CALOGERO-MOSER SPACE, RESTRICTED RATIONAL CHEREDNIK ALGEBRAS AND TWO-SIDED CELLS.

I.G. GORDON AND M. MARTINO

ABSTRACT. We conjecture that the "nilpotent points" of Calogero-Moser space for reflection groups are parametrised naturally by the two-sided cells of the group with unequal parameters. The nilpotent points correspond to blocks of restricted Cherednik algebras and we describe these blocks in the case $G = \mu_{\ell} \wr \mathfrak{S}_n$ and show that in type B our description produces an existing conjectural description of two-sided cells.

1. Introduction

- 1.1. Smooth points are all alike; every singular point is singular in its own way. Calogero-Moser space associated to the symmetric group has remarkable applications in a broad range of topics; in [3], Etingof and Ginzburg introduced a generalisation associated to any complex reflection group which has also found a variety of uses. The Calogero-Moser spaces associated to a complex reflection group, however, exhibit new behaviour: they are often singular. The nature of these singularities remains a mystery, but their existence has been used to solve the problem of the existence of crepant resolutions of symplectic quotient singularities. The generalised Calogero-Moser spaces are moduli spaces of representations of rational Cherednik algebras and so their geometry reflects the representation theory of these algebras: smooth points correspond to irreducible representations of maximal dimension; singular points to smaller, more interesting representations. In this note we conjecture a strong link between the representations corresponding to some particularly interesting "nilpotent points" of Calogero-Moser space and Kazhdan-Lusztig cell theory for Hecke algebras with unequal parameters. To justify the conjecture we give a combinatorial parametrisation of these points, thus answering a question of [6], and then relate this parametrisation to the conjectures of [1] on the cell theory for Weyl groups of type B.
- **1.2.** Let W be a complex reflection group and \mathfrak{h} its reflection representation over \mathbb{C} . Let S denote the set of complex reflections in W. Let ω be the canonical symplectic form on $V = \mathfrak{h} \oplus \mathfrak{h}^*$. For $s \in S$, let ω_s be the skew-symmetric form that coincides with ω on $\operatorname{im}(\operatorname{id}_V s)$ and has $\operatorname{ker}(\operatorname{id}_V s)$ as its radical. Let $\mathbf{c}: S \longrightarrow \mathbb{C}$ be a W-invariant function sending s to c_s . The rational Cherednik algebra at parameter t = 0 (depending on \mathbf{c}) is the quotient of the skew group algebra of the tensor algebra on V, TV * W, by the relations

(1)
$$[x,y] = \sum_{s \in \mathcal{S}} c_s \omega_s(x,y) s$$

Received by the editors March 19, 2007.

for all $x, y \in V$. This algebra is denoted by $H_{\mathbf{c}}$.

Let $Z_{\mathbf{c}}$ denote the centre of $H_{\mathbf{c}}$ and set $A = \mathbb{C}[\mathfrak{h}^*]^W \otimes \mathbb{C}[\mathfrak{h}]^W$. Thanks to [3, Proposition 4.15] $A \subset Z_{\mathbf{c}}$ for any parameter \mathbf{c} and $Z_{\mathbf{c}}$ is a free A-module of rank |W|. Let $X_{\mathbf{c}}$ denote the spectrum of $Z_{\mathbf{c}}$: this is called the *Calogero-Moser space* associated to W. Corresponding to the inclusion $A \subset Z_{\mathbf{c}}$ there is a finite surjective morphism $\Upsilon_{\mathbf{c}}: X_{\mathbf{c}} \longrightarrow \mathfrak{h}^*/W \times \mathfrak{h}/W$.

Let \mathfrak{m} be the homogeneous maximal ideal of A. The restricted rational Cherednik algebra is $\overline{H}_{\mathbf{c}} = H_{\mathbf{c}}/\mathfrak{m}H_{\mathbf{c}}$. By [3, PBW theorem 1.3] it has dimension $|W|^3$ over \mathbb{C} . General theory asserts that the blocks of $\overline{H}_{\mathbf{c}}$ are labelled by the closed points of the scheme-theoretic fibre $\Upsilon^*(0)$. We call these points the nilpotent points of $X_{\mathbf{c}}$. By [6, 5.4] there is a surjective mapping

$$\Theta_{\mathbf{c}} : \operatorname{Irr} W \longrightarrow \{ \text{closed points of } \Upsilon^*_{\mathbf{c}}(0) \} = \{ \text{blocks of } \overline{H}_{\mathbf{c}} \},$$

constructed by associating to any $\lambda \in \operatorname{Irr} W$ an indecomposable $\overline{H}_{\mathbf{c}}$ -module, the baby Verma module $M_{\mathbf{c}}(\lambda)$. The fibres of $\Theta_{\mathbf{c}}$ partition $\operatorname{Irr} W$. We will call this the $CM_{\mathbf{c}}$ -partition.

1.3. Let W be a Weyl group. Let $\mathbf{L}: W \to \mathbb{Q}$ be a weight function (in the sense of [1, Section 2]). Let \mathcal{H} be the corresponding Iwahori-Hecke algebra at unequal parameters, an algebra over the group algebra of \mathbb{Q} , $A = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z} v^q$, which has a basis T_w for $w \in W$, with multiplication given by the rule

$$T_s T_w = \begin{cases} T_{sw} & \text{if } l(sw) = l(w) + 1\\ T_{sw} + (v^{\mathbf{L}(s)} - v^{-\mathbf{L}(s)}) T_w & \text{if } l(sw) = l(w) - 1 \end{cases}$$

where $s \in \mathcal{S}$ and $w \in W$. There is an associated partition of W into two-sided cells, see [9, Chapter 8]. We call these the $KL_{\mathbf{L}}$ -cells.

Conjecture. Let W be a Weyl group and let \mathbf{L} be the weight function generated by $\mathbf{L}(s) = c_s$ for each $s \in \mathcal{S}$.

- (1) There is a natural identification of the CM_c -partition and the KL_L -partition; this is induced by attaching a KL_L -cell to an irreducible W-representation via the asymptotic algebra J, [9, 20.2].
- (2) Let \mathcal{F} be a $KL_{\mathbf{L}}$ -cell of W and let $M_{\mathcal{F}}$ be the closed point of $\Upsilon^*_{\mathbf{c}}(0)$ corresponding to \mathcal{F} by (1). Then $\dim_{\mathbb{C}}(\Upsilon^*_{\mathbf{c}}(0)_{M_{\mathcal{F}}}) = |\mathcal{F}|$.

The existence of the asymptotic algebra mentioned in (1) is still a conjecture, depending on Lusztig's conjectures P1-P15 in [9, Conjecture 14.2].

- **1.4.** This conjecture generalises the known results about the blocks of $\overline{H}_{\mathbf{c}}$ and about the fibre $\Upsilon_{\mathbf{c}}^*(0)$.
 - [6, Corollary 5.8] If $X_{\mathbf{c}}$ is smooth then $\Theta_{\mathbf{c}}$ is bijective, making the $CM_{\mathbf{c}}$ -partition trivial. If $S \in \operatorname{Irr} W$ then $\dim_{\mathbb{C}}(\Upsilon_{\mathbf{c}}^{*}(0)_{M_{S}}) = \dim_{\mathbb{C}}(S)^{2}$.
 - $\Theta_{\mathbf{c}}$ is not bijective when W is a finite Coxeter group of type D_{2n} , E, F, H or $I_2(m)$ $(m \geq 5)$, [6, Proposition 7.3]. In all of these cases there are non-trivial two-sided cells.
 - Both the a-function and the c-function are constant across fibres of $\Theta_{\mathbf{c}}$, [7, Lemma 5.3 and Proposition 9.2]. This should be a property of two-sided cells.

- 1.5. In Theorem 2.5 we will give a combinatorial description of the $CM_{\mathbf{c}}$ -partition when $W = G(\ell, 1, n) = \mu_{\ell} \wr \mathfrak{S}_n$, and then in Theorem 3.3 we will provide evidence for the conjecture by showing that the CM_c -partition agrees with the conjectural description of the $KL_{\mathbf{L}}$ -partition for W = G(2,1,n), the Weyl group of type B_n , given in [1, Section 4.2].
- 1.6. An advantage of the Cherednik algebras is that the CM_c -partition exists for any complex reflection group whereas, at the moment, a cell theory only exists for Coxeter groups. However, following [12], one can introduce Rouquier families as a sensible extension of the notion of the $KL_{\rm L}$ -partition to nearly all complex reflection groups and any parameters. In [10] counterparts to the above conjecture are proposed for complex reflection groups in terms of families, and supporting evidence is gathered.

2. Blocks for
$$W = G(\ell, 1, n)$$

- **2.1.** Let ℓ and n be positive integers. Let μ_{ℓ} be the group of ℓ -th roots of unity in \mathbb{C} with generator γ and let \mathfrak{S}_n be the symmetric group on n letters. Let W be the wreath product $G(\ell, 1, n) = \mu_{\ell} \wr \mathfrak{S}_n = (\mu_{\ell})^n \rtimes \mathfrak{S}_n$ acting naturally on $\mathfrak{h} = \mathbb{C}^n$.
- **2.2.** Let $\mathcal{P}(n)$ denote the set of partitions of n and $\mathcal{P}(\ell,n)$ the set of ℓ -multipartitions of n. The set Irr W can be identified naturally with $\mathcal{P}(\ell, n)$ so that the trivial representation corresponds to $((n), \emptyset, \dots, \emptyset)$, e.g. [8, Theorem 4.4.3]. Given an element $\mathbf{s} \in \mathbb{Z}_0^{\ell} = \{(s_1, \dots, s_{\ell}) \in \mathbb{Z}^{\ell} : s_1 + \dots + s_{\ell} = 0\}$ there is an associated ℓ -core (a partition from which no ℓ -hooks can be removed). The inverse of the process assigning to a partition its ℓ -core and ℓ -quotient defines a bijection

(2)
$$\mathbb{Z}_0^\ell \times \coprod_n \mathcal{P}(\ell,n) \longrightarrow \coprod_n \mathcal{P}(n), \qquad (\mathbf{s}, \boldsymbol{\lambda}) \mapsto \tau_{\mathbf{s}}(\boldsymbol{\lambda}).$$
 A detailed discussion of this can be found in [8, Section 2.7] or [7, Section 6].

- **2.3.** The Young diagram of a partition λ will always be justified to the northwest (one of the authors is English); we will label the box in the pth row and qth column of λ by s_{pq} . With this convention the residue of s_{pq} is defined to be congruence class of p-q modulo ℓ . Recall that s_{pq} is said to be j-removable for some $0 \le j \le \ell-1$ if it has residue j and if $\lambda \setminus \{s_{pq}\}$ is the Young diagram of another partition, a predecessor of λ . We say that s_{pq} is j-addable to $\lambda \setminus \{s_{pq}\}$.
- Let $J \subseteq \{0, \ldots, \ell-1\}$. We define the *J-heart* of λ to be the sub-partition of λ which is obtained by removing as often as possible j-removable boxes with $j \in J$ from λ and its predecessors. A subset of $\mathcal{P}(n)$ whose elements are the partitions with a given J-heart is called a J-class.
- **2.4.** We will use the "stability parameters" of [7] $\theta(\mathbf{c}) = (\theta_0, \dots, \theta_{\ell-1})$ defined by $\theta_k = -\delta_{0k}c_{(i,j)} + \sum_{t=1}^{\ell-1} \eta^{tk}c_{\gamma^t}$ for $0 \le k \le \ell-1$, η a primitive l-th root of unity and an arbitrary transposition $(i,j) \in \mathfrak{S}_n$: they contain the same information as **c**. Following [7, Theorem 4.1] we set $\Theta = \{(\theta_0, \dots, \theta_{\ell-1}) \in \mathbb{Q}^\ell\}$ and $\Theta_1 = \{\theta \in \Theta : \theta \in \Theta : \theta \in \Theta : \theta \in \theta \in$ $\theta_0 + \dots + \theta_{\ell-1} = 1\}.$

Let $\tilde{\mathfrak{S}}_{\ell}$ denote the affine symmetric group with generators $\{\sigma_0, \ldots, \sigma_{\ell-1}\}$. It acts naturally on Θ by $\sigma_j \cdot (\theta_0, \dots, \theta_{\ell-1}) = (\theta_0, \dots, \theta_{j-1} + \theta_j, -\theta_j, \theta_j + \theta_{j+1}, \dots, \theta_{\ell-1}).$ This restricts to the affine reflection representation on Θ_1 : the walls of Θ_1 are the

reflecting hyperplanes and the *alcoves* of Θ_1 are the connected components of (the real extension of) $\Theta_1 \setminus \{\text{walls}\}$. Let A_0 be the alcove containing the point $\ell^{-1}(1,\ldots,1)$: its closure is a fundamental domain for the action of $\tilde{\mathfrak{S}}_{\ell}$ on Θ_1 . The stabiliser of a point $\boldsymbol{\theta} \in \overline{A}_0$ is a standard parabolic subgroup of $\tilde{\mathfrak{S}}_{\ell}$ generated by simple reflections $\{\sigma_j: j \in J\}$ for some subset $J \subseteq \{0,\ldots,\ell-1\}$. We call this subset the *type* of $\boldsymbol{\theta}$. The type of an arbitrary point $\boldsymbol{\theta} \in \Theta_1$ is defined to be the type of its conjugate in \overline{A}_0 .

2.5. We have an isomorphism $\tilde{\mathfrak{S}}_{\ell} \cong \mathbb{Z}_{0}^{\ell} \rtimes \mathfrak{S}_{l}$ with $\mathfrak{S}_{\ell} = \langle \sigma_{1}, \ldots, \sigma_{\ell-1} \rangle$ and the elements of \mathbb{Z}_{0}^{ℓ} corresponding to translations by elements of the dual root lattice $\mathbb{Z}R^{\vee}$. The symmetric group \mathfrak{S}_{ℓ} acts on $\mathcal{P}(\ell, n)$ by permuting the partitions comprising an ℓ -multipartition.

Theorem. Assume that $\theta(\mathbf{c}) \in \Theta_1$, so that $\theta(\mathbf{c})$ has type J and belongs to $(\mathbf{s}, w) \cdot \overline{A}_0$ for some $(\mathbf{s}, w) \in \tilde{\mathfrak{G}}_{\ell}$. Then $\lambda, \mu \in IrrW = \mathcal{P}(\ell, n)$ belong to the same block of $\overline{H}_{\mathbf{c}}$ if and only if $\tau_{\mathbf{s}}(w \cdot \lambda)$ and $\tau_{\mathbf{s}}(w \cdot \mu)$ belong to the same J-class. In other words, the $CM_{\mathbf{c}}$ -partition is governed by the J-classes.

Proof. Rescaling gives an isomorphism between $\overline{H}_{\mathbf{c}}$ and $\overline{H}_{\mathbf{c}/2}$ so we can replace \mathbf{c} by $\mathbf{c}/2$. By [6, 5.4] we must show that the baby Verma modules $M_{\mathbf{c}/2}(\lambda)$ and $M_{\mathbf{c}/2}(\mu)$ give rise to the same closed point of $\Upsilon^*_{\mathbf{c}/2}(0)$ if and only if $\tau_{\mathbf{s}}(w \cdot \lambda)$ and $\tau_{\mathbf{s}}(w \cdot \mu)$ have the same J-class. But the closed points of $\Upsilon^*_{\mathbf{c}/2}(0)$ correspond to the \mathbb{C}^* -fixed points of $X_{\mathbf{c}/2}$ under the action induced from the grading on $H_{\mathbf{c}/2}$ which assigns degree 1, respectively -1 and 0, to non-zero elements of \mathfrak{h} , respectively \mathfrak{h}^* and W. By [7, Theorem 3.10] these agree with the \mathbb{C}^* -fixed points on the affine quiver variety $\mathcal{X}_{\theta(\mathbf{c})}(n)$ and hence, thanks to [7, Equation (3)] to the \mathbb{C}^* -fixed points on the Nakajima quiver variety $\mathcal{M}_{\theta(\mathbf{c})}(n)$. Now the result follows since the combinatorial description of these fixed points in [7, Proposition 8.3(i)] is exactly the one in the statement of the theorem.

- **2.6. Remarks.** (1) The assumption $\theta(\mathbf{c}) \in \Theta_1$ imposes two restrictions. First it places a rationality condition on the entries of \mathbf{c} ; guided by corresponding results for Hecke algebras, [2, Theorem 1.1], we hope that this is not really a serious restriction. Second it forces $c_{(i,j)} \neq 0$; if $c_{(i,j)} \neq 0$ then we can rescale to produce an isomorphism $H_{\mathbf{c}} \cong H_{\lambda \mathbf{c}}$ and hence ensure $\theta_0 + \cdots + \theta_{\ell-1} = 1$.
- (2) A generic choice of $\theta(\mathbf{c}) \in \Theta_1$ will have type $J = \emptyset$. The corresonding $CM_{\mathbf{c}}$ -partition will then be trivial and thus $X_{\mathbf{c}}$ will be smooth, [3, Corollary 1.14(i)].

3. The case W = G(2, 1, n)

3.1. We now focus on the situation where W = G(2,1,n), the Weyl group of type B_n . Here there are two conjugacy classes of reflections s and t, those associated to (i,j) and γ respectively. We will always assume that $\mathbf{c} = (c_s, c_t) \in \mathbb{Q}^2$ has the property that $c_s, c_t \neq 0$. Corresponding to the two group homomorphisms $\epsilon_1, \epsilon_2 : W \to \mathbb{C}^*$, $\epsilon_k(i,j) = (-1)^k$ for all $(i,j) \in s$ and $\epsilon_k(\sigma) = (-1)^{k+1}$, there exist algebra isomorphisms $H_{(c_s,c_t)} \cong H_{(-c_s,c_t)}$ and $H_{(c_s,c_t)} \cong H_{(c_s,-c_t)}$, [5, 5.4.1]. So, without loss of generality, we may assume that $\mathbf{c} \in \mathbb{Q}^2_{>0}$.

3.2. There is a conjectural description of the two-sided cells in [1, Section 4.2] which we recall very briefly; more details can be found in both [loc.cit] and [11].

We assume $\mathbf{L}(s) = a, \mathbf{L}(t) = b$ with $a, b \in \mathbb{Q}_{>0}$ and set d = b/a. If $d \notin \mathbb{Z}$ then the partition is conjectured to be trivial, [1, Conjecture $\mathbf{A}(c)$]. If $d = r + 1 \in \mathbb{Z}$ then let $\mathcal{P}_r(n)$ be the set of partitions of size $\frac{1}{2}r(r+1) + 2n$ with 2-core $(r, r-1, \ldots, 1)$. A domino tableau T on $\lambda \in \mathcal{P}_r(n)$ is a filling of the Young diagram of λ with 0's in the 2-core and then n dominoes in the remaining boxes, each labelled by a distinct integer between 1 and n which are weakly increasing both vertically and horizontally. There is a process called moving through an open cycle which leads to an equivalence relation on the set of domino tableaux. This in turn leads to an equivalence relation on partitions in $\mathcal{P}_r(n)$ where λ and μ are related if there is a sequence of partitions $\lambda = \lambda_0, \lambda_1, \ldots, \lambda_{s-1}, \lambda_s = \mu$ such that for each $1 \leq i \leq s$, λ_{i-1} and λ_i are the underlying shapes of some domino tableaux related by moving through an open cycle. The equivalence classes of this relation are called r-cells. [1, Conjecture D] conjectures that the two-sided cells are in natural bijection with the r-cells.

3.3. The result of this section is the following.

Theorem. Under the bijection (2) the CM_c -partition of IrrW is identified with the above conjectural description of the KL_c -partition for $\mathbf{L}(s) = c_s$, $\mathbf{L}(t) = c_t$.

This theorem shows that core-quotient algorithm provides a natural identification of the $CM_{\mathbf{c}}$ -partition and the conjectural $KL_{\mathbf{L}}$ -partition. We do not know in general whether Lusztig's conjectured mapping from IrrW to the $KL_{\mathbf{L}}$ -cells is given by this algorithm.

There are special cases where [1, Conjecture D] has been checked – for instance the asymptotic case $c_t > (n-1)c_s$, [1, Remark 1.3] – and thus in those cases we really do get a natural identification between the CM_c -classes and KL_c -cells.

3.4. We will need the following technical lemma to prove the theorem.

Lemma. Let $\lambda \in \mathcal{P}_r(n)$ and set j = r modulo 2 with $j \in \{0, 1\}$. Suppose that s_{pq} is a j-removable box and s_{tu} is a j-addable box such that $p \geq t$ and $q \leq u$ and there are no other j-addable or j-removable boxes, s_{vw} , with $p \geq v \geq t$ and $q \leq w \leq u$. Then there is a domino tableau T of shape λ and an open cycle c of T such that the shape of the domino obtained by moving through c is obtained by replacing s_{pq} with s_{tu} .

Proof. We use the notation of [11, Sections 2.1 and 2.3] freely. We consider the rim ribbon which begins at s_{pq} and ends at $s_{t,u-1}$. We claim that this rim ribbon can be paved by dominoes. In fact this is a general property of a ribbon connecting a box, s, of residue j and a box, e, of residue j+1. Let R be such a ribbon. If R contains only two boxes then $R = \{s, e\}$ so it is clear. In general the box adjacent to s, say s_{ad} , has residue j+1 so that $R \setminus \{s, s_{ad}\}$ is a ribbon of smaller length and so the result follows by induction. In our situation we can specify more. Starting at s_{pq} we tile our rim ribbon, R, as far as possible with vertical dominoes up to and including $D = \{s_{p-m+1,q}, s_{p-m,q}\}$ where $s_{p-m,q}$ has residue j+1. If $s_{p-m,q} = s_{t,u-1}$ we have finished our tiling. Otherwise $s_{p-m,q+1} \in R$ so the square $s_{p-m,q+1}$ will be j-removable unless $\{s_{p-m,q+1}, s_{p-m,q+2}\} \subseteq R$. We now tile with as many horizontal dominoes as possible until we get to $E = \{s_{p-m,q+k-1}, s_{p-m,q+k}\}$ with $s_{p-m,q+k}$

having residue j+1. If $s_{p-m,q+k}=s_{t,u-1}$ then our tiling stops. Otherwise we must have the next domino as $F=\{s_{p-m-1,q+k},s_{p-m-2,q+k}\}$ to avoid $s_{p-m,q+k+1}$ being j-addable. We can now repeat this process to obtain our tiling of R. From this description we obtain the following consequences. Let $s_{vw} \in R$ have residue j+1 and suppose that $s_{vw} \neq s_{t,u-1}$. Then

- (i) The domino which contains s_{vw} is of the form $\{s_{v+1,w}, s_{vw}\}$ or $\{s_{v,w-1}, s_{vw}\}$;
- (ii) If $s_{v-1,w+1} \in \lambda$ then $s_{v,w+1} \in R$. Furthermore, if s_{vw} is contained in a horizontal domino then $s_{v-1,w+1} \notin R$;
- (iii) If $s_{v-1,w+1} \notin \lambda$ then $s_{v-1,w} \in R$.

Let R denote the rim ribbon above and suppose it can be tiled by t dominoes. Let μ be the shape $\lambda \setminus R$. In particular μ contains $\frac{1}{2}r(r+1)+2(n-t)$ squares. By the previous paragraph and [8, Lemma 2.7.13], μ is a Young diagram with the same 2-core as λ and so there exists a $T' \in \mathcal{P}_r(n-t)$ with shape μ . Take such a T' filled with the numbers 1 to n-t. Now add R to T'. We can tile R by dominoes by the previous paragraph and we fill the dominoes with the numbers $n-t+1,\ldots,n$ where the filling is weakly increasing on the rows and columns of R. This gives a domino tableau $T=T'\cup R$ of shape λ .

We claim that $R \subseteq T$ is an open cycle, and that when we move through this cycle we remove s_{pq} from T and add s_{tu} . This will prove the lemma.

As we have seen in (i) a domino $D \subseteq R$ is either of the form $D = \{s_{vw}, s_{v+1,w}\}$ or $D = \{s_{v,w-1}, s_{vw}\}$ with s_{vw} having residue j+1. In the case that $D = \{s_{vw}, s_{v+1,w}\}$ we have to study the square $s_{v-1,w+1}$ to calculate D'. One of two things can happen. If this box does not belong to T then $D' = \{s_{vw}, s_{v-1,w}\}$ and $D' \subseteq R$ by (iii). Otherwise $s_{v-1,w+1}$ does belong to T. In this situation the box is not in the rim so is filled with a lower value than D and so $D' = \{s_{vw}, s_{v,w+1}\}$. In particular, by (ii) above either $D' \subseteq R$ or $D' = \{s_{t,u-1}, s_{tu}\}$.

Now suppose $D = \{s_{v,w-1}, s_{vw}\}$. If the square $s_{v-1,w+1}$ is not in T then $D' = \{s_{v-1,w}, s_{vw}\}$ and $D' \subseteq R$ by (iii). If $s_{v-1,w+1}$ is in T then it is not in the rim by (ii) and so is filled with a value lower than that of D. Thus $D' = \{s_{vw}, s_{v,w+1}\}$ and $D' \subseteq R$ unless $s_{vw} = s_{t,u-1}$, in which case $D' = \{s_{t,u-1}, s_{tu}\}$.

It is now clear R that is a cycle and moving through this cycle changes the shape of λ by removing s_{pq} and adding s_{tu} .

3.5. Proof of Theorem 3.3. We have $\theta(\mathbf{c}) = (-c_s + c_t, -c_t)$ and by rescaling, see Remark 2.6(1), we consider $\theta'(\mathbf{c}) = (1 - \frac{c_t}{c_s}, \frac{c_t}{c_s}) \in \Theta_1$. The action of $\tilde{\mathfrak{S}}_2$ on Θ_1 is given by $\sigma_0 \cdot (\theta_0, \theta_1) = (-\theta_0, \theta_1 + 2\theta_0)$ and $\sigma_1 \cdot (\theta_0, \theta_1) = (\theta_0 + 2\theta_1, -\theta_1)$. The walls are $\{(d, -d+1) \in \Theta_1 : d \in \mathbb{Z}\}$; they are of type $\{0\}$ if $d \in 2\mathbb{Z}$ and of type $\{1\}$ if $d \in 1+2\mathbb{Z}$. The fundamental alcove is $A_0 = \{(d, -d+1) : 0 < d < 1\}$, and the alcove $A_r = \{(d, -d+1) : r < d < r+1\}$ is then labelled by either $((\frac{r}{2}, \frac{-r}{2}), e) \in \mathbb{Z}_0^2 \times \mathfrak{S}_2$ or $((\frac{-r+1}{2}, \frac{r-1}{2}), \sigma_1) \in \mathbb{Z}_0^2 \times \mathfrak{S}_2$ depending on whether r is even or odd.

If $\frac{c_t}{c_s} \notin \mathbb{Z}$ then $\boldsymbol{\theta}'(\mathbf{c})$ has type \emptyset and the $CM_{\mathbf{c}}$ -partition of $\operatorname{Irr} W$ is trivial by Theorem 2.5 since \emptyset -classes are all singletons: this agrees with the conjectured triviality of the two-sided cells in this case. Thus we may assume that $r = \frac{c_t}{c_s} - 1 \in \mathbb{Z}_{\geq 0}$. Then $\boldsymbol{\theta}'(\mathbf{c}) = (-r, r+1)$ will be in the closure of two alcoves, A_{-r-1} and A_{-r} . We consider the latter. Let \mathbf{s} be the element in \mathbb{Z}_0^2 coming from the labelling of A_{-r} ; then $\tau_{\mathbf{s}}$ of (2) produces a bijection between $\operatorname{Irr} W = \mathcal{P}(2, n)$ and $\mathcal{P}_r(n)$. If we set j = r modulo

2 and $J = \{j\}$, the content of the theorem is simply the assertion that the r-cells in $\mathcal{P}_r(n)$ consist of the partitions in $\mathcal{P}_r(n)$ with the same J-heart.

Let us show first that if $\lambda, \mu \in \mathcal{P}_r(n)$ have the same J-heart, say ρ , then they belong to the same r-cell. The J-heart has no j-removable boxes, but we can construct the partition μ from ρ by adding, say, t j-addable boxes. Now let ν be the partition obtained from ρ by adding t j-addable boxes as far left as possible. We note that by [8, Theorem 2.7.41] $\nu \in \mathcal{P}_r(n)$. Of course μ and ν could be the same, but usually they will be different. Now we apply Lemma 3.4 again and again to ν , taking first the rightmost j-removable box from ν to the position of the rightmost j-removable box on μ and then repeating with the next j-removable box on the successor of ν . We continue until we have obtained a partition with shape μ . By Lemma 3.4, this process is obtained by moving through open cycles. On the other hand, we can perform this operation in the opposite direction to move from λ to ν via open cycles (for this we use the same algorithm and the fact that for a cycle c, moving through c twice takes us back where we started, [4, Proof of Proposition 1.5.31]). It follows that λ and μ belong to the same r-cell.

Finally, we need to see that if $\lambda, \mu \in \mathcal{P}_r(n)$ belong to the same r-cell, then they have the same J-heart. For this it is enough to assume that μ is the shape of a tableau obtained by moving through an open cycle on a tableau of shape λ . But in this case the underlying shapes differ only in some j-removable boxes, [11, Section 2.3], and so they necessarily have the same J-heart.

Acknowledgements

The second author gratefully acknowledges the support of The Leverhulme Trust through a Study Abroad Studentship (SAS/2005/0125).

References

- C. Bonnafé, M. Geck, L. Iancu, and T. Lam, On domino insertion and Kazhdan-Lusztig cells in type B_n, Progress in Math. (Lusztig Birthday Volume). To appear.
- [2] R. Dipper and A. Mathas, Morita equivalences of Ariki-Koike algebras, Math. Zeit. 240 (2002), no. 3, 579-610.
- [3] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math 147 (2002), no. 2, 243–348.
- [4] D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras. I, Compositio Math. 75 (1990), no. 2, 135–169.
- [5] V. Ginzburg, N. Guay, E. Opdam, and R. Rouquier, On the category O for rational Cherednik algebras, Invent. Math. 154 (2003), no. 3, 617–651.
- [6] I. Gordon, Baby Verma modules for rational Cherednik algebras, Bull. London Math. Soc. 35 (2003), no. 3, 321–336.
- [7] ———, Quiver varieties, category O for rational Cherednik algebras, and Hecke algebras., Int. Math. Res. Papers (2008)
- [8] G. James and A. Kerber, The representation theory of the symmetric group, Vol. 16 of *Ency-clopedia of Mathematics and its Applications*, Addison-Wesley Publishing Co., Reading, Mass. (1981).
- [9] G. Lusztig, Hecke algebras with unequal parameters, Vol. 18 of CRM Monograph Series, American Mathematical Society, Providence, RI (2003).
- [10] M. Martino, The Calogero-Moser partition and Rouquier families for complex reflection groups (2008). ArXiv:0801.1627.
- [11] T. Pietraho, Equivalence classes in the Weyl groups of type B_n , Journal of Algbraic Combinatrics **27** (2008), no. 2, 247–262.

[12] R. Rouquier, Familles et blocs d'algèbres de Hecke, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 12, 1037–1042.

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, James Clerk Maxwell Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland

E-mail address: igordon@ed.ac.uk

MATHEMATISCHES INSTITUT, UNIVERSITÄT BONN, BERINGSTR. 1, D-53115 BONN, GERMANY $E\text{-}mail\ address:}$ mmartino@math.uni-bonn.de