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INFINITE SUBSETS OF RANDOM SETS OF INTEGERS

Bjørn Kjos-Hanssen

Abstract. There is an infinite subset of a Martin-Löf random set of integers that does

not compute any Martin-Löf random set of integers. To prove this, we show that each
real of positive effective Hausdorff dimension computes an infinite subset of a Martin-Löf

random set of integers, and apply a result of Miller.

1. Introduction

In Reverse Mathematics [11], the Stable Ramsey’s Theorem for Pairs (SRT2
2) as-

serts for any ∆0
2 definition of a set of integers A (the existence of which may not be

provable in SRT2
2) the existence of an infinite subset of A or of the complement of

A. An open problem is whether SRT2
2 implies Weak König’s Lemma (WKL) or Weak

Weak König’s Lemma (WWKL). WWKL asserts the existence of Martin-Löf random
sets of integers. These are sets that satisfy all “computable” probability laws for the
fair-coin distribution (under which each integer has probability 1/2 of belonging to
the set, independently of any other integer). One way to show SRT2

2 implies WWKL
would be to show that

(∗) there is some ∆0
2 Martin-Löf random set of integers R such that

each infinite subset of R or its complement computes a Martin-Löf
random set,

and show that a proof of (∗) goes through in the base system for Reverse Mathematics,
Recursive Comprehension (RCA0). The simplest reason why (∗) would be true would
be

(∗∗) each infinite subset of any Martin-Löf random set of integers
computes a Martin-Löf random set.

The statement (∗∗) seemed fairly plausible for a while. Each Martin-Löf random
set of integers R is effectively immune, hence so is each infinite subset of R. This
observation was used by Hirschfeldt et al. [4] to show that SRT2

2 implies the principle
Diagonally Non-Recursive Functions (DNR), which asserts the existence of diagonally
non-recursive functions. It is clear that WWKL should imply DNR; but the fact that
WWKL is strictly stronger than DNR was only shown with considerable effort by
Ambos-Spies et al. [1].

However, the assertion (∗∗) is false, the argument having two steps. In the present
paper, we show that each real of positive effective Hausdorff dimension computes an
infinite subset of a Martin-Löf random set, and Miller [7] shows that there is a real
of effective Hausdorff dimension 1/2 that computes no Martin-Löf random set. The
truth value of (∗) remains unknown.
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Remark 1.1. A beam splitter is a frequently used component for random number
generators. Two photon detectors labeled 0 and 1 are used to detect two possible
outcomes corresponding to one of two possible paths a photon can take. Thus each
photon entering the beam splitter generates one random bit, 0 or 1 depending on
where the photon is detected. However, photon detectors generally have an absorption
efficiency that is less than 100%. Can they still be used to produce a random binary
sequence? Our main result can be interpreted as the anwer “no”, if we merely assume
that in an infinite sequence of photons, at least infinitely many of the incoming photons
will be detected.

2. Some probability theory

The proof of our main result uses random closed sets of reals. Their study in
computability theory was begun by Barmpalias et al. [2], who studied a different
distribution from the one we consider here.

We sometimes consider an integer K ∈ ω = {0, 1, 2, . . .} to be the set {0, . . . ,K−1},
and write K<ω and Kω for the sets of finite and infinite strings over K, respectively.
For a tree T , [T ] denotes the closed set defined by T , the set of all infinite paths
through T . If σ is an initial substring of τ we write σ � τ . If x ∈ Kω and σ ∈ K<ω

then similarly σ � x means that σ is an initial substring of x. The set of all such x is
denoted [σ].The concatenation of σ and τ is denoted σ ∗ τ , and the length of σ is |σ|.

Let P denote the power set operation. Unless otherwise stated below we have
K = 2k for some integer k ≥ 1. K plays the role of an alphabet, and a tree is a set
of strings over K that is closed under prefixes.

For a real number 0 ≤ ` < ∞, let λk,` be the distribution with sample space
P(K<ω) such that each string in K<ω has probability 2−` of belonging to the random
set, independently of any other string. We postulate no relationship between k and
`, but note that Theorem 3.5 below is non-vacuous only for ` < k; a nice case to keep
in mind is ` = 1, k = 2.

Lemma 2.1. For all strings ρ, σ, τ in K<ω, if ρ is the longest common prefix of σ
and τ with |σ| = |τ | = n and |ρ| = m, then

λk,`{S : σ ∈ S and τ ∈ S} = 2`(m−2n).

Proof. We have

λk,`{σ ∈ S and τ ∈ S} = λk,`{ρ ∈ S} · λk,`{σ ∈ S and τ ∈ S | ρ ∈ S}

= 2−`m2−2`(n−m) = 2`(m−2n).

�

The idea of the following Definition 2.2 is to think of a string in K<ω where K = 2k

as a string in 2<ω of length a multiple of k.

Definition 2.2. Let ι : K → 2<ω be defined by the condition that for any ai ∈ {0, 1},
0 ≤ i ≤ k − 1,

ι

(
k−1∑
i=0

ai2i

)
= 〈a0, . . . , ak−1〉.
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For example, if k = 2 then ι(3) = 〈1, 1〉 and ι(2) = 〈1, 0〉.
This is extended to a map on strings, ι : K<ω → 2<ω, by concatenation:

ι(σ) = ι(σ(0)) ∗ · · · ∗ ι(σ(|σ| − 1)).

For example, if k = 2 then ι(〈3, 2〉) = 〈1, 1, 1, 0〉.
Finally ι is extended to a map on sets of strings, ι : P(K<ω) → P(2<ω), by

ι(S) = {ι(σ) : σ ∈ S}.

Definition 2.3 ((k, `)-induced distribution). For S ⊆ K<ω, ΓS, the tree determined
by S, is the (possibly empty) set of infinite paths through the ι-image of the part of S
that is downward closed under prefixes:

ΓS =
[
ι
(
{σ ∈ K<ω : ∀τ � σ τ ∈ S}

)]
.

The (k, `)-induced distribution Pk,` on the set of all closed subsets of 2ω is defined
by

Pk,`(E) = λk,`{S : ΓS ∈ E}.
Thus, the probability of a property E of a closed subset of 2ω is the probability according
to λk,` that the ι-image of a random subset of K<ω determines a tree whose set of
infinite paths has property E.

Lemma 2.4 (Chebychev-Cantelli, a special case of the Paley-Zygmund Inequality).
Suppose X is a nonnegative random variable, that is X : S → [0,∞] for some sample
space S, with probability distribution P on some σ-algebra S ⊆ 2S containing the event
{X > 0}. Suppose E[X2] < ∞, where E denotes expected value.

Then

P{X > 0} ≥ E[X]2

E[X2]
.

Proof. Since X ≥ 0, we have E[X] = E[X · 1{X>0}] where 1E is the characteristic
(indicator) function of E and as is customary we abbreviate {X : E(X)} = {E(X)} =
E. Squaring both sides and applying Cauchy-Schwarz yields

E[X]2 = E[X · 1{X>0}]2 ≤ E[X2] · E[(1{X>0})2] = E[X2] · P{X > 0}.

�

Let the ultrametric υ on 2ω be defined by υ(x, y) = 2−min{n:x(n) 6=y(n)}. For a Borel
probability measure µ on 2ω, we write µ(σ) for µ([σ]).

Lemma 2.5. If β > γ and µ is a Borel probability measure on 2ω such that for some
constant cR, µ(σ) ≤ cR2−|σ|β for all binary strings σ, then∫∫

dµ(b)dµ(a)
υ(a, b)γ

< ∞.
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Proof. Note that µ is necessarily non-atomic. Hence we have

φγ(a) :=
∫

dµ(b)
υ(a, b)γ

≤
∞∑

n=0

2nγµ{b : υ(a, b) = 2−n} =
∞∑

n=0

2nγµ[(a � n) ∗ (1− a(n))]

≤ cR

∞∑
n=0

2nγ2−(n+1)β = cR2−β
∞∑

n=0

2n(γ−β) = cR
2−β

1− 2γ−β
=

cR

2β − 2γ
.

Thus∫∫
dµ(b)dµ(a)

υ(a, b)γ
=
∫

φγ(a)dµ(a) ≤
∫

cRdµ(a)
2β − 2γ

=
cRµ(2ω)
2β − 2γ

=
cR

2β − 2γ
< ∞.

�

Lemma 2.6. Suppose we are given reals β > γ = `
k . Let µ be any Borel probability

measure on 2ω such that ∫∫
dµ(b)dµ(a)

υ(a, b)γ
= c < ∞.

Let Γ be the (closed set valued) random variable whose value is the outcome of an
experiment obeying distribution Pk,`, the (k, `)-induced distribution. For any closed
set A, we have

Pk,`{Γ : Γ ∩A 6= ∅} ≥ µ(A)2

c
.

Proof. Let Cn = {0, 1}n, the set of all binary strings of length n. Let S denote the
random variable that is the outcome of the experiment according to the distribution
λk,`; so S takes values in P(K<ω). Let n be a positive integer that is a multiple of k,
let Sn = {σ : |σ| = n and ι−1(σ) ∈ S}, and

Yn =
∑

σ∈Sn,[σ]∩A 6=∅

µ(σ)
2−|σ|γ

=
∑

σ∈Cn,[σ]∩A 6=∅

µ(σ)2nγ1{σ∈Sn}.

Let us write P for λk,`. Note that E[1{σ∈Sn}] = P{σ ∈ Sn} = (2−`)n/k = 2−nγ .
Thus by linearity of expectation E,

E[Yn] =
∑

σ∈Cn,[σ]∩A 6=∅

µ(σ)2nγE[1{σ∈Sn}] =
∑

σ∈Cn,[σ]∩A 6=∅

µ(σ) ≥ µ(A).

Next,

E[Y 2
n ] =

∑
σ∈Cn,[σ]∩A 6=∅

∑
τ∈Cn,[τ ]∩A 6=∅

µ(σ)µ(τ) 22nγ P{σ ∈ Sn and τ ∈ Sn},

because E[1{σ∈Sn}1{τ∈Sn}] = P{σ ∈ Sn and τ ∈ Sn}.
Let σ and τ be binary strings, let mσ,τ be the length of the common prefix of σ

and τ , and let m′
σ,τ = max{kq : kq ≤ mσ,τ , q ∈ ω}, which is the length of ι of the

common prefix of ι−1(σ) and ι−1(τ). Let n̂ = n/k, and m̂σ,τ = m′
σ,τ/k, which is the

length of the common prefix of ι−1(σ) and ι−1(τ).
Note that ι−1(σ) is a K-ary string of length n/k. By Lemma 2.1,

P{σ ∈ Sn and τ ∈ Sn} = λk,`({S : ι−1(σ) ∈ S and ι−1(τ) ∈ S})

≤ 2`( bmσ,τ−2bn) = 2γ(m′
σ,τ−2n) ≤ 2γ(mσ,τ−2n).
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Note that if x ∈ [σ] and y ∈ [τ ] then υ(x, y) ≤ 2−mσ,τ . Therefore

E[Y 2
n ] ≤

∑
σ∈Cn,[σ]∩A 6=∅

∑
τ∈Cn,[σ]∩A 6=∅

µ(σ)µ(τ) 2γmσ,τ

≤
∑

σ∈Cn

∑
τ∈Cn

µ(σ)µ(τ) 2γmσ,τ ≤
∫∫

dµ(x) dµ(y)
υ(x, y)γ

= c.

By Lemma 2.4,

P{Yn > 0} ≥ E[Yn]2

E[Y 2
n ]

≥ µ(A)2

c
.

Since A is closed, and since Yn+k > 0 implies Yn > 0, we can conclude (letting n
still range over multiples of k)

Pk,`{A ∩ Γ 6= ∅} ≥ P{Yn > 0 for all n} = lim
n→∞

P{Yn > 0} ≥ µ(A)2

c
.

�

A result similar to Lemma 2.6, but for percolation limit sets rather than for the
(k, `)-induced distribution, was obtained by Lyons [6] building on work of Hawkes [3].

3. Martin-Löf random sets

For a real number 0 ≤ γ ≤ 1, the γ-weight wtγ(C) of a set of strings C is defined
by

wtγ(C) =
∑
w∈C

2−|w|γ .

A Martin-Löf γ-test is a uniformly computably enumerable (c.e.) sequence (Un)n<ω

of sets of strings such that
(∀n)(wtγ(Un) ≤ 2−n).

For a set of strings V , let [V ]� =
⋃
{[σ] : σ ∈ V } be the open subset of 2ω defined

by V . A real is γ-random if it does not belong to ∩n[Un]� for any γ-test (Un)n<ω. If
γ = 1 we simply say that the real, or the set of integers {n : x(n) = 1}, is Martin-Löf
random.

For a (Borel) probability measure µ and a real x, we say that x is µ-random if for
each sequence (Un)n<ω that is uniformly c.e. in µ and where µ[Un]� ≤ 2−n for all n,
we have x 6∈ ∩n[Un]�. (Note that µ can be considered as an oracle via an encoding
of the reals µ([σ]), σ ∈ 2<ω; this definition is due to Reimann and Slaman.)

We say x is γ-capacitable if x is µ-random with respect to some probability measure
µ such that for some c,

∀σ [µ(σ) ≤ c2−γ|σ|].
x is γ-energy random if x is µ-random with respect to some probability measure µ

such that ∫∫
dµ(b)dµ(a)

υ(a, b)γ
< ∞.

If we only require that x 6∈
⋂

n[Un]� when (Un)n<ω is c.e., as opposed to c.e. relative
to µ, then we say that x is Hippocrates µ-random, γ-capacitable, or γ-energy random,
respectively. As the reader may recall, Hippocrates did not consult the oracle of
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Delphi, and similarly a test for Hippocrates randomness Un does not consult the
oracle µ.

Effective Hausdorff dimension was introduced by Lutz [5] and is a notion of par-
tial randomness. For example, if the sequence x0x1x2 · · · is Martin-Löf random,
then the sequence x00x10x20 · · · has effective Hausdorff dimension equal to 1

2 . Let
dim1

Hx denote the effective (or constructive) Hausdorff dimension of x; then we have
dim1

H(x) = sup{γ : x is γ-random} (Reimann and Stephan [10]).

Theorem 3.1 (Reimann [9]). For any real x ∈ 2ω,

dim1
H x = sup{β : x is β-capacitable},

where sup ∅ = 0.

Lemma 3.2. Suppose U is a c.e. set of strings with effective enumeration U =⋃
s<ω Us. Then

{y ∈ 2ω : {S : y ∈ ΓS} ⊆ [U ]�}
is a Σ0

1 class.

Proof. For a closed set Γ, let us write Γ � m for
⋃
{[σ] : |σ| = m, [σ]∩Γ 6= ∅}. As is

usual, for an oracle A, a Turing reduction {e} and a stage s, let {e}A
s (n) denote the

output if any of the computation on input n by stage s, and {e}A(n) the value by the
time the computation halts, if ever. For some e, we have

{y ∈ 2ω : {S : y ∈ ΓS} ⊆ [U ]�} = {y : ∀S(y ∈ ΓS → S ∈ [U ]�)}
= {y : ∀S(∀m(y � m ∈ ΓS � m) → S ∈ [U ]�)}
= {y : ∀S∃m, s(y � m 6∈ ΓS � m or S ∈ [Us]�)}

= {y : ∀S({e}S⊕y(0) ↓)} = {y : ∃s∀σ ∈ 2s({e}σ⊕y�s
s (0) ↓)}.

�

Definition 3.3. Let fk : ω → K<ω be an effective bijection. A closed set is called
Martin-Löf random according to the (k, `)-induced distribution if it is of the form ΓS

for some set S such that f−1
k (S) is a Martin-Löf random subset of ω with respect to

Bernoulli measure with parameter 2−`.

For ` = 1, Definition 3.3 states that f−1
k (S) is a Martin-Löf random subset of ω

as defined above. Although we will not need it, one can show that Definition 3.3 is
independent of the choice of fk.

Lemma 3.4. Let µ be any Borel probability measure on 2ω. Then for each open set
U , there is a clopen set A ⊆ U with µ(A) ≥ µ(U)− ε.

Proof. Write U =
⋃

n Dn where the Dn are clopen and disjoint. These Dn exist
by topological properties of 2ω. Then ∞ > 1 ≥ µU = µ

⋃
n Dn =

∑
n µ(Dn).

Choose n such that
∑

k>n µ(Dk) ≤ ε and let A = D0 ∪ · · · ∪ Dn. Then µA =
µ(U)−

∑
k>n µ(Dk) ≥ µ(U)− ε. �

Theorem 3.5. Let γ = `
k . Each Hippocrates γ-energy random real belongs to a

Martin-Löf random closed set under the (k, `)-induced distribution.
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Proof. Let x be any real and suppose x belongs to no Martin-Löf random closed set
according to Pk,`. That is, {S : x ∈ ΓS} contains no set S that is Martin-Löf random
according to the (k, `)-distribution. Thus if we let Vn be a universal Martin-Löf test
for λk,` then {S : x ∈ ΓS} ⊆ ∩n[Vn]�. So x ∈ ∩n<ω[Un]�, where

[Un]� = {y ∈ 2ω : {S : y ∈ ΓS} ⊆ [Vn]�}.

We have already seen in Lemma 3.2 that [Un]� is Σ0
1, and by the proof {[Un]� :

n < ω} is even Σ0
1 uniformly in n. Thus we may choose Un, n < ω as uniformly c.e.

sets of strings. To show x is not Hippocrates γ-energy random, we must show that
for any µ with

∫∫ dµ(a)dµ(b)
υ(a,b)γ < ∞, x is not Hippocrates µ-random. We do this by

showing that some effectively given subsequence of {Un}n<ω is a µ-Martin-Löf test.
By Lemma 3.4, for each ε > 0 there is a clopen set A ⊆ [Un]� with µA ≥ µ[Un]�−ε.
Since

{S ⊆ K<ω : ΓS ∩ [Un]� 6= ∅} =
⋃

y∈[Un]�

{S : y ∈ ΓS} ⊆ [Vn]�,

it follows from Lemma 2.6 that
µ(A)2

c
≤ λk,`{S : ΓS ∩A 6= ∅} ≤ λk,`[Vn]� ≤ 2−n

so µ([Un]�) ≤ µ(A) + ε ≤
√

c2−n + ε. Since ε > 0 was arbitrary, µ([Un]�) ≤
√

c2−n.
After taking an effective subsequence we can replace

√
c2−n by 2−n, and so we are

done. �

Theorem 3.6. Each member of any Martin-Löf random closed set under the (k, `)-
induced distribution is truth-table equivalent to an infinite subset of a Martin-Löf
random set under λk,`.

Proof. Let x ∈ ΓS where S is Martin-Löf random under λk. Let Y = {σ ∈ S : ι(σ) �
x} where as above σ � x denotes that σ is an initial segment of x. Since x ∈ ΓS ,
Y is infinite. Since τ � x ⇔ ι−1(τ) ∈ Y for τ of length a multiple of k, and since
σ ∈ Y ⇔ ι(σ) � x, x is truth-table equivalent to Y . �

Theorem 3.7. Each real of positive effective Hausdorff dimension computes (and
in fact is truth-table equivalent to) an infinite subset of a Martin-Löf random set of
integers.

Proof. Let x be a real of positive effective Hausdorff dimension, let ` = 1 and let
k be such that dim1

H(x) > γ := `
k = 1

k . By Theorem 3.1, x is β-capacitable for
some β > γ. By Lemma 2.5, x is γ-energy random and hence Hippocrates γ-energy
random. By Theorem 3.5, x is a member of a Martin-Löf random closed set under
the (k, `)-induced distribution. By Theorem 3.6, x is Turing equivalent to an infinite
subset Y of a Martin-Löf random set under λk,`. Now λk,` is the uniform distribution
on subsets of K<ω with success probability 2−` = 1

2 . Thus f−1
k (Y ) is an infinite

subset of a Martin-Löf random set of integers, and truth-table equivalent to Y . �
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Theorem 3.8. There is an infinite subset of a Martin-Löf random set of integers
that computes no Martin-Löf random set of integers.

Proof. Miller [7] shows that there is a real x of effective Hausdorff dimension 1/2
which does not compute any Martin-Löf random real. By Theorem 3.7, x computes
an infinite subset of a Martin-Löf random set. �

We only needed the case ` = 1 for Theorem 3.8. If we let ` →∞, we see that even
a Martin-Löf random set of integers with respect to an arbitrarily small probability
of membership 2−` may have an infinite subset that computes no Martin-Löf random
set.
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