 0

0 θ2(y)

)
, . . . ,

(
θl(y) 0

0 θl(y)

))
,

we get

(4)
((

0 1
−p(t) q(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
=
((

0 1
−p(t) tq(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
−
((

0 1
−p(0) tq(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
.

If p(t), q(t) and θ2(t), . . . , θl(t) are replaced by p(1− t), (1− t)q(1− t) and
θ2(1− t), . . . , θl(1− t) respectively in (4), then we obtain

(5)
((

0 1
−p(1− t) (1− t)q(1− t)

)
,

(
θ2(1− t) 0

0 θ2(1− t)

)
,

. . . ,

(
θl(1− t) 0

0 θl(1− t)

))
=
((

0 1
−p(1− t) t(1− t)q(1− t)

)
,

(
θ2(1− t) 0

0 θ2(1− t)

)
,

. . . ,

(
θl(1− t) 0

0 θl(1− t)

))
−
((

0 1
−p(1) tq(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
.

If we apply Lemma 3.1 to the first term, the right hand side of the equality (4) can
be written as
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−
((

0 1
−p(1− t) (1− t)q(1− t)

)
,

(
θ2(1− t) 0

0 θ2(1− t)

)
,

. . . ,

(
θl(1− t) 0

0 θl(1− t)

))
−
((

0 1
−p(0) tq(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
.

By applying (5) to the first term and by (4), we have((
0 1

−p(t) q(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
= −

((
0 1

−p(1− t) t(1− t)q(1− t)

)
,

(
θ2(1− t) 0

0 θ2(1− t)

)
,

. . . ,

(
θl(1− t) 0

0 θl(1− t)

))
+
((

0 1
−p(1) tq(1)

)),(θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
−
((

0 1
−p(0) tq(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
=
((

0 1
−p(t) t(1− t)q(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
+
((

0 1
−p(1) tq(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
−
((

0 1
−p(0) tq(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
=
((

0 1
−p(t) 0

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
+
((

0 1
−p(1) tq(1)

)
,

(
θ2(1) 0

0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
−
((

0 1
−p(0) tq(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
.

The second equality is obtained by applying Lemma 3.1 to the first term and the
last equality is by (3). Now by setting p(t) = ϕ(t)ψ(t) and q(t) = ϕ(t) + ψ(t) in the
above equality, we have

(6)
((

0 1
−ϕ(t)ψ(t) ϕ(t) + ψ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
=
((

0 1
−ϕ(t)ψ(t) 0

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
+
((

0 1
−ϕ(1)ψ(1) t

(
ϕ(1) + ψ(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
−
((

0 1
−ϕ(0)ψ(0) t

(
ϕ(0) + ψ(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
.
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Similarly, with p(t) = ϕ(t)ψ(t) and q(t) = 1 + ϕ(t)ψ(t) this time, we get

(7)
((

0 1
−ϕ(t)ψ(t) 1 + ϕ(t)ψ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
=
((

0 1
−ϕ(t)ψ(t) 0

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
+
((

0 1
−ϕ(1)ψ(1) t

(
1 + ϕ(1)ψ(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
−
((

0 1
−ϕ(0)ψ(0) t

(
1 + ϕ(0)ψ(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
.

The first terms on the right of (6) and (7) are the same, so by subtracting (7) from
(6), we obtain

((
0 1

−ϕ(t)ψ(t) ϕ(t) + ψ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
−
((

0 1
−ϕ(t)ψ(t) 1 + ϕ(t)ψ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
=
((

0 1
−ϕ(1)ψ(1) t

(
ϕ(1) + ψ(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
−
((

0 1
−ϕ(0)ψ(0) t

(
ϕ(0) + ψ(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
−
((

0 1
−ϕ(1)ψ(1) t

(
1 + ϕ(1)ψ(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
+
((

0 1
−ϕ(0)ψ(0) t

(
1 + ϕ(0)ψ(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
.

Now we state our claim:

Claim: The right hand side of the above equality is equal to 0.

Once the claim is proved, we obtain the following equality.

(8)
((

0 1
−ϕ(t)ψ(t) ϕ(t) + ψ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
=
((

0 1
−ϕ(t)ψ(t) 1 + ϕ(t)ψ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
.

To prove the claim, we first note that, by our assumption, one of ϕ(t), ψ(t) and
θ2(t), . . . , θl(t), denoted θ(t), is irreducible on the largest submodule V ⊂ k[t]n, where
none of the restrictions of θ1(t), . . . , θl(t) has 1 as an eigenvalue. We may easily assume
that V = k[t]n since all the symbols under our interest vanish on the complement of
V in k[t]n. Then all of ϕ(t), ψ(t) and θ2(t), . . . , θl(t) can be written as polynomials of
θ(t) with coefficients in k(t). Since

(
ϕ(0), θ2(0), . . . , θl(0)

)
=
(
ϕ(1), θ2(1), . . . , θl(1)

)
in K0(k, G∧l

m ) by our assumption, it follows that Sϕ(0)S−1 = ϕ(1), Sθi(0)S−1 =
θi(1) for every legitimate i, for some S ∈ GLn(k). Now, it is immediate that, in
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K0(k∆1, G∧l
m ),((

0 1
−ϕ(1)ψ(1) t

(
ϕ(1) + ψ(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
=
((

0 1
−ϕ(0)ψ(0) t

(
ϕ(0) + ψ(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
and

((
0 1

−ϕ(1)ψ(1) t
(
1 + ϕ(1)ψ(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
=
((

0 1
−ϕ(0)ψ(0) t

(
1 + ϕ(0)ψ(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
.

Therefore, the proof of the claim is complete.
Thanks to the identities (1) and (2), we have, by (8),((

ψ(t) 1
0 ϕ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
=
((

0 1
−ϕ(t)ψ(t) ϕ(t) + ψ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
=
((

0 1
−ϕ(t)ψ(t) 1 + ϕ(t)ψ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
=
((

1 1
0 ϕ(t)ψ(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
.

Hence
(
ϕ(t), θ2(t), . . . , θl(t)

)
+
(
ψ(t), θ2(t), . . . , θl(t)

)
=
(
ϕ(t)ψ(t), θ2(t), . . . , θl(t)

)
, as

required. �

The irreducibility assumption in Theorem 3.3 is used only to justify the claim in
the proof of the theorem. The various conditions in the following corollary can replace
the irreducibility assumption in the theorem. We state the multilinearity of symbols
only in the first coordinate to simplify the notation, but a similar statement in another
coordinate holds obviously.

Corollary 3.4. Suppose that ϕ(t), ψ(t), θ2(t), . . . , θl(t) are commuting matrices in
GLn(k[t]) and that the symbols

(
ϕ(t), θ2(t), . . . , θl(t)

)
and

(
ψ(t), θ2(t), . . . , θl(t)

)
rep-

resent elements in H l−1
M
(
Spec k, Z(l)

)
. Then

(
ϕ(t)ψ(t), θ2(t), . . . , θl(t)

)
represents an

element in H l−1
M
(
Spec k, Z(l)

)
and(

ϕ(t), θ2(t), . . . , θl(t)
)

+
(
ψ(t), θ2(t), . . . , θl(t)

)
=
(
ϕ(t)ψ(t), θ2(t), . . . , θl(t)

)
in H l−1

M
(
Spec k, Z(l)

)
if one of the following assumptions is satisfied:

(i) The symbol
(
ϕ(t), ψ(t), θ2(t), . . . , θl(t)

)
is irreducible and k is a field of charac-

teristic 0 or n < char(k).
(ii) There is a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = k[t]n of k[t, x0, x

−1
0 . . . , xl, x

−1
l ]-

modules where x0 and x1 act via ϕ(t) and ψ(t) and xi acts via θi(t) for i ≥ 2 such
that the restriction of the symbol

(
ϕ(t), ψ(t), θ2(t), . . . , θl(t)

)
to each Vi+1/Vi (i =

0, . . . , n− 1) is irreducible and k is of characteristic 0 or n < char(k).
(iii) One of the matrices ϕ(t), ψ(t), θ2(t), . . . , θl(t) has a characteristic polynomial

equal to its minimal polynomial. This is the case, for example, when one of the
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matrices is a companion matrix of a polynomial with coefficients in k[t] and constant
term in k×.

Proof. (i) k(t)n as a k(t)[x0, x
−1
0 . . . , xl, x

−1
l ]-module, where x0 and x1 act via ϕ(t)

and ψ(t) and xi acts via θi(t) for i ≥ 2, is irreducible. Therefore, it is a field extension
of k(t) of degree n. By our assumption on the field k, it is generated by a primitive
element, say θ(t), and all of ϕ(t), ψ(t), θ2(t), . . . , θl(t) can be written as polynomials
of θ(t) with coefficients in k(t). So the claim in the proof of Theorem 3.3 holds and
we obtain the multilinearity.

(ii) is an obvious consequence of (i).
(iii) is true since any matrix which commutes with a given companion matrix of a

polynomial can be written as a polynomial of the companion matrix. (Theorem 5 of
Chapter 1 in [10]) �

In the following corollary, we don’t require the commutativity of ϕ(t) and ψ(t).

Corollary 3.5. Suppose that θ2(t), . . . , θl(t) are commuting matrices in GLn(k[t])
which commute also with ϕ(t), ψ(t) ∈ GLn(k[t]) and that

(
ϕ(t), θ2(t), . . . , θl(t)

)
and(

ψ(t), θ2(t), . . . , θl(t)
)

represent elements in H l−1
M
(
Spec k, Z(l)

)
. Then(

ϕ(t)ψ(t), θ2(t), . . . , θl(t)
)

represents an element in H l−1
M
(
Spec k, Z(l)

)
and(

ϕ(t), θ2(t), . . . , θl(t)
)

+
(
ψ(t), θ2(t), . . . , θl(t)

)
=
(
ϕ(t)ψ(t), θ2(t), . . . , θl(t)

)
in H l−1

M
(
Spec k, Z(l)

)
if one of the following assumptions is satisfied:

(i) ϕ(0) = ϕ(1), ψ(0) = ψ(1) and θi(0) = θi(1) for i = 2, . . . , l as matrices in
GLn(k).

(ii) θi(0) or θi(1) has n distinct eigenvalues for some i = 2, . . . , l.

Proof. (i) clearly guarantees the claim in the proof of Theorem 3.3.
(ii) We may assume that none of ϕ(0), ψ(0), θ2(0), . . . , θl(0) has 1 as an eigen-

value. If θi(0) has n distinct eigenvalues for some i, then θi(1) also has the same
n distinct eigenvalues since (θi(0)) = (θi(1)) in K0(k, G∧1

m ) by the assumption that(
ϕ(t), θ2(t), . . . , θl(t)

)
belongs to H l−1

M
(
Spec k, Z(l)

)
. Also, ϕ(0), ψ(0), θ2(0), . . . , θl(0)

are diagonalizable by the same similarity matrix by the commutativity of the matri-
ces with θi(0). Let us denote the tuples of joint eigenvalues by (ai, bi, c2i, . . . , cli)
for i = 1, . . . , n. A similar statement is true for ϕ(1), ψ(1), θ2(1), . . . , θl(1) and their
joint eigenvalues are denoted by (a′i, b

′
i, c

′
2i, . . . , c

′
li) for i = 1, . . . , n. By permuting the

indices i if necessary, we may assume that ai = a′i, bi = b′i, cji = c′ji for j = 2, . . . , l
and i = 1, . . . , n. Then the claim in the proof of Theorem 3.3 holds since((

0 1
−ϕ(1)ψ(1) t

(
ϕ(1) + ψ(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
=

n∑
i=1

((
0 1

−aibi t
(
ai + bi

)), (c2i 0
0 c2i

)
, . . . ,

(
cli 0
0 cli

))
=
((

0 1
−ϕ(0)ψ(0) t

(
ϕ(0) + ψ(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
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and similarly((
0 1

−ϕ(1)ψ(1) t
(
1 + ϕ(1)ψ(1)

)), (θ2(1) 0
0 θ2(1)

)
, . . . ,

(
θl(1) 0

0 θl(1)

))
=
((

0 1
−ϕ(0)ψ(0) t

(
1 + ϕ(0)ψ(0)

)), (θ2(0) 0
0 θ2(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
.

�

Remark 3.6. (i) In Theorem 3.3, the commutativity of ϕ(t) and ψ(t) would not have
been necessary if we wanted merely to define the symbols

(
ϕ(t), θ2(t), . . . , θl(t)

)
and(

ψ(t), θ2(t), . . . , θl(t)
)
. But, if we do not insist the commutativity of these two matri-

ces, then the symbol
(
ϕ(t)ψ(t), θ2(t), . . . , θl(t)

)
does not have to represent an element

in H l−1
M
(
Spec k, Z(l)

)
even if

(
ϕ(t), θ2(t), . . . , θl(t)

)
and

(
ψ(t), θ2(t), . . . , θl(t)

)
do.

For example, take l = 2 and let a, b ∈ k − {0, 1} be two distinct numbers and take
any c ∈ k − {0, 1}. Let

ϕ(t) =

(
(a+ b)t (a+b)2

ab t(1− t)− 1
ab (a+ b)(1− t)

)
, ψ(t) =

(
a 0
0 b

)
, θ(t) =

(
c 0
0 c

)
Then the boundaries of both

(
ψ(t), θ(t)

)
and

(
ϕ(t), θ(t)

)
are 0, but the boundary of(

ϕ(t)ψ(t), θ(t)
)

is not 0 in K0(k∆0, G∧2
m ).

(ii) The irreducibility condition in Theorem 3.3 or other similar assumptions in
Corollary 3.4 and 3.5 are essential. For example, take l = 1 and let a, b ∈ k − {0, 1}
be two distinct elements. Find any distinct c, d ∈ k − {0,±1} such that the set
{a, acd, bc, bd} is not equal to {ac, ad, b, acd}. Consider

A(t) =


a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 b

 and

B(t) =


0 −cd 0 0
1 (c+ d)t+ (1 + cd)(1− t) 0 0
0 0 0 −cd
0 0 1 (c+ d)(1− t) + (1 + cd)t

 .

Then A(0) = A(1) and (B(0)) = (1) + (cd) + (c) + (d) = (B(1)) in K0(k, G∧1
m ). But,

(A(0)B(0)) = (a) + (acd) + (bc) + (bd) 6= (ac) + (ad) + (b) + (bcd) = (A(1)B(1)) in
K0(k, G∧1

m ) and thus (A(t)B(t)) does not represent an element in H0
M
(
Spec k, Z(1)

)
Proposition 3.7. (Skew-Symmetry) Suppose that θ1(t), . . . , θl(t) ∈ GLn(k[t]) com-
mute and one of the symbols represented by θ1(t), . . . , θl−1(t) or θl(t) is irreducible.
If
(
θ1(t), . . . , θl(t)

)
represents an element in H l−1

M
(
Spec k, Z(l)

)
(l ≥ 2), then(

θ1(t), . . . , θi(t), . . . , θj(t), . . . , θl(t)
)

= −
(
θ1(t), . . . , θj(t), . . . , θi(t), . . . , θl(t)

)
in H l−1

M
(
Spec k, Z(l)

)
.
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Proof. For simplicity of notations, we assume that i = 1 and j = 2. Let ϕ = θ1 and
ψ = θ2. An argument similar to the one utilized in the proof of Theorem 3.3 can be
used to prove that

(9)
((

0 1
−ϕ(t)ψ(t) ϕ(t) + ψ(t)

)
,

(
0 1

−ϕ(t)ψ(t) ϕ(t) + ψ(t)

)
,

(
θ3(t) 0

0 θ3(t)

)
, ..

)
=
((

0 1
−ϕ(t)ψ(t) 1 + ϕ(t)ψ(t)

)
,

(
0 1

−ϕ(t)ψ(t) 1 + ϕ(t)ψ(t)

)
,

(
θ3(t) 0

0 θ3(t)

)
, ..

)
.

Just replace
((

0 1
−p(t) q(t)

)
,

(
θ2(t) 0

0 θ2(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
by
((

0 1
−p(t) q(t)

)
,

(
0 1

−p(t) q(t)

)
,

(
θ3(t) 0

0 θ3(t)

)
, . . . ,

(
θl(t) 0

0 θl(t)

))
and make similar replacements throughout the course of the proof of the claim in the
proof of Theorem 3.3. Then note that((

0 1
−ϕ(0)ψ(0) t

(
ϕ(0) + ψ(0)

)), ( 0 1
−ϕ(0)ψ(0) t

(
ϕ(0) + ψ(0)

)),(
θ3(0) 0

0 θ3(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
=
((

0 1
−ϕ(0)ψ(0) t

(
1 + ϕ(0)ψ(0)

)), ( 0 1
−ϕ(0)ψ(0) t

(
1 + ϕ(0)ψ(0)

)),(
θ3(0) 0

0 θ3(0)

)
, . . . ,

(
θl(0) 0

0 θl(0)

))
to show that the right-hand side of an equality similar to the one as in the claim in
the proof of Theorem 3.3 vanishes. This proves (9).

From (9), we have, using (1) and (2),
(
ϕ(t)ψ(t), ϕ(t)ψ(t), θ3(t), . . . , θ(l)

)
=
(
ϕ(t), ϕ(t), θ3(t), . . . , θ(l)

)
+
(
ψ(t), ψ(t), θ3(t), . . . , θ(l)

)
.

On the other hand, by Theorem 3.3, we also have(
ϕ(t)ψ(t), ϕ(t)ψ(t), θ3(t), . . . , θ(l)

)
=
(
ϕ(t), ϕ(t), θ3(t), . . . , θ(l)

)
+
(
ϕ(t), ψ(t), θ3(t), . . . , θ(l)

)
+
(
ψ(t), ϕ(t), θ3(t), . . . , θ(l)

)
+
(
ψ(t), ψ(t), θ3(t), . . . , θ(l)

)
.

The equality of the right hand sides of these two identities leads to the skew-
symmetry. �

The irreducibility assumption in Proposition 3.7 can be replaced by an assumption
similar to one of the conditions in Corollary 3.4 or 3.5. For example, it is enough to
require that the symbol

(
θ1(t), . . . , θl(t)

)
is irreducible if the field k is of characteristic

0.
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