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THE SIGNATURE OF THE CHERN COEFFICIENTS
OF LOCAL RINGS

Laura Ghezzi, Jooyoun Hong, and Wolmer V. Vasconcelos

Abstract. This paper considers the following conjecture: If R is an unmixed, equidi-
mensional local ring that is a homomorphic image of a Cohen-Macaulay local ring, then

for any ideal J generated by a system of parameters, the Chern coefficient e1(J) < 0 is

equivalent to R being non Cohen-Macaulay. The conjecture is established if R is a ho-
momorphic image of a Gorenstein ring, and for all universally catenary integral domains

containing fields. Criteria for the detection of Cohen-Macaulayness in equi-generated
graded modules are derived.

1. Introduction

Let (R,m) be a Noetherian local ring of dimension d > 0, and let I be an m-
primary ideal. We will consider the set of multiplicative, decreasing filtrations of R
ideals, B = {In, I0 = R, In+1 = IIn, n � 0}, integral over the I-adic filtration. They
are conveniently coded in the corresponding Rees algebra and its associated graded
ring

R(B) =
∑
n≥0

Intn, grB(R) =
∑
n≥0

In/In+1.

One of our goals is to study cohomological properties of these filtrations. For that
we will focus on the role of the Hilbert polynomial of the Hilbert–Samuel function
λ(R/In+1),

H1
B(n) = P 1

B(n) ≡
d∑

i=0

(−1)iei(B)
(

n + d− i

d− i

)
,

particularly of the multiplicity, e0(B), and the Chern coefficient, e1(B). For Cohen-
Macaulay rings, many penetrating relationships between these coefficients have been
proved, beginning with Northcott’s [7]. More recently, similar questions have been
examined in general Noetherian local rings and among those pertinent to our concerns
are [3], [10] and [12].

Here we extend several of the results of [12] on the meaning of the sign of e1(B),
particularly in the case of I-adic filtrations. Our main results are centered around
the following question:

Let J be an ideal generated by a system of parameters. Under which conditions is
e1(J) < 0 equivalent to R being not Cohen-Macaulay? We conjecture that this is so
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whenever R is an unmixed, equidimensional local ring that is a homomorphic image
of a Cohen-Macaulay local ring.

There are reasons for the interest in these numbers. To make the discussion more
direct, we assume that the residue field of R is infinite.

(1) Clarifying the role of the sign of e1(J) in the Cohen-Macaulay property of R
could be used as a scale to classify non-CM rings.

(2) In the study of the normalization B of R[Jt], the expression (see [8], [12])

e1(B)− e1(J)

bounds the length of certain computations in the construction of normalizations. It
highlights the need to look for upper bounds of e1(B) and for lower bounds of e1(J).

(3) The value of e1(J) occurs as a correction term in the extensions of several
well-known formulas in the theory of the Hilbert polynomials. We highlight two of
them. A classical result of Northcott ([7]) asserts that if R is Cohen-Macaulay, then

e1(I) ≥ e0(I)− λ(R/I).

For arbitrary Noetherian rings, if J is a minimal reduction of I, Goto and Nishida
([3, Theorem 3.1])proved that

e1(I)− e1(J) ≥ e0(I)− λ(R/I),

which gives
e1(B)− e1(J) ≥ e0(I)− λ(R/I),

since e1(B) ≥ e1(I) for all such ideals I. It is a formula which is relevant to a
conjecture of [12], on whether e1(B) ≥ 0.

A different kind of relationship given by Huckaba and Marley ([4, Theorem 4.7])
for Cohen-Macaulay rings,

e1(B) ≤
∑
n≥1

λ(In/JIn−1),

is extended by Rossi and Valla ([10, Theorem 2.11]) to general filtrations to an ex-
pression that replaces e1(B) in the inequality above by e1(B)− e1(J).

In our main result (Theorem 3.3) we show that the above Conjecture holds if R
is a homomorphic image of a Gorenstein ring, or milder extensions that allow an
embedding of R into a (small) Cohen-Macaulay module over a possibly larger ring.
The proof is a variation of an argument in [12], but turned more abstract. Another
result establishes the Conjecture for universally catenary local domains containing a
field (Theorem 4.4).

The same question can be asked about filtrations of modules regarding the negativ-
ity of the coefficient e1 of the corresponding associated graded module. In case R is a
polynomial ring over a field and M is a graded, torsion–free R-module, this extension
has a surprising application to the Cohen-Macaulayness of M . In the special case
of modules generated in the same degree, the Hilbert coefficient e1(M), which may
be different from e1(grx(M)), can alone decide whether M is Cohen-Macaulay or not
(Corollary 5.4) .

We thank Rodney Sharp and Santiago Zarzuela for sharing with us their expertises
on balanced big Cohen-Macaulay modules. We are also grateful to Shiro Goto for
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sharing with us a sketch of his proof of a more extended version of Theorem 3.3.
The Yokohama Conference on Commutative Algebra, on March 2008, was the setting
where some of the questions arose.

2. Preliminaries

We will assemble quickly here some facts about associated graded modules and
their Hilbert functions. As a general reference for unexplained terminology and basic
results, we shall use [1].

Let (R,m) be a Noetherian local ring, I an m-primary ideal, and M a nonzero

finite R–module of dimension d. The associated graded ring grI(R) =
∞⊕

i=0

Ii/Ii+1

is a standard graded ring with [grI(R)]0 = R/I Artinian. The associated graded

module grI(M) =
∞⊕

i=0

IiM/Ii+1M of I with respect to M is a finitely generated

graded grI(R)–module. The Hilbert–Samuel function χI
M (n) of M with respect to

I is

χI
M (n) = λ(M/In+1M) =

n∑
i=0

λ(IiM/Ii+1M).

For sufficiently large n, the Hilbert–Samuel function χI
M (n) is of polynomial type :

χI
M (n) =

d∑
i=0

(−1)iei(I,M)
(

n + d− i

d− i

)
.

For an R–module M of finite length, we denote the length of M by λ(M).

Lemma 2.1. Let (R,m) be a Noetherian local ring and let I be an m–primary ideal.
Let 0 → T → M → N → 0 be an exact sequence of finitely generated R–modules.
Assume that M has dimension d ≥ 2 and that T has finite length. Then e1(I,M) =
e1(I,N).

Proof. From the following commutative diagram with exact rows

0 −−−−→ T ∩ In+1M −−−−→ In+1M −−−−→ In+1N −−−−→ 0y y y
0 −−−−→ T −−−−→ M −−−−→ N −−−−→ 0

we get an exact sequence

0 −→ T/(T ∩ In+1M) −→ M/In+1M −→ N/In+1N −→ 0.

By the Artin–Rees Lemma, T ∩ In+1M = 0 for all sufficiently large n. Hence we get
for all n � 0

λ(T )− λ(M/In+1M) + λ(N/In+1N) = 0.

Let d′ be the dimension of N . There are Hilbert polynomials such that

λ(M/In+1M) =
d∑

i=0

(−1)iei(I,M)
(

d + n− i

d− i

)
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and

λ(N/In+1N) =
d′∑

i=0

(−1)iei(I,N)
(

d′ + n− i

d′ − i

)
for all sufficiently large n. Therefore d = d′,

ei(I,M) = ei(I,N) for all i = 0, . . . , d− 1 and ed(I,N) = ed(I,M) + (−1)d+1λ(T ).

In particular, since d ≥ 2, we have e1(I,M) = e1(I, N). �

Let R be a ring, I an R–ideal and M an R–module. An element h ∈ I is called a
superficial element of I with respect to M if there exists a positive integer c such that

(In+1M :M h) ∩ IcM = InM

for all n ≥ c. A detailed discussion on superficial elements can be found in several
sources, but we especially benefited from the treatment in [9, Theorem 1.5] of the
construction of superficial elements. It depends simply on showing that certain finitely
generated modules cannot be written as a union of a finite set of proper submodules.
The existence of such elements is guaranteed if the residue field of R is infinite. Its
usefulness for our purposes is expressed in the following result.

Proposition 2.2. ([6, (22.6)]) Let (R,m) be a Noetherian local ring, I an m-primary
ideal, and M a nonzero finitely generated R–module of dimension d. Let h be a
superficial element of I with respect to M . Then the Hilbert coefficients of M and
M/hM satisfy

ei(I,M) =
{

ei(I/(h),M/hM) for i < d− 1.
ed−1(I/(h),M/hM) + (−1)d−1λ(0 :M h). for i = d− 1.

3. Cohen-Macaulayness versus the vanishing of the Euler number

In this section we develop an abstract approach to the relationship between the
signature of e1 and the Cohen-Macaulayness of a local ring (see [12, Theorem 3.1]).
We also give a more general but still self-contained proof of the main result of [12]
that avoids the use of big Cohen-Macaulay modules.

Lemma 3.1. Let (S, n) be a Cohen–Macaulay local ring of dimension d with infinite
residue field and let R = S/p, where p is a minimal prime ideal of S. Let x1, . . . , xd

be a system of parameters of R. Then there exists a system of parameters a1, . . . , ad

of S such that xi = ai + p for each i.

Proof. Let m denote the maximal ideal of R and let p = (c1, . . . , cs). Let x1 = b1 + p
for some b1 ∈ S and let p1, . . . , pn be the minimal primes of S different from p.
We claim that there exists λ ∈ S \ n such that b1 + λc1 + · · · + λscs 6∈ pi for all
i = 1, . . . , n. Suppose not: since S/n is infinite, there exist λ1, . . . , λs+1 ∈ S \ n such
that λi +n 6= λj +n whenever i 6= j and such that b1 +λic1 + · · ·+λs

i cs ∈ pk for some
fixed k. Let A be the Vandermonde matrix determined by λi, 1 ≤ i ≤ s+1. We have

A


b1

c1

...
cs

 =


1 λ1 λ2

1 · · · λs
1

1 λ2 λ2
2 · · · λs

2
...

...
...

. . .
...

1 λs+1 λ2
s+1 · · · λs

s+1




b1

c1

...
cs

 =


g1

g2

...
gs+1

 ,
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where g1, . . . , gs+1 ∈ pk. Since A is invertible, c1, . . . , cs ∈ pk so that p ⊆ pk, a
contradiction. Let a1 = b1 + λc1 + · · · + λscs, with λ ∈ S \ n, be such that a1 6∈ pi

for all i = 1, . . . , n. Hence a1 is not contained in any minimal prime ideal of S and
a1 + p = x1.

Let q1, . . . , qm be the minimal primes of a1S that do not contain p. Let x2 = b2 +p
for some b2 ∈ S. Then similarly as shown above, there exists τ ∈ S \ n such that
b2 + τc1 + · · · + τ scs 6∈ qi for all i. Let a2 = b2 + τc1 + · · · + τ scs. Then a2 is not
contained in any minimal prime ideal of a1S and a2 + p = x2. Now inductively we
show that there exists a system of parameters a1, . . . , ad of S such that ai + p = xi

for all i. �

Lemma 3.2. Let (S, n) be a Cohen–Macaulay complete local ring of dimension d ≥ 2
and let M be a finitely generated S–module of dimension d satisfying Serre’s condition
(S1). Then H1

n(M) is a finitely generated S–module.

Proof. Let k denote the residue field of S and ω the canonical module of S. Since
M satisfies Serre’s condition (S1), Extd−1

S (M,ω) is zero at each localization at p such
that p 6= n. Thus it is a module of finite length. By Grothendieck duality ([1, 3.5.8]),
we have

H1
n(M) ' HomS(Extd−1

S (M,ω), E(k)).

By Matlis duality([1, 3.2.13]), H1
n(M) is finitely generated. �

Let (R,m) be a Noetherian local ring of dimension d ≥ 2. The enabling idea is the
embedding of R into a Cohen-Macaulay (possibly big Cohen-Macaulay) module E,

0 → R −→ E −→ C → 0.

Unfortunately, it may not be always possible to find the appropriate R-module E.
Instead we will seek embed R into a Cohen-Macaulay module E over a ring S closely
related to R for the purpose of computing associated graded rings of adic-filtrations.
The following is our main result.

Theorem 3.3. Let (R,m) be a Noetherian local domain of dimension d ≥ 2, which
is a homomorphic image of a Cohen-Macaulay local ring (S, n). If R is not Cohen-
Macaulay, then e1(J) < 0 for any R–ideal J generated by a system of parameters.

Proof. Let R = S/p. We may assume that S has infinite residue field. If height(p) ≥ 1,
we replace S by S/L, where L is the S–ideal generated by a maximal regular sequence
in p. This means that we may assume that dim R = dim S, and that p is a minimal
prime of S. In particular, we have an exact sequence of S-modules

0 −→ R −→ S −→ C −→ 0.

Let J = (x1, . . . , xd) be an R–ideal generated by a system of parameters. Then by
Lemma 3.1, there exists a system of parameters a1, . . . , ad of S such that xi = ai + p
for each i. Let I = (a1, . . . , ad)S. Since IR = J , the associated graded ring grI(R) of
I with respect to the S–module R is equal to the associated graded ring grJ(R) of J .
In particular, e1(I,R) = e1(J). Therefore, for the purpose of constructing e1(J), we
treat R as an S-module and use the I-adic filtration.
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Now proceed as in the proof of [12, Theorem 3.1]. Let a be a superficial element
for I with respect to the S–module R which is not contained in any associated prime
of C distinct from n. We may assume that a = a1. Reduction modulo aS gives rise
to the exact sequence

0 → T = TorS
1 (S/aS,C) −→ R/aR −→ S/aS −→ C/aC → 0,

where T = (0 :C a) ⊂ C. This shows that the associated primes of T contain a.
Therefore T is either zero, or T is a non-zero module of finite support.

Let R ′ = R/aR, I ′ = I/(a), and denote the image of R/aR in S/aS by S ′.

Now we use induction on d ≥ 2 to show that if R is not Cohen–Macaulay, then
e1(I,R) < 0. Let d = 2. Notice that S ′ is a Cohen-Macaulay ring of dimension 1.
We have that depth C = 0, and so T 6= 0. As in the proof of [12, Theorem 3.1], we
obtain e1(I ′, R ′) = −λ(T ). Hence by Proposition 2.2, e1(I,R) = −λ(T ) < 0.

Suppose d > 2. Consider the exact sequence of S/aS–modules : 0 → T → R ′ →
S ′ → 0. By Lemma 2.1, we have e1(I ′, R ′) = e1(I ′, S ′) since dim(S/aS) = d−1 ≥ 2.
Now it is enough to show that S ′ is not a Cohen–Macaulay S/aS–module. Then
since dim(S ′) = d − 1, by induction we get e1(I ′, S ′) < 0, and we conclude using
Proposition 2.2.

Suppose that S ′ is a Cohen–Macaulay S/aS–module. Let n denote the maximal ideal
of S/aS as well and let Hi

n(·) denote the ith local cohomology. We are going to use the
argument of [5, Proposition 2.1]. From the exact sequence 0 → T → R ′ → S ′ → 0,
we obtain a long exact sequence:

0 → H0
n(T ) → H0

n(R ′) → H0
n(S ′) → H1

n(T ) → H1
n(R ′) → H1

n(S ′).

Since S ′ is Cohen–Macaulay of dimension d− 1 ≥ 2, we have H0
n(S ′) = 0 = H1

n(S ′).
Since T is a torsion module, we have H0

n(T ) = T and H1
n(T ) = 0. Therefore T '

H0
n(R ′) and H1

n(R ′) = 0. Now from the exact sequence of S–modules

0 −→ R
·a−→ R −→ R/aR −→ 0

we obtain the following exact sequence:

0 −→ T ' H0
n(R ′) −→ H1

n(R) ·a−→ H1
n(R) −→ H1

n(R ′) = 0.

Therefore H1
n(R) = aH1

n(R). Moreover, once R is embedded in S, we may assume that
S is a complete local ring. By Lemma 3.2, H1

n(R) is finitely generated. By Nakayama
Lemma, we have that H1

n(R) = 0 so that T = 0. It follows that R/aR = R ′ ' S ′,
where S ′ is Cohen–Macaulay. This means that R is Cohen–Macaulay, which is a
contradiction. �

Remark 3.4. The proof of Theorem 3.3 can be extended from integral domains to
more general local rings, R = S/L, where S is Cohen-Macaulay and dim R = dim S,
if R can be embedded into a maximal Cohen-Macaulay S-module. Notice that in
order to embed R into a maximal Cohen–Macaulay S-module at a minimum we need
to require that R be unmixed and equidimensional.

There is room for the following problem:
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Problem 3.5. Let R = S/L (unmixed and equidimensional as above), where S is
a Cohen-Macaulay local ring of dimension dim R. Characterize those R that can be
embedded into a maximal Cohen–Macaulay S-module. Note that L may be assumed
to be a primary ideal: If L = ∩Qi is a primary decomposition, we have the embedding

S/L ↪→ S/Q1 ⊕ · · · ⊕ S/Qn.

We make an elementary observation of what it takes to embed R into a free S-
module (see [11, Theorem A.1]).

Proposition 3.6. Let S be a Noetherian ring and L an ideal of codimension zero
without embedded components. If R = S/L, there is an embedding R → F into a free
S–module F if and only if L = 0 : (0 : L). In particular, this condition always holds
if the total ring of fractions of S is a Gorenstein ring.

Proof. Let {a1, . . . , an} be a generating set of 0 : L, and consider the mapping ϕ :
S → Sn, ϕ(1) = (a1, . . . , an); its kernel is isomorphic to 0 : (0 : L). This shows that
the equality L = 0 : (0 : L) is required for the asserted embedding.

Conversely, given an embedding ϕ : S/L → Sn, let (a1, . . . , an) ∈ Sn be the image
of a generator of S/L. The ideal a these entries generate is annihilated by L, and so
a ⊂ 0 : L. Since 0 : a = L, we have 0 : (0 : L) ⊂ 0 : a = L.

If the total ring of fractions of S is Gorenstein, to prove that 0 : (0 : L) ⊂ L,
it suffices to localize at the associated primes of L, all of which have codimension
zero and a localization which is Gorenstein. But the double annihilator property is
characteristic of such rings. �

Corollary 3.7. Let (R,m) be an unmixed and equidimensional Noetherian local ring
of dimension d ≥ 2, which is a homomorphic image of a Gorenstein local ring. If R
is not Cohen-Macaulay, then e1(J) < 0 for any R–ideal J generated by a system of
parameters.

Proof. Let R = S/L. If height(L) ≥ 1, we replace S by S/L′, where L′ is the S–ideal
generated by a maximal regular sequence in L. So we may assume that dim R = dim S,
and the conclusion follows by Proposition 3.6 and Remark 3.4. �

We give now a family of examples based on a method of [3].

Example 3.8. Let (S, m) be a regular local ring of dimension four, with an infinite
residue field. Let P1, . . . , Pr be a family of codimension two Cohen-Macaulay ideals
such that for i 6= j, Pi + Pj is an m-primary ideal. Define R = S/ ∩i Pi.

Consider the exact sequence of S-modules

0 → R −→
⊕

i

S/Pi −→ L → 0.

Note that L is a module of finite support; it may be identified with H1
m(R). Let

J = (a, b) be an ideal of R forming a system of parameters, contained in the annihilator
of L.1 We can assume that a, b ∈ S form a regular sequence in each S/Pi. We are
going to determine e1(J).

1We thank Jugal Verma for this observation.
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For each integer n, tensoring by S/(a, b)n we get the exact sequence

0→ TorS
1 (L, S/(a, b)n)→ R/(a, b)n →

M
i

S/(Pi, (a, b)n)→ L⊗S S/(a, b)n → 0.

For n � 0, (a, b)nL = 0, so we have that L⊗S S/(a, b)n = L and TorS
1 (L, S/(a, b)n) =

Ln+1, from the Burch-Hilbert (n + 1) × n resolution of the ideal (a, b)n. Since the
Ri = S/Pi are Cohen-Macaulay, we obtain the following Hilbert-Samuel polynomial:

e0(J)
(

n + 2
2

)
−e1(J)

(
n + 1

1

)
+e2(J) = (

r∑
i=1

e0(JRi))
(

n + 2
2

)
+(n+2)λ(L)−λ(L).

It gives

e0(JR) =
r∑

i=1

e0(JRi),

e1(JR) = −λ(L),
e2(JR) = 0.

4. Embedding into balanced big Cohen-Macaulay modules

Let (R,m) be a Noetherian local domain. If R has a big Cohen-Macaulay module
E, any nonzero element of E allows for an embedding R ↪→ E. In fact, one may
assume that E is a balanced big Cohen-Macaulay module (see [1, Section 8.5] for a
discussion). According to the results of Hochster, if R contains a field, then there is
a balanced big Cohen-Macaulay R-module E ([1, 8.4.2]).

To use the argument in [12, Theorem 3.2], in the exact sequence

0 → R −→ E −→ C → 0,

we should, given any parameter ideal J of R, pick an element superficial for the
purpose of building grJ(R) (if dim R > 2) and not contained in any associated prime
of C different from m. This is possible if the cardinality of the residue field is larger
than the cardinality of Ass(C).

Theorem 4.1. Let (R,m) be a Noetherian local integral domain that is not Cohen-
Macaulay and let E be a balanced big Cohen-Macaulay module. If the residue field of
R has cardinality larger than the cardinality of a generating set for E, then e1(J) < 0
for any parameter ideal J .

Let X be a set of indeterminates of larger cardinality than Ass(C), and consider
R(X) = R[X]mR[X]. This is a Noetherian ring ([2]), and we are going to argue that
if E is a balanced big Cohen-Macaulay R-module, then R(X)⊗R E is a balanced big
Cohen-Macaulay module over R(X). S. Zarzuela has kindly pointed out to us the
following result:

Theorem 4.2 ([13, Theorem 2.3]). Let A → B be a flat morphism of local rings
(A,m), (B, n) and M a balanced big Cohen-Macaulay A-module. Then, M ⊗A B is
a balanced big Cohen-Macaulay B-module if and only if the following two conditions
hold:

(i) n(M ⊗A B) 6= M ⊗A B and
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(ii) For any prime ideal q ∈ supp B(M⊗A B), (1) height(q/pB) = depth(Cq) and
(2) height(q) + dim(B/q) = dim(B).

Here, we denote by supp A(M) (small support) the set of prime ideals in A with at
least one non-zero Bass number in the A-minimal injective resolution of M , p = q∩A,
C = B/pB and q = qC.

Moreover, if q ∈ supp B(M ⊗A B) then p ∈ supp A(M), and height(A/p) +
dim(A/p) = dim(A).

Corollary 4.3. Let (R,m) be a universally catenary integral domain and let E be
a balanced big Cohen-Macaulay R-module. For any set X of indeterminates and
B = R(X) = R[X]m[X], B ⊗R E is a balanced big Cohen-Macaulay B-module.

Theorem 4.4. Let (R,m) be a universally catenary integral domain containing a
field. If R is not Cohen-Macaulay, then e1(J) < 0 for any parameter ideal J .

Proof. Let E be a balanced big Cohen–Macaulay R–module ([1, 8.4.2]) and consider
the exact sequence 0 → R → E → C → 0. Let X be a set of indeterminates of larger
cardinality than Ass(C), and let R(X) = R[X]mR[X]. By applying Theorem 4.1 to the
exact sequence 0 → R(X) → E⊗R(X) → C⊗R(X) → 0, the assertion is proved. �

5. Filtered modules

The same relationship discussed above between the signature of e1(J) and the
Cohen-Macaulayness of R holds true when modules are examined. Recall that if a
Noetherian local ring R is embedded into either a maximal Cohen–Macaulay module
([12, Theorem 3.1]) or a balanced big Cohen–Macaulay module ([12, proof of Theorem
3.2]), then whenever R is not Cohen–Macaulay, we have e1(J) < 0 for any parameter
ideal J . Now we use the same arguments as in [12, Theorems 3.1, 3.2] in order to
extend the validity of Theorem 3.3 in the following manner.

Theorem 5.1. Let (R,m) be a Noetherian local ring of dimension d ≥ 1 and let M
be a finitely generated module embedded in a maximal Cohen–Macaulay module E.
Then M is Cohen-Macaulay if and only if e1(J,M) ≥ 0 for any ideal J generated by
a system of parameters of M .

A variation that uses Theorem 4.4 is the following.

Theorem 5.2. Let (R,m) be a universally catenary integral domain containing a field
and let M be a finitely generated torsion–free R-module. If M is not Cohen-Macaulay,
then e1(J,M) < 0 for any ideal J generated by a system of parameters of M .

Proof. By assumption M is a submodule of a finitely generated free R-module, which
can be embedded into a finite direct sum of balanced big Cohen-Macaulay modules.
The argument of [12, Theorem 3.2] applies again. �

Let now R = k[x1, . . . , xd] be a ring of polynomials over the field k, and let M
be a finitely generated graded R-module. Suppose dim M = d. For J = (x1, . . . , xd)
we can apply Theorem 5.1 to M in a manner that uses the Hilbert–Samuel function
information of the native grading of M .
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Theorem 5.3. Let R = k[x] = k[x1, . . . , xd], d ≥ 2, be a ring of polynomials over
the field k, and let M be a finitely generated graded R-module generated in degree 0.
If M is torsion–free, then M is a free R-module if and only if e1(M) = 0.

Proof. Since M is generated in degree 0, M ' grx(M). By assumption, M can be
embedded in a free R-module E (not necessarily by a homogeneous homomorphism).
Now we apply Theorem 5.1. �

If M is generated in degree a > 0, we have the equality

λ(M/(x)n+1M) =
n∑

k=0

λ(Ma+k),

so the Hilbert coefficients satisfy

e0(grx(M)) = e0(M [a]) = e0(M),
e1(grx(M)) = e1(M [a]) = e1(M)− ae0(M).

Corollary 5.4. Let R = k[x] = k[x1, . . . , xd], d ≥ 2, be a ring of polynomials over
the field k, and let M be a finitely generated graded R-module generated in degree
a ≥ 0. If M is torsion–free, then e1(M) ≤ ae0(M), with equality if and only if M is
a free R-module.
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