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A1 BOUNDS FOR CALDERÓN-ZYGMUND OPERATORS
RELATED TO A PROBLEM OF MUCKENHOUPT AND

WHEEDEN

Andrei K. Lerner, Sheldy Ombrosi, and Carlos Pérez

Abstract. We obtain an Lp(w) bound for Calderón-Zygmund operators T when w ∈
A1. This bound is sharp both with respect to ‖w‖A1 and with respect to p. As a

result, we get a new L1,∞(w) estimate for T related to a problem of Muckenhoupt and
Wheeden.

1. Introduction

Let T be a Calderón-Zygmund singular integral operator. It was conjectured by
B. Muckenhoupt and R. Wheeden [9] many years ago that T satisfies

(1.1) ‖Tf‖L1,∞(w) ≤ c‖f‖L1(Mw),

where w is a weight (i.e., w ≥ 0 and w ∈ L1
loc(Rn)) and M is the Hardy-Littlewood

maximal operator. Observe that (1.1) with T replaced by M is well-known; it was
proved by C. Fefferman and E.M. Stein [6] in 1971.

Recall that w ∈ A1 if there exists c > 0 such that Mw(x) ≤ cw(x) a.e.; the smallest
possible c here is denoted by ‖w‖A1 . Clearly, (1.1) implies

(1.2) ‖Tf‖L1,∞(w) ≤ c‖w‖A1‖f‖L1(w).

We call (1.2) the weak Muckenhoupt-Wheeden conjecture.
Both conjectures (1.1) and (1.2) are known to be true for wδ(x) = |x|−n(1−δ), 0 <

δ < 1, see [1]. However, to our best knowledge, they are still open, in general, even
for the Hilbert transform.

In a recent paper [8], the following results towards (1.2) have been obtained: if
νp = p2

p−1 log
(
e + 1

p−1

)
and ϕ(t) = t(1 + log+ t)(1 + log+ log+ t), then

(1.3) ‖Tf‖Lp(w) ≤ cνp‖w‖A1‖f‖Lp(w) (1 < p < ∞)

and

(1.4) ‖Tf‖L1,∞(w) ≤ cϕ(‖w‖A1)‖f‖L1(w).

Inequality (1.3) in the case p = 2 for classical convolution singular integrals was
proved previously by R. Fefferman and J. Pipher [7] by means of different ideas. A
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general observation from [7] shows that (1.3) is sharp with respect to ‖w‖A1 for any
p > 1. On the other hand, it was not clear whether (1.3) is sharp with respect to p
for p close to 1, in general. For example, it is well-known that in the unweighted case
(i.e., when w ≡ 1) ‖T‖Lp ≤ c pp′, where, as usual, 1/p′ + 1/p = 1, and this estimate
is sharp. We also remark that the behavior of νp in (1.3) for p close to 1 was used in
deducing (1.4).

In this paper we obtain the best possible behavior of νp in (1.3) and, as a conse-
quence, an improvement of ϕ in (1.4). Our main result is the following.

Theorem 1.1. Let T be a Calderón-Zygmund operator. Then

(1.5) ‖Tf‖Lp(w) ≤ c pp′ ‖w‖A1‖f‖Lp(w) (1 < p < ∞)

and

(1.6) ‖Tf‖L1,∞(w) ≤ c‖w‖A1(1 + log ‖w‖A1)‖f‖L1(w),

where c = c(n, T ).

The proof of Theorem 1.1 is based on several ingredients. Some of them are exactly
the same as in the proof of (1.3) and (1.4). Here we mention the key new ingredient
leading to Theorem 1.1. This is the following lemma.

Lemma 1.2. Let T be a Calderón-Zygmund operator. There exists a constant c =
c(n, T ) such that for any weight w and for any p, r ≥ 1,

(1.7)
∥∥∥∥ Tf

Mrw

∥∥∥∥
Lp(Mrw)

≤ cp

∥∥∥∥ Mf

Mrw

∥∥∥∥
Lp(Mrw)

,

where Mrw = M(wr)1/r.

It is well-known that the weight (Mrw)1−p belongs to the A∞ class with the corre-
sponding constants independent of w. Hence, (1.7) is a particular case of the Coifman-
type estimate (see [2, 3]). The standard proofs applied to this concrete weight yield
constants of exponential type C(p) ∼ 2p. In [8], the growth of C(p) at infinity was
improved to C(p) ∼ p log p. Lemma 1.2 represents the subsequent improvement to
the best possible growth C(p) ∼ p. This can be seen by taking w ≡ 1 and recalling
that ‖M‖Lp ≈ cn as p →∞.

An extrapolation argument yields an interesting consequence for the Ap class of
weights, 1 < p < ∞, that follows from (1.6). Recall that a weight w is said to belong
to the class Ap, 1 < p < ∞, if

‖w‖Ap
≡ sup

Q

(
1
|Q|

∫
Q

w(x)dx

) (
1
|Q|

∫
Q

w(x)−1/(p−1)dx

)p−1

< ∞.

Corollary 1.3. Let 1 < p < ∞ and let T be a Calderón-Zygmund operator. Also let
w ∈ Ap, then

(1.8) ‖Tf‖Lp,∞(w) ≤ c‖w‖Ap
(1 + log ‖w‖Ap

)‖f‖Lp(w),

where c = c(n, p, T ).
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It is a difficult open problem whether a Calderón-Zygmund operator T satisfies the
following sharp inequality with respect to ‖w‖Ap :

(1.9) ‖Tf‖Lp(w) ≤ c‖w‖
max

{
1, 1

p−1

}
Ap

‖f‖Lp(w) (1 < p < ∞).

Observe that it is enough to prove (1.9) only for p = 2; then it follows for any p > 1 by
the extrapolation theorem of Rubio de Francia with sharp constant as can be found
in [5]. In recent works by S. Petermichl and A. Volberg [11, 12, 13] inequality (1.9)
has been proved for Beurling, Hilbert or any one of the Riesz transforms. It is clear
that for these operators (1.9) is stronger than (1.8) for p ≥ 2. However, we emphasize
that (1.8) holds for any Calderón-Zygmund operator. Also, to our best knowledge,
(1.8) for 1 ≤ p < 2 is new even for the Hilbert transform.

By a duality argument, Corollary 1.3 implies the following.

Corollary 1.4. Let 1 < p < ∞ and let T be a Calderón-Zygmund operator. If
w ∈ Ap, then for any measurable set E,

(1.10) ‖T (σχE)‖Lp(w) ≤ c‖w‖
1

p−1
Ap

(1 + log ‖w‖Ap
)σ(E)1/p,

where σ = w−1/(p−1).

Inequality (1.10) can be regarded as a Sawyer-type condition (cf. [14]). Although
(1.9) is sharp with respect to ‖w‖Ap , (1.10) shows however that for test functions of
the form f = σχE a much better dependence in terms of ‖w‖Ap can be obtained for
p > 2.

The paper is organized as follows. In the next section, we give a detailed proof
of Lemma 1.2 along with some auxiliary statements. In the third section we outline
briefly the main steps from [8] showing how this lemma leads to Theorem 1.1. In
Section 4 we prove Corollaries 1.3 and 1.4.

2. Proof of Lemma 1.2

By a Calderón-Zygmund operator we mean a continuous linear operator
T : C∞

0 (Rn) → D′(Rn) that extends to a bounded operator on L2(Rn), and whose
distributional kernel K coincides away from the diagonal x = y in Rn × Rn with a
function K satisfying the size estimate

|K(x, y)| ≤ c

|x− y|n

and the regularity condition: for some ε > 0,

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ c
|x− z|ε

|x− y|n+ε
,

whenever 2|x− z| < |x− y|, and so that

Tf(x) =
∫

Rn

K(x, y)f(y)dy,

whenever f ∈ C∞
0 (Rn) and x 6∈ supp(f).
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Set A∞ = ∪p≥1Ap. The class A∞ can be defined in several equivalent ways, see
[3]. In particular, w ∈ A∞ if and only if there exist constants 0 < α, β < 1 such that
for any cube Q and any measurable subset E ⊂ Q,

|E|
|Q|

< α ⇒ w(E)
w(Q)

< β.

We shall use several well-known facts about the Ap weights. First, it follows from
Hölder’s inequality that if w1, w2 ∈ A1, then w = w1w

1−p
2 ∈ Ap, and

(2.1) ‖w‖Ap
≤ ‖w1‖A1‖w2‖p−1

A1

Second, if 0 < δ < 1, then (Mf)δ ∈ A1 (see [4]), and

(2.2) ‖(Mf)δ‖
A1
≤ cn

1− δ
.

The proof of Lemma 1.2 will be based on two Lemmas. The first one is the
following.

Lemma 2.1. Let T be a Calderón-Zygmund operator and let w ∈ Ap, p ≥ 1. Then,
there is a constant c depending on n, p and T such that

(2.3) ‖Tf‖L1(w) ≤ c‖w‖Ap
‖Mf‖L1(w).

Remark 2.2. This estimate for w ∈ A∞ with some constant on the right-hand side
depending on w is due to R.R. Coifman [2] (see also [3]). However, the standard
proofs of (2.3) do not yield the linear dependence with respect to ‖w‖Ap .

Proof of Lemma 2.1. The lemma is just a combination of several known results. The
first one is the sharp good-λ inequality proved by S. Buckley [1]:

(2.4) |{x ∈ Q : T ∗f > 2α, Mf < γα}| ≤ c1e
−c2/γ |Q|,

where T ∗ is the maximal singular integral operator, Q is any cube in the Whitney
decomposition of {T ∗f > α}, and c1, c2 depend only on T and n. The second one is
the following sharp A∞ property of Ap weights due to R. Fefferman and J. Pipher [7]
(see Lemma 3.6 along with the subsequent remark on page 359): there is a constant
c3 depending on p and n such that for any cube Q and any subset E ⊂ Q,

(2.5)
|E|
|Q|

< e−c3‖w‖Ap implies
w(E)
w(Q)

<
1

100
.

Setting now in (2.4) γ = c′

‖w‖Ap
, where c′ depends on c1, c2 and c3, and using (2.5),

we get

w{x : T ∗f > 2α, Mf < c′α/‖w‖Ap
} ≤ 1

100
w{T ∗f > α},

which easily gives (2.3). �

The second lemma is based on an application of Rubio the Francia’s algorithm to
produce special weights with appropriate properties.

Lemma 2.3. Let 1 < s < ∞, and let v be a weight. Then there exists a nonnegative
sublinear operator R satisfying the following properties:

(i) h ≤ R(h);
(ii) ‖R(h)‖Ls(v) ≤ 2‖h‖Ls(v);



A1 BOUNDS FOR CALDERÓN-ZYGMUND OPERATORS 153

(iii) R(h)v1/s ∈ A1 with

‖R(h)v1/s‖A1 ≤ cs′.

Proof. We consider first the operator

S(f) =
M(f v1/s)

v1/s

Since ‖M‖Ls ∼ s′, we have

‖S(f)‖Ls(v) ≤ cs′‖f‖Ls(v).

Now, define the Rubio de Francia operator R by

R(h) =
∞∑

k=0

1
2k

Sk(h)
(‖S‖Ls(v))k

.

In the standard way one can check that R satisfies the properties (i), (ii) and (iii). �

We are now ready to give the proof of the main Lemma.

Proof of Lemma 1.2. By duality we have,

(2.6)
∥∥∥∥ Tf

Mrw

∥∥∥∥
Lp(Mrw)

= sup
‖h‖

Lp′ (Mrw)
=1

∫
Rn

|Tf |h dx.

Next, by Lemma 2.3 with s = p′ and v = Mrw, there exists an operator R such that

(i) h ≤ R(h);
(ii) ‖R(h)‖Lp′ (Mrw) ≤ 2‖h‖Lp′ (Mrw);
(iii) ‖R(h)(Mrw)1/p′‖A1 ≤ cp.

Using property (iii) along with inequalities (2.1) and (2.2), we obtain

‖R(h)‖A3 = ‖R(h)(Mrw)1/p′
(
(Mrw)1/2p′

)−2‖A3

≤ ‖R(h)(Mrw)1/p′‖A1‖(Mrw)1/2p′‖2A1

≤ cp.

Therefore, by Lemma 2.1 and by properties (i) and (ii),∫
Rn

|Tf |h dx ≤
∫

Rn

|Tf |R(h) dx ≤ c‖R(h)‖A3

∫
Rn

M(f)R(h) dx

≤ cp

∥∥∥∥ Mf

Mrw

∥∥∥∥
Lp(Mrw)

‖h‖Lp′ (Mrw),

which along with (2.6) completes the proof. �
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3. Proof of Theorem 1.1

As we mentioned in the Introduction, the proof of Theorem 1.1 follows the same
lines as the corresponding proof of inequalities (1.3) and (1.4) in [8] (of course, taking
into account this time Lemma 1.2). Hence, we just outline briefly the main ideas used
in the proof.

First, using the duality argument and some standard estimates for the maximal
operator, one can show that Lemma 1.2 implies

(3.1) ‖Tf‖Lp(w) ≤ c pp′
( 1

r − 1

)1−1/pr

‖f‖Lp(Mrw),

where 1 < r < 2, p > 1 and c = c(n, T ).
Setting r = rw = 1 + 1

2n+1‖w‖A1
in (3.1) and using that

(3.2) Mrw
w(x) ≤ 2 ‖w‖A1 w(x) a.e.

(see [8, Lemma 3.1]), we obtain easily (1.5).
In order to prove (1.6), we follow the proof of Theorem 1.6 in [10]. By the classical

Calderón-Zygmund decomposition, we have a family of pairwise disjoint cubes {Qj}
such that λ < |f |Qj

≤ 2nλ. Let Ω = ∪jQj , and Ω̃ = ∪j2Qj . Next, let f = g + b,
where g =

∑
j fQj

χQj
(x) + f(x)χΩc(x). Then

w{x ∈ Rn : |Tf(x)| > λ} ≤ w(Ω̃) + w{x ∈ (Ω̃)c : |Tb(x)| > λ/2}
+w{x ∈ (Ω̃)c : |Tg(x)| > λ/2} ≡ I + II + III.

The first two terms are bounded by c‖w‖A1
λ ‖f‖L1(w) (see [10, p. 303]). Next, by

Chebyshev’s inequality and (3.1),

III ≤ c(pp′)p
( 1

r − 1

)p−1/r 1
λ

∫
Rn

|g|Mr(wχ(eΩ)c)dx.

Using the argument from [10, p. 303], we obtain∫
Rn

|g|Mr(wχ(eΩ)c)dx ≤ c

∫
Rn

|f |Mrwdx.

Combining two previous estimates with (3.2) and setting r = 1 + 1/2n+1‖w‖A1 , we
get

III ≤ c(pp′‖w‖A1)
p

λ

∫
Rn

|f |wdx.

Setting here p = 1 + 1
log(1+‖w‖A1 ) gives

III ≤ c‖w‖A1(1 + log ‖w‖A1)
λ

∫
Rn

|f |wdx.

Combining this with estimates for I and II completes the proof.
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4. Proof of Corollary 1.3

We shall need the following lemma proved in [5].

Lemma 4.1. Let 1 < q < ∞ and let w ∈ Aq. Then there exists a nonnegative
sublinear operator D bounded on Lq′(w) such that for any nonnegative h ∈ Lq′(w):
(a) h ≤ D(h);
(b) ‖D(h)‖Lq′ (w) ≤ 2 ‖h‖Lq′ (w);
(c) D(h) · w ∈ A1 with

‖D(h) · w‖
A1
≤ c q ‖w‖

Aq
,

where the constant c depends on n.

Proof of Corollary 1.3. For α > 0 we set Ωα = {|Tf | > α} and let ϕ(t) = t(1+ log t).
Applying Lemma 4.1 with q = p, we get a sublinear operator D satisfying properties

(a), (b) and (c). Using these properties and inequality (1.6), we obtain∫
Ωα

h wdx ≤
∫

Ωt

D(h) w dx ≤ c

α
ϕ(‖D(h) w‖A1)‖f‖L1(D(h)w)

≤ c

t
ϕ(‖w‖Ap

)‖f‖Lp(w)‖h‖Lp′ (w).

Taking the supremum over all h with ‖h‖Lp′ (w) = 1 completes the proof. �

Proof of Corollary 1.4. Applying (1.8) and using that ‖σ‖Ap′ = ‖w‖
1

p−1
Ap

, we get

‖T ∗f‖Lp′,∞(σ) ≤ c‖w‖
1

p−1
Ap

(1 + log ‖w‖Ap
)‖f‖Lp′ (σ),

where T ∗ is the adjoint operator. From this, by duality we obtain

‖Tf‖Lp(w) ≤ c‖w‖
1

p−1
Ap

(1 + log ‖w‖Ap)‖f/σ‖Lp,1(σ),

where Lp,1(σ) is the standard weighted Lorentz space. Setting here f = σχE , where
E is any measurable set, completes the proof. �
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