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AFFINE SYMMETRIES OF THE EQUIVARIANT QUANTUM
COHOMOLOGY RING OF RATIONAL HOMOGENEOUS SPACES

Pierre-Emmanuel Chaput, Laurent Manivel, and Nicolas Perrin

Abstract. Let X be a rational homogeneous space and let QH∗(X)×loc be the group of

invertible elements in the small quantum cohomology ring of X localised in the quantum
parameters. We generalise results of [2] and realise explicitly the map π1(Aut(X)) →
QH∗(X)×loc described in [14]. We even prove that this map is an embedding and realise

it in the equivariant quantum cohomology ring QH∗
T (X)×loc. We give explicit formulas

for the product by these elements.

The proof relies on a generalisation, to a quotient of the equivariant homology ring

of the affine Grassmannian, of a formula proved by Peter Magyar [8]. It also uses
Peterson’s unpublished result [11] — recently proved by Lam and Shimozono in [7] —

on the comparison between the equivariant homology ring of the affine Grassmannian

and the equivariant quantum cohomology ring.

1. Introduction

For G a semisimple simply connected algebraic group, the center Z of G has several
interpretations. It may be canonically identified to the fundamental group π1(Gad)
of the adjoint group Gad = G/Z. Another description is

Z ' P∨/Q∨

where P∨ and Q∨ are the coweight and coroot lattices (see for example [1]). Nice
representatives of this quotient in P∨ are given by the opposites of the minuscule
fundamental coweights (−$∨

i )i∈Im
(recall that a dominant coweight λ is minuscule if

〈λ, α〉 = 0 or 1 for any positive root α). Here Im denotes the subset of the set I of
vertices of the Dynkin diagram of G parametrising the minuscule coweights.

The group Z can also be seen as the stabiliser, in the affine Weyl group Waff , of
the fundamental alcove (see [7, Page 16] or [8, Page 5]). By composition with the
natural map Waff →W to the finite Weyl group of G, one realises Z as a subgroup of
W . This subgroup is given by the elements (vi)i∈Im , where vi is the smallest element
of W such that vi$

∨
i = w0$

∨
i , where w0 denotes the longest element in W (see [7,

Page 16] for example).
In a different context, Seidel proved in [14] that the fundamental group of the group

of Hamiltonian symplectomorphisms of a symplectic variety X can be mapped to the
group QH∗(X)×loc of invertible elements of the quantum cohomology ring localised in
the quantum parameters (Seidel’s construction has coefficients in Z/2Z; here we use
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the definition in [9] which has integer coefficients). When X = G/P is a rational
homogeneous space, the natural projective structure of X induces a symplectic struc-
ture preserved by Gad (recall that the center Z of G acts trivially on X), and we get
a map

Z = π1(Gad) −→ QH∗(G/P )×loc,

which we call Seidel’s representation. According to [9], it is hard to describe this
map explicitly. This has been done by A. Postnikov for Grassmannians and the
variety of complete flags in type A (see [12] and [13]). In [2], we described explicitly
Seidel’s representation when X = G/P is a minuscule or cominuscule homogeneous
space; in particular we proved it is faithful. In this note we extend this result to
all homogeneous spaces. Moreover we provide an explicit formula for the product
by a class in the image of Seidel’s representation, in the more general setting of the
equivariant quantum cohomology ring QH∗

T (X)loc.
To the parabolic subgroup P of G, containing a fixed Borel subgroup, we associate

the set IP of vertices of the Dynkin diagram defining P (with the convention that if P
is the Borel subgroup itself, IP = I is the whole set of vertices of the Dynkin diagram).
For w ∈W , we denote by σP (w) the Schubert class induced by w in H2l(w)(G/P,Z)
and by ηP the natural surjection Q∨ → Q∨/Q∨

P from the coroot lattice to its quotient
by the coroot lattice of P . We prove:

Theorem 1. For any i ∈ Im and any w ∈W , we have in QH∗
T (G/P )loc:

σP (vi) ∗ σP (w) = qηP ($∨
i −w−1($∨

i ))σ
P (viw).

Theorem 2. Seidel’s representation of the group π1(Gad) in QH∗(G/P )×loc is given,
for i ∈ Im, by −ωi 7→ σP (vi).

For the complete flag variety G/B, Theorem 1 follows rather directly from a factor-
ization theorem in the affine Grassmannian due to Magyar, and Peterson’s comparison
theorem between the equivariant homology of the affine Grassmannian, and the quan-
tum cohomology of G/B (see Remark 3.18). In order to prove Theorem 1 for arbitrary
flag varieties G/P , we will need to extend Magyar’s result in a suitable way. This
extension will rely on the introduction of certain variants of the tools introduced in
[11] and [7], and an important part of our work will consist in checking that some
of the key statements in these papers still hold in our extended setting. Once our
generalized Magyar’s formula, Proposition 3.16, is established, the proof of Theorem
1 in 3.5 readily follows.

2. Peterson’s map and Magyar’s factorisation formula

2.1. Affine Grassmannian, affine Weyl group and extended affine Weyl
group. Let us denote by ΩK the affine Grassmannian associated to the group G.
This is an ind-variety which can be defined as follows. Let K be a maximal compact
subgroup of G; as a set, the affine Grassmannian is the set of functions f : S1 → K,
such that f(1) = 1K and f can be extended to a meromorphic function f : D → G on
the closed unit disk with poles only at the origin (see for example [8] for more details).
The affine Grassmannian ΩK may also be seen as the quotient G(C((t)))/G(C[[t]]).

The affine Weyl group Waff is defined as the semidirect product of the Weyl group
W by the coroot lattice Q∨ (see [8] of [7] for more details). In the same way one
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defines the extended affine Weyl group W̃aff as the semidirect product of W by P∨

the coweight lattice (see [8] or [7]). Elements of these groups will be denoted by wtλ
with w ∈ W and λ ∈ P∨ or λ ∈ Q∨. We will denote by P∨

− the set of antidominant
coweights and by Q̃ its intersection with the coroot lattice.

Note that Waff is naturally a subgroup of W̃aff , which is normal, and that the
quotient W̃aff/Waff is isomorphic to P∨/Q∨ and thus to Z. The stabiliser of the
fundamental alcove defines a natural section Z → W̃aff of this quotient (see [8, Page
5]). The opposite of the minuscule coweights (−$∨

i )i∈Im
are representatives of the

quotient P∨/Q∨ in P∨. The image of −$∨
i with i ∈ Im by this section is the element

(see [7, Page 16]):
τi := vit−$∨

i
.

Recall the definition of the affine root lattice Qaff =
⊕n

i=0 Zαi where αi are the
simple roots associated to the extended (or affine) Dynkin diagram . Recall also the
definition of the imaginary root δ = α0 + θ where θ is the longest root of the finite
root system. For more details on the affine root lattice, see [7]. Recall also the action
of the extended Weyl group W̃aff on the affine root lattice given by wtλ(α + nδ) =
w(α) + (n− 〈λ, α〉)δ. It follows that any τ ∈ Z induces an automorphism i 7→ τ(i) of
the Dynkin diagram defined by the formula τ(αi) = ατ(i) for any simple root αi.

We already defined the element vi; it is also given by vi = w0w
Pi
0 , where w0 denotes

the longest element of the Weyl group W , and wPi
0 the longest element of the Weyl

group WPi
of the maximal parabolic subgroup Pi of G associated to the cominuscule

simple root αi
2. The element vi is also the longest element in WPi , the set of minimal

length representatives of the quotient W/WPi
. This element is well understood, in

particular, we shall use the following fact. Recall that the Weyl involution f is defined
on roots by α 7→ −w0(α) and induces an involution on the set of simple roots, that
we also denote by f .

Fact 2.1. (ı) We have v−1
i = vf(i).

(ıı) Let α be a positive root, then vi(α) is positive if and only if 〈$∨
i , α〉 = 0.

2.2. Equivariant homology. We will be interested in the equivariant homology
ring HT

∗ (ΩK) of ΩK for a maximal torus T in G. We refer to [8] for details. Let
S = H∗

T (pt), then HT
∗ (ΩK) is a free S-module with basis (ξx)x∈W−

aff
where ξx is the

class of a Schubert variety in ΩK and W−
aff is the set of minimal length representatives

of Waff/W in Waff . Note that we will assume, following [6, Page 4], that T does not
contain the rotation action of S1 on ΩK (considered as a set of loops). This implies
that the image in S of the imaginary root δ = θ + α0 is zero.

Let us denote by R the root system, by R+ the set of positive roots and by R+
P

the set of positive roots in P . Define the subset (WP )aff of Waff by

(WP )aff =
{
wtλ ∈Waff / ∀α ∈ R+

P , 〈λ, α〉 =
{

0 if w(α) > 0
−1 if w(α) < 0

}
.

Recall that we have

Waff = −{wtλ ∈Waff / ∀i, 〈λ, αi〉 = 0 =⇒ w(αi) > 0} .

2Recall that these elements w
Pi
0 define by σPi (u) 7→ σPi (w

Pi
0 u) the strange duality in

QH∗
loc(G/Pi), cf. [2] and [3]
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Lam and Shimozono proved that

JP =
⊕

x∈Waff\(W P )aff

Sξx

is an ideal in HT
∗ (ΩK). Moreover, they defined a map πP : Waff → (WP )aff by

proving that for any x ∈ Waff , there exists a unique factorisation x = x1x2 with
x1 ∈ (WP )aff and x2 ∈ (WP )aff (the affine group associated to WP ). The map πP is
defined by x 7→ x1. We have the following proposition (see [7, Proposition 10.11]):

Proposition 2.2. Let x ∈W−
aff∩(WP )aff and λ ∈ Q̃. Then xπP (tλ) ∈W−

aff∩(WP )aff
and we have:

ξxξπP (tλ) = ξxπP (tλ) mod JP .

In particular, we may quotient and localise the equivariant homology ring as fol-
lows, and define

HT
∗ (ΩK)P := (HT

∗ (ΩK)/JP )[ξ−1
πP (tλ), λ ∈ Q̃].

2.3. Equivariant quantum cohomology. On the other hand, we consider the
equivariant quantum cohomology ring QH∗

T (G/P ). For details we refer to [10] and
[7]. This ring is a free S[qi, i ∈ IP ]-module with basis given by the Schubert classes
(σP (w))w∈W P (where WP is the set of minimal coset representatives of W/WP and
WP is the Weyl group of P ). We localise this ring as follows:

QH∗
T (G/P )loc := QH∗

T (G/P )[q−1
i , i ∈ IP ].

Lam and Shimozono [7, Theorem 10.16] proved the so called Peterson theorem (see
also [11]):

Theorem 3. The map ψP : HT
∗ (ΩK)P → QH∗

T (G/P )loc defined by

ξwπP (tλ)ξ
−1
πP (tµ) 7→ qηP (λ−µ)σ

P (w),

for w ∈WP and λ, µ ∈ Q̃, is an isomorphism of S-algebras.

2.4. Magyar’s factorisation formula. Denote by W̃−
aff the set of minimal length

representatives of W̃aff/W in W̃aff . An element x ∈ W̃−
aff can be uniquely written as

x = τix̂ where x̂ ∈ W−
aff and i ∈ Im. Magyar proved the following formula (see [8,

Theorem A], the length condition l(x) + l(tλ) = l(xtλ) being always satisfied for x in
W−

aff and λ ∈ P∨
−):

Theorem 4. Let λ be antidominant in P∨ and let x and y in W̃−
aff . Assume that

xtλ = y. Then
ξbxξ btλ

= ξby in HT
∗ (ΩK).

In order to prove Theorem 1 we will need a more general formula that will be
proven in the next section. However Magyar’s formula was a guide for our proof, and
it is sufficient to establish Theorem 1 for G/B (see Remark 3.18).
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3. Symmetries in the quantum cohomology

Instead of Magyar’s formula, which is true in the full equivariant homology ring
HT
∗ (ΩK), we prove a more general formula in the quotient ring HT

∗ (ΩK)/JP . Theo-
rem 1 will be a straightforward application.

We start with the definition of an extended nil Hecke ring ÃAff , acting on the
equivariant homology ring HT

∗ (ΩKad) of the extended affine Grassmannian ΩKad

(see section 3.2). This action extends the known action of AAff on HT
∗ (ΩK).

3.1. Extended nil Hecke ring. Because of the natural inclusion of Z in W̃aff , we
can let Z act on the weight lattice; the result of the action of τ ∈ Z on a weight λ will
be simply denoted τ(λ). We have already observed that τ(αi) = ατ(i). Recall from
[7, Section 6.1] the definition of the affine nil Hecke ring. It is a non-commutative ring
with generators Ai for i ∈ IAff and λ in the weight lattice, subject to the following
relations:

λµ = µλ
Aiλ = (si.λ)Ai + 〈λ, α∨i 〉 · 1
AiAi = 0

AiAjAi · · · = AjAiAj · · · if sisjsi · · · = sjsisj · · ·
(in the last line, there are the same numbers of factors in all the products). Note that
the above set of relations is invariant under the action of τ ∈ Z, so that τ yields an
algebra automorphism of AAff .

Definition 3.1. The extended nil Hecke ring ÃAff is the smashed product ZnAAff of
AAff by Z. As a Z-module, it is just the tensor product Z ⊗AAff . The multiplication
is defined by

(τ ⊗ a)(σ ⊗ b) = τσ ⊗ σ−1(a)b.

In other words, ÃAff is generated by Z and AAff , with the relations τa = τ(a)τ .

Proposition 3.2. Let x ∈ W̃aff and write x = τ x̂ with τ ∈ Z and x̂ ∈ Waff . Then
the map x 7→ τ ⊗ x̂ extends the inclusion of Waff in AAff to a multiplicative inclusion
W̃aff → ÃAff . The elements x ∈ ÃAff for x ∈ W̃aff form a basis (over Frac(S)) of
ÃAff .

Proof. We only need to prove that this map is multiplicative. For x = τ x̂ and y = σŷ,
we have xy = τσσ−1(x̂)ŷ in W̃aff and the result follows. Since the elements of AAff

defined by x̂ ∈ Waff form a basis of AAff over Frac(S), we can deduce the result for
ÃAff . �

3.2. Equivariant homology of ΩKad. Recall from [8, Page 17] the definition of the
variety ΩKad of based loops with values in the adjoint group Kad = K/Z. The variety
ΩKad has its connected components indexed by Z. There is an action of T on ΩKad

and the fixed points for this action are indexed by W̃aff/W . Define the space LKad of
all loops in Kad = K/Z. We may also (as for ΩK, see [8]) see ΩKad as the quotient
LKad/Kad by writing any loop f ∈ LKad as f(t) = f(t)f(1)−1f(1) ∈ ΩKad ·Kad. In
particular, we have a left action of LKad on ΩKad. The group Z can be realised as the
subgroup of LKad consisting of the points defined by the loops (t 7→ vi exp(−2iπt$∨

i ))
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(see [8, Page 6]). This together with the classical realisation of Waff in LKad gives
a realisation of the extended Weyl group W̃aff in LKad. The corresponding elements
are precisely the fixed points of the T -action.

The equivariant cohomology ring HT
∗ (ΩKad) has a basis indexed by W̃−

aff : if ξbx,
with x̂ ∈W−

aff , is a class in HT
∗ (ΩK) and τ is an element in Z, then the translation by

τ ∈ LKad in ΩKad defines a class ξ̃τ bx = τ · ξbx in HT
∗ (ΩKad). Note that ξτ is simply

the class [τ ]. Following [8, Paragraph 1.2], we have for any τ ∈ Z and any x̂ ∈W−
aff :

ξτξbx = ξbxξτ .
The ring HT

∗ (ΩKad) is thus the tensor product ring Z ⊗ HT
∗ (ΩK): the product is

defined by
(τ ⊗ ξbx)(σ ⊗ ξby) = τσ ⊗ ξbxξby.

We may define operators Ai acting on the ring HT
∗ (ΩKad), in the same way as

they are usually defined as operators on HT
∗ (ΩK). That is, consider E → B the

universal principal LKad-bundle. Then LKad acts on the right on E × ΩKad by
f · (e, f ′) = (ef−1, ff ′). In particular, T acts on E × ΩKad and we may consider
the quotient E ×T ΩKad of E × ΩKad by T . The equivariant cohomology is defined
by H∗

T (ΩKad) = H∗(E ×T ΩKad) and the equivariant homology is the dual of that
space. Now for any vertex i ∈ I ∪ {0} of the extended Dynkin diagram, there exists
an associated compact subgroup Kad

i of LKad (see for example [8, Page 15] for the
subgroup Ki of LK the group of loops in K; the group Kad

i is the image of Ki in
LKad). Consider the map πi : E ×T ΩKad → E ×Kad

i ΩKad and define the operator
Ai by integrating on the fibers and pulling-back. By duality this defines an action of
Ai on HT

∗ (ΩKad). We may also consider any s ∈ S as an operator on HT
∗ (ΩKad).

It is enough to do this for a weight λ, for which the action is defined by intersection
with c1(Lλ), where Lλ denotes the line bundle defined by λ. Finally we define the
operator τ for any τ ∈ Z thanks to the translation by τ in ΩKad.

Proposition 3.3. These operators define an action of ÃAff on HT
∗ (ΩKad) extending

the action of AAff on HT
∗ (ΩK). This action can be written as follows:

(τ ⊗ a) · (σ ⊗ ξ) = τσ ⊗ (σ−1(a) · ξ).

Proof. If the action is well defined, it certainly extends the action of AAff on HT
∗ (ΩK).

We only need to verify that the commutation relations τAiτ
−1 = Aτ(i) and τsτ−1 =

τ(s) are satisfied.
For the first one, we only need to remark that the conjugate group τ(Ki)τ−1 is

Kτ(i). For the second one, we may suppose that s is a weight λ. Let L′λ be the line
bundle defined by the twisted action of T on C given for t ∈ T by multiplication with
τ(λ)(t). The operator τsτ−1 is given by the intersection with c1(L′λ). This coincides
with the intersection with c1(Lτ(λ)). �

For x ∈ W̃aff , write x = τ x̂ with τ ∈ Z and x̂ ∈ Waff . We define the element
Ãx ∈ ÃAff by Ãx = τ ⊗ Abx. We also define the length of an element x = τ x̂ as the
number of inverted positive real roots, as in [7, Section 10.1], so that l(x) = l(x̂).
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Proposition 3.4. The action of ÃAff on HT
∗ (ΩKad) is given by the following formula

Ãx · ξ̃y =
{
ξ̃xy if l(xy) = l(x) + l(y) and xy ∈ W̃−

aff

0 otherwise.

Proof. Write x = τ x̂ and y = σŷ with τ, σ ∈ Z and x̂, ŷ ∈ Waff . We have xy =
τσσ−1(x̂)ŷ. We compute

Ãx · ξ̃y = (τ ⊗Abx) · (σ ⊗ ξy)
= τσ ⊗ σ−1(Abx) · ξy
= τσ ⊗Aσ−1(bx) · ξy.

But we know by a result of Kostant and Kumar [4] (see also [7, Section 6.2]) that

Aσ−1(bx) · ξby =
{
ξσ−1(bx)by if l(σ−1(x̂)ŷ) = l(σ−1(x̂)) + l(ŷ) and σ−1(x̂)ŷ ∈W−

aff

0 otherwise,

thus we have the equality

Ãx · ξ̃y =
{
ξ̃xy if l(σ−1(x̂)ŷ) = l(x̂) + l(ŷ) and σ−1(x̂)ŷ ∈W−

aff

0 otherwise.

The equality l(σ−1(x̂)) = l(x̂) comes from the fact that σ permutes the simple roots
and the formula l(x̂) = |{α ∈ R+

aff / x̂(α) < 0}|. Moreover, since xy = τσσ−1(x̂)ŷ, we
know that xy is in W̃−

aff if and only if σ−1(x̂)ŷ is in W−
aff . Furthermore, l(σ−1(x̂)ŷ) =

l(xy) and l(x) + l(y) = l(x̂) + l(ŷ) so that the condition l(σ−1(x̂)ŷ) = l(x̂) + l(ŷ) is
equivalent to the condition l(xy) = l(x) + l(y). �

Remark 3.5. There exist, a priori, two actions of the extended affine Weyl group
W̃aff on HT

∗ (ΩKad): one is given by the embedding of W̃aff in ÃAff . The other one
is simply defined on HT

∗ (ΩKad) by the operators R∗
x induced, for x ∈ W̃aff , by the

right multiplication Rx in E ×T ΩKad, by x considered as an element of ⊂ LKad.
This right multiplication operator is well defined because W̃aff normalises T . It is a
classical (but non trivial) result that these two actions coincide for the classical affine
Weyl group Waff (see [5, Theorem 11.3.9]). Since the action of τ on a class ξx is given
by ξτx (see Proposition 3.4), which is also the class obtained by right translation on
Ead ×T ΩKad, these two actions of W̃aff coincide as well.

3.3. The map jad. We want to generalise Theorem 6.2 in [7]. For this we need
to consider another basis of the ring HT

∗ (ΩKad) given by T -fixed points in ΩKad.
Recall that these fixed points are indexed by W̃aff/W and that good representatives
are given by P∨ by

ptλ
= (t 7→ exp(2iπtλ)) for λ ∈ P∨.

Furthermore, for λ and µ in P∨, these fixed points satisfy ptλ
ptµ = ptλtµ and the

affine Weyl group action gives x · ptλ
= pxtλ

.

Definition 3.6. Let ψ̃tλ
for λ ∈ P∨ be the element in HT

∗ (ΩKad) defined by

ψ̃tλ
= i∗λ : H∗

T (ΩKad) → S,

where iλ denotes the inclusion of the T -fixed point pλ in ΩKad.
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The fact that the elements ψ̃tλ
, for λ ∈ P∨, form a basis of HT

∗ (ΩKad) over
Frac(S), comes from the same statement for compact spaces (see [5, Theorem C8,
page 537]), and the fact that the extended affine Grassmannian, as well as the affine
Grassmannian, is an increasing union of compact T -stable finite dimensional Haus-
dorff subspaces.

Proposition 3.7. We have the following formulas:

ψ̃tλ
ψ̃tµ

= ψ̃tλ+µ
and x · ψ̃tλ

= ψ̃xtλ

for any λ and µ in P∨ and any x in W̃aff .

Proof. These formulas are immediate consequences of the identities ptλ
ptµ

= ptλtµ

and x · ptλ
= pxtλ

. �

We are now in position to generalise [7, Theorem 6.2]. We will denote by ZeAAff
(S)

the centraliser of S in ÃAff . We also define the ideal J̃ in ÃAff by

J̃ =
∑

w∈W\{id}

ÃAff(1⊗Aw).

Proposition 3.8. There is an S-algebra isomorphism jad : HT
∗ (ΩKad) → ZeAAff

(S)

such that for any x and y in W̃−
aff we have jad(ξ̃x) = Ãx mod J̃ and jad(ξ̃x)· ξ̃y = ξ̃xξ̃y.

Proof. This extends the similar result in [6], whose proof we follow. We define jad by
letting jad(ψ̃tλ

) = tλ for λ ∈ P∨, and extending by Frac(S)-linearity. Proposition 3.7
shows that it is an S-algebra morphism. The formula x · ψ̃t = ψ̃xt gives

jad(ψ̃tλ
) · ψ̃tµ = ψ̃tλtµ = ψ̃tλ

ψ̃tµ

which, since the elements ψ̃tλ
for λ ∈ P∨ form a basis of HT

∗ (ΩKad), implies the
identity jad(ξ̃x) · ξ̃y = ξ̃xξ̃y.

To prove that the image is contained in ZeAAff
(S), consider the action tλ ·(α+nδ) =

(α + nδ − 〈α, λ〉δ)tλ where α is a root and δ = α0 + θ is the imaginary root. As the
image of δ in S is zero, the commutation relation follows.

We have jad(ξ̃x) · ξ̃id = ξ̃xξ̃id = ξ̃x for x ∈ W̃−
aff . This implies that jad(ξ̃x) = Ãx + a

where a lies in the annihilator of ξ̃id ∈ HT
∗ (ΩKad) in ÃAff . This annihilator is clearly

the ideal J̃ .
Finally, let a =

∑
x∈fWaff

axx be an element in ZeAAff
(S), then we have for v ∈ S

av =
∑

x∈fWaff

axx(v)x = va =
∑

x∈fWaff

axvx.

In particular ax = 0 for all x such that x(v) 6= v for some v ∈ S. But recall that the
action of w ∈ W is given by w(α + nδ) = w(α) + nδ and because δ is send to zero,
this equals α if and only if w = id. In particular x has to be a translation, which
exactly means it belongs to the image of jad. �
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3.4. Generalised Magyar’s formula. In this subsection, we generalise Magyar’s
formula to the quotient HT

∗ (ΩK)/JP . This formula, as for Magyar’s formula, is a
generalisation to coweights of the localisation formula of Proposition 2.2. Let us first
introduce some definitions.

Definition 3.9. We define the subset (W̃P )aff of W̃aff as follows : for x = τ x̂ with
τ ∈ Z and x̂ ∈Waff , x ∈ (W̃P )aff if x̂ ∈ (WP )aff .

Lemma 3.10. Define (RP )+aff = {α+ nδ ∈ R+
aff / α ∈ RP }, then we have

(W̃P )aff = {x ∈ W̃aff / x(β) > 0 for all β ∈ (RP )+aff}

Proof. Recall from [7, Section 10.3], that the condition in the lemma defines (WP )aff
in Waff . The extension to (W̃P )aff follows from the fact that Z stabilises the cone of
positive roots. �

For an element x ∈ W̃aff , we write x = τ x̂ with τ ∈ Z and x̂ ∈ Waff . We need to
compare the properties of x and x̂. We first compare their expressions as products
x = wtλ with λ ∈ P∨, and x̂ = vtµ with µ ∈ Q∨.

Lemma 3.11. Let w ∈ W and λ ∈ P∨. Write λ = −$∨
i(λ) + λ̂, where λ̂ ∈ Q∨ and

i(λ) ∈ Im. Then
wtλ = τi(λ)vf(i(λ))wtλ−w−1($∨

f(i(λ)))
,

where λ− w−1($∨
f(i(λ))) is in Q∨.

Proof. We know that there exist an index j, an element u ∈W and an element x ∈ Q∨

such that wtλ = τjutx. We then get the equalities u = v−1
j w and µ = λ−w−1($f(j)).

But µ has to be in Q∨, hence f(j) = f(i(λ)) and thus j = i(λ). �

Let λ ∈ P∨ and w ∈W . Write wtλ = τi(λ)vf(i(λ))wtλ−w−1($∨
f(i(λ)))

with λ̂ ∈ Q∨.

Lemma 3.12. For any positive root α ∈ R+ of the finite root system, we have the
equality

χ(w(α) < 0) + 〈λ, α〉 = χ(vf(i(λ))w(α) < 0) + 〈λ− w−1($∨
f(i(λ))), α〉,

where χ(A) = 1 if A is true and χ(A) = 0 otherwise.

Proof. Let us consider the following four cases:
1. w(α) > 0 and 〈$∨

f(i(λ)), w(α)〉 = 1;
2. w(α) > 0 and 〈$∨

f(i(λ)), w(α)〉 = 0;
3. w(α) < 0 and 〈$∨

f(i(λ)), w(α)〉 = −1;
4. w(α) < 0 and 〈$∨

f(i(λ)), w(α)〉 = 0.

According to these cases and setting u = vf(i(λ))w and µ = λ − w−1($∨
f(i(λ))), we

have:
1. u(α) < 0 and 〈µ, α〉 = 〈λ, α〉 − 1;
2. u(α) > 0 and 〈µ, α〉 = 〈λ, α〉;
3. u(α) > 0 and 〈µ, α〉 = 〈λ, α〉+ 1;
4. u(α) < 0 and 〈µ, α〉 = 〈λ, α〉.



16 P-E. CHAPUT, L. MANIVEL, AND N. PERRIN

The statement can then be checked case by case. �

This lemma gives a generalisation to the extended affine Weyl group W̃aff of the
length formula given in [7, Lemma 3.1]:

Corollary 3.13. Let wtλ ∈ W̃aff with w ∈W and λ ∈ P∨. Then

l(wtλ) =
∑

α∈R+

|χ(w(α) < 0) + 〈λ, α〉|.

Proof. The formula wtλ = τi(λ)vf(i(λ))wtλ−w−1($∨
f(i(λ)))

implies that

l(wtλ) = l(vf(i(λ))wtλ−w−1($∨
f(i(λ)))

),

and [7, Lemma 3.1] gives the formula

l(vf(i(λ))wtλ−w−1($∨
f(i(λ)))

) =
∑

α∈R+

|χ(vf(i(λ))w(α) < 0) + 〈λ− w−1($∨
f(i(λ))), α〉|.

We conclude thanks to the previous lemma. �

The previous lemma also provides a criterion, for an element x ∈ W̃aff , to be
such that x̂ ∈ (WP )aff . More precisely let wtλ ∈ W̃aff . Write once more wtλ =
τi(λ)vf(i(λ))wtλ−w−1($∨

f(i(λ)))
.

Corollary 3.14. The element vf(i(λ))wtλ−w−1($∨
f(i(λ)))

is in (WP )aff if and only if,

for any root α ∈ R+
P ,

〈λ, α〉 =
{

0 if w(α) > 0
−1 if w(α) < 0.

Proof. This condition is exactly the condition for an element wtλ ∈ Waff to be in
(WP )aff , see Lemma 10.1 in [7]. But remark that this condition is equivalent to

χ(w(α) < 0) + 〈λ, α〉 = 0

for all α ∈ R+
P . We conclude once more by the previous lemma. �

Corollary 3.15. An element wtλ with w ∈W and λ ∈ P∨ is in (W̃P )aff if and only
if, for any root α ∈ R+

P ,

〈λ, α〉 =
{

0 if w(α) > 0
−1 if w(α) < 0.

Proof. This is an immediate application of Corollary 3.14. �

The map πP : Waff → (WP )aff extends to π̃P : W̃aff → (W̃P )aff by setting πP (x) =
τπP (x̂) for x = τ x̂. Many results of [7, Paragraph 10] on (WP )aff extend readily to
(W̃P )aff . This is the case of Lemma 3.1 (see Corollary 3.13), Lemmas 3.2 and 3.3
and Lemmas 10.2 to 10.6. The definition of the extension π̃P of πP ensures that the
results of Proposition 10.8 in [7] remain true in our setting.
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Furthermore, we extend the definition of the ideal JP by defining the following
ideal J̃P of ÃAff :

J̃P =
∑

x∈fW−
aff\(fW P )aff

Sξ̃x.

This is indeed an ideal because W̃−
aff and (W̃P )aff are stable under left multiplication

by Z.

Proposition 3.16. For all x ∈ W̃−
aff ∩ (W̃P )aff and λ ∈ P∨

− , we have xπP (tλ) ∈
W̃−

aff ∩ (W̃P )aff and
ξbxξπ̂P (tλ)

= ξ ̂xπP (tλ)
mod JP .

Proof. We follow the proof of Proposition 2.2 by Lam and Shimozono (see [7, Propo-
sition 10.11]). Lemma 10.10 in [7] extends readily to

Lemma 3.17. Let λ ∈ P∨ be antidominant. Then (1⊗Ai) · ξ̃πP (tλ) = 0 mod J̃P for
all i ∈ I.

In particular J̃ · ξπP (tλ) = 0 mod J̃P . Now we can apply Proposition 3.8 to get the
identity:

ξ̃xξ̃πP (tλ) = Ãx · ξ̃πP (tλ) mod J̃P .

Let us prove that the product xπP (tλ) is length additive. We have seen that Propo-
sition 10.8 of [7] extends to W̃aff and (W̃P )aff . In particular x = wπP (tν) for
w ∈ WP and ν ∈ P∨ antidominant and we have xπP (tλ) = wπP (tν)πP (tλ) =
wπP (tν+λ). By [7, Lemma 3.3], because x and xπP (tλ) are in W̃−

aff , we have l(x) =
l(πP (tν)) − l(w) and l(xπP (tλ)) = l(πP (tν+λ)) − l(w). We only need to prove that
l(πP (tν+λ)) = l(πP (tν)) + l(πP (λ)). Because Lemmas 3.3, 10.3 and 10.6 of [7] extend
to coweights, the same proof as for coroots in [7] gives the additivity. By propo-
sition 3.4, we thus have the formula ξ̃xξ̃πP (tλ) = ξ̃xπP (tλ) mod J̃P . But writing

x = τ x̂, πP (tλ) = σπ̂P (tλ) and xπP (tλ) = τσ ̂xπP (tλ), this implies the equality
(τ ⊗ ξbx)(σ⊗ ξ

π̂P (tλ)
) = (τσ⊗ ξ ̂xπP (tλ)

) mod J̃P and thus ξbxξπ̂P (tλ)
= ξ ̂xπP (tλ)

mod JP .

Finally let us prove that xπP (tλ) belongs to W̃−
aff ∩(W̃P )aff . Since x ∈ (W̃P )aff , we

have xπP (tλ) = πP (x)πP (tλ) = πP (xtλ) (from the generalisation of [7, Proposition
10.8] to W̃aff). But x ∈ W̃−

aff and λ ∈ P∨
− , thus, by the generalisation of [7, Lemma

3.3] to W̃aff , we get that xtλ ∈ W̃−
aff . Thanks, once more, to the generalisation of [7,

Proposition 10.8] to W̃aff , we can then deduce the result. �

3.5. Application to symmetries. We are now in position to prove Theorem 1 for
any G/P . Let w be an element of the Weyl group W , let $∨

i be a minuscule coweight
and let µ and ν be in Q∨. We begin with the formulas:

t−$∨
i −µ = τivf(i)t−($∨

i +$∨
f(i)+µ) and wt−νt−$∨

i −µ = τivf(i)wt−($∨
i +w−1($∨

f(i))+µ+ν).

Applying the map πP , we get the equalities

πP (t−$∨
i −µ) = τiπP (vf(i))πP (t−($∨

i +$∨
f(i)+µ))
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and
πP (wt−νt−$∨

i −µ) = τiπP (vf(i)w)πP (t−($∨
i +w−1($∨

f(i))+µ+ν)).

For µ and ν dominant enough, the element wt−ν , vf(i)t−($∨
i +$∨

f(i)+µ) and the element

vf(i)wt−($∨
i +w−1($∨

f(i))+µ+ν) belong to W−
aff , and their images by πP are in (WP )aff ∩

W−
aff . We may thus apply Proposition 3.16, and we obtain that modulo JP the

following holds:

ξπP (w)πP (t−ν)ξπP (vf(i))πP (t−($∨
i

+$∨
f(i)+µ))

≡ ξπP (vf(i)w)πP (t−($∨
i

+w−1($∨
f(i)+µ+ν)))

.

Applying Peterson’s map of Theorem 3, we get the corresponding formula in the
quantum cohomology ring:

σP (w)q−ηP (ν) ∗ σP (vf(i))q−ηP (($∨
i +$∨

f(i)+µ)) = σP (vf(i)w)q−ηP (($∨
i +w−1($∨

f(i))+µ+ν)),

hence finally:

σP (w) ∗ σP (vf(i)) = qηP ($∨
f(i)−w−1($∨

f(i)))
σP (vf(i)w).

This concludes the proof of Theorem 1.

Remark 3.18. As a final remark in this section, let us explain briefly why Magyar’s
formula is not sufficient to prove Theorem 1 in full generality. The point is that, in
order to apply this formula, we need an element tλ ∈ W̃−

aff ∩ (W̃P )aff . But Corollary
3.14 implies the following fact:

Fact 3.19. A translation tλ, with λ ∈ P∨, is in W̃−
aff ∩ (W̃P )aff if and only if λ ∈ P∨

−
and 〈λ, α〉 = 0 for all α ∈ R+

P .

In particular, if P is a maximal parabolic subgroup associated to a cominuscule
coweight $∨

i (equivalently, if IP = {i} for some i in Im), this implies that λ needs
to be a multiple of $∨

i . But then Magyar’s formula gives the Theorem 1 only for
multiples of vf(i). The corresponding symmetries of the quantum cohomology ring
are those generated by the quantum product with the punctual class [pt], which were
described in [2]. These symmetries do not generate the full group Z in general.

However, as we already mentionned, if the parabolic subgroup P is a Borel sub-
group, there is no restriction on λ ∈ P∨

− . In this case our Theorem 1 follows from
Magyar’s formula.

4. Seidel’s representation

In this section, we prove Theorem 2. That is, we prove that σP (vf(i)) is the in-
vertible element S(ω∨i ) of the (localized) quantum cohomology ring, corresponding to
−ω∨i ∈ Z = π1(Gad) through Seidel’s representation. As we recalled in the introduc-
tion, we use the integer-valued definition given in [9, Example 8.6.8]. Let us recall
Seidel’s construction.

Since G is simply-connected, the coweight lattice parametrise 1-parameter sub-
groups of T , our prefered maximal torus of G (which is contained in P ). Let C∗ ⊂ T
correspond to ω∨i . The image of S1 ⊂ C∗ ⊂ T ⊂ G → Gad defines an element of
π1(Gad) which will be denoted π1(ω∨i ).

We now set Mi = (C2 − {0}) ×C∗ G/P . There is a natural map π : Mi →
(C2 − {0})/C∗ ' P1. The fibers of π are isomorphic with G/P . As in [14], we
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denote TMv
i the vertical tangent space, that is, the kernel of the differential dπ

in TMi. Choose a point z ∈ P1, and if S is a space of sections of π, denote by
ev : S → π−1(z) ' G/P the evaluation map at z. In the following proposition, k
denotes the number of roots α in the unipotent radical of P such that 〈ω∨i , α〉 > 0.

Proposition 4.1. For any section s of π, one has deg(TMv
i )(s) ≥ −k. Moreover,

let S denote the space of sections s of π such that deg(TMv
i )(s) = −k. Then ev∗[S] ∈

H∗(G/P ) identifies via Poincaré duality with σP (vi).

We postpone the proof to the end of the section. Let us first investigate the
geometry of Mi in more details. For λ a WP -invariant element of the root lattice,
we denote by Lλ the associated G-linearised bundle on G/P . Moreover, if L is any
G-linearised bundle, we denote Li the bundle L×C∗ (C2 − 0) over Mi. Let us finally
denote λP =

∑
α∈Φ+−ΦP

α.

Proposition 4.2. We have det(TMv
i ) = Li

λP
.

Proof. Let η : G/P × (C2 − 0) → Mi denote the quotient map, and let p1 : G/P ×
(C2 − 0) → G/P denote the first projection. Since η is a submersion, it induces
an isomorphism of vector bundles p∗1TG/P ' η∗TMv

i . Moreover, this isomorphism
commutes with the C∗-action, so that it induces an isomorphism TG/P×C∗ (C2−0) '
TMv

i . We deduce that det(TMv
i ) ' det(TG/P )×C∗ (C2 − 0) ' Li

λP
. �

Corollary 4.3. For s : P1 →Mi any section of π, one has deg s∗ det(TMv
i ) ≥ −k.

Proof. Let N = det(TMv
i ) ⊗ π∗O(k): we will show that N is nef. This implies that

for any map f : P1 →Mi, deg f∗N ≥ 0. Hence for any section s of π we deduce that
deg s∗ det(TMv

i ) ≥ −k.
Let λ1, . . . , λu be the weights of the G-module Γ(G/P,det(TG/P )), counted with

multiplicities (so that u = dim Γ(G/P,det(TG/P )). Since π∗ det(TMv
i ) is the vector

bundle
Γ(G/P,det(TG/P ))×C∗ (C2 − 0),

we get

(1) π∗N =
r⊕

j=1

O(〈λj , ω
∨
i 〉+ k).

For the lowest weight −λP of Γ(G/P,det(TG/P )), we have 〈−λP , ω
∨
i 〉 = −k.

Therefore all the line bundles in (1) have non-negative degree. But then N is base-
point free, hence nef. This concludes the proof. �

Since det(TMv
i ) is relatively ample, we get an embedding Mi → P(π∗N)∨. Let us

decompose Γ(G/P,det(TG/P )) as
⊕

j≥0Ej , where our C∗ has weight j − k on Ej .
We have an inclusion

(G/P ∩ PE∨
0 )× P1 ⊂Mi ⊂ P(π∗N)∨.

Proposition 4.4. If s is a section of π such that deg s∗ det(TMv
i ) = −k, there

exists x0 ∈ G/P ∩ PE∨
0 such that s(u) = (u, x0) ∈ P1 × (G/P ∩ PE∨

0 ) for all u ∈ P1.
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Proof. The space of sections of N identifies with
⊕
Ej ⊗ SjC2. Let f : Mi →

P(
⊕
E∨

j ⊗ SjC2) be the morphism defined by N . Since f∗O(1) = N , if the degree of
s∗ det(TMv

i ) is −k then f ◦ s is constant.
Note that for u 6= v ∈ P1, we have f(π−1(u)) ∩ f(π−1(v)) ⊂ PE∨

0 . Since f ◦ s
is constant, this implies that for all u ∈ P1, s(u) belongs to P1 × PE∨

0 and that the
induced morphism P1 → PE∨

0 is constant. The proposition is proved. �

Proposition 4.1 is a consequence of the last two results and the following lemma
4.5 (in fact, we still have to prove that S is reduced; this will be a consequence of the
following argument).

Let us compute the constant term of S(ω∨i ), the Seidel element corresponding to
the loop ω∨i . With the notations of [9], this is S0(π) where π : Mi → P1 is our
fibration. According to the remark before [14, Proposition 7.11], we can compute
S0(π) as the push-forward (evz0)∗S of the space S of sections of π of degree −k; by
proposition 4.1 we deduce S0(π) = d.σP (vf(i)), where d ≥ 1, with d > 1 in case S is
not reduced.

We can now easily complete the proof of Theorem 2. We can write any class
x ∈ QH∗(G/P ) as x =

∑
xw,Iσ

P (w)qI for some integers xw,I . We let |x| :=
∑
xw,I .

By formula [9, 8.6.4] and since Mi is an algebraic variety, all the coefficients S(ω∨i )w,I

are non-negative. Moreover we know that S(ω∨i )vf(i),0
= d. From Theorem 1, and

since the product of any two effective classes is again effective, it follows that for any
effective class x in QH∗(G/P ), we have |x ∗ S(ω∨i )| ≥ |x|. Since S(ω∨i ) is unipotent,
this forces |S(ω∨i )| = 1, hence S(ω∨i ) = σP (vf(i)). In particular d = 1, which also
completes the proof of proposition 4.1.

All that remains to prove is the following claim:

Lemma 4.5. Let L be a very ample homogeneous line bundle on G/P . Let G/P ⊂
PΓ(G/P,L)∨ be the corresponding embedding. Let E0 ⊂ Γ(G/P,L) be the lowest
weight space for a one parameter subgroup of G corresponding to a simple root αi,
and Pi ⊂ G the corresponding parabolic subgroup. Then (G/P ∩PE∨

0 )red is the closed
Pi-orbit in G/P ; its homology class is σP (vf(i)).

Proof. Let x ⊂ Γ(G/P,L)∨ be the highest weight line. Then x ∈ G/P . Moreover,
Γ(G/P,L)∨ is generated as a vector space by U(g).x, where U(g) denotes the envelop-
ing algebra of g. Consider l = t⊕

⊕
α:〈α,ω∨i 〉=0

gα, a Levi subalgebra of pi = Lie(Pi); let

L ⊂ G be the corresponding subgroup. By definition of E0, its dual E∨
0 is generated

by the lines U(l).x. This implies that E∨
0 is an irreducible L-module.

The closed L-orbit L.x is contained in G/P ∩ PE∨
0 . We claim that they are equal.

In fact, let O be any L-orbit in G/P ∩ PE∨
0 . We have L.x ⊂ O. Moreover,

TxL.x =
⊕

〈α,ω∨i 〉=0

gα.x = TxO.

Thus L.x = O.
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Finally, in order to identify the Schubert class [L.x], we consider the incidence
diagram

G/(P ∩ Pi) → G/P
↓ pi

G/Pi

Let w ∈ WPi
be the element corresponding to a fiber of pi (that is, the minimum

length representative of the class modulo WP of the longest element in WPi
), and let

vP∩Pi ∈W represent the open orbit in G/(P∩Pi). The element in WPi corresponding
to the open orbit in G/Pi is vi, and therefore we have the relation vP∩Pi = viw,
which implies, since v−1

i = vf(i), the relation w = vf(i)v
P∩Pi . Let Fi denote a

fiber of pi in G/(P ∩ Pi). We deduce that [F ] identifies by Poincare duality with
σP (w0vf(i)w0) = σP (vi). Since the projection G/(P ∩ Pi) → G/P restricts to an
isomorphism on Fi, we deduce that [L.x] identifies with σP (vi). �
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