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A PRESENTATION FOR HILDEN’S SUBGROUP OF THE BRAID
GROUP

Stephen Tawn

Abstract. Consider the unit ball, B = D×[0, 1], containing n unknotted arcs a1, . . . , an

such that the boundary of each ai lies in D × {0}. We give a finite presentation for
the mapping class group of B fixing the arcs {a1, . . . , an} setwise and fixing D × {1}
pointwise. This presentation is calculated using the action of this group on a simply-

connected complex.

1. Introduction

Let H3 denote the closed upper half-space of R3, let a1, a2, . . . , an ⊂ H3 be n
pairwise disjoint properly embedded unknotted arcs and let a∗ = a1 ∪ a2 ∪ · · · ∪ an.
Viewing the braid group as the mapping class group of the punctured disc, if this disc
is included in ∂H3 with ∂a∗ as the punctures, one can define Hilden’s group, H2n,
to be the subgroup of B2n consisting of all mapping classes that can be extended
to H3 \ a∗. Or equivalently, H2n is the stabiliser of a∗ under the action of B2n on
0, 2n–tangles.

Hilden[5] found generators for a similar subgroup of the braid group of a sphere.
For any given braid b multiplying on either the left or the right by elements of H2n

preserves the plat closure, ie plat closure is constant on each double coset. Birman[1]
showed that if two braids have the same plat closure then they can be related by a
sequence of these double coset moves and stabilisation moves that changes the braid
index by 2.

We calculate a presentation for H2n using the action of this group on a cellular
complex. Hatcher–Thurston[4], Wajnryb[7, 8, 9], Laudenbach[6], etc used the same
method to calculate presentations for mapping class groups. We start in Section 2
by outlining this method. A similar but more general method is given by Brown [3].
Brendle–Hatcher[2] have calculated a presentation for H2n using a different method.

In Section 3 we define a simply-connected complex Xn. In Section 4 we remove
some of the edges and faces of this complex resulting in a new complex which remains
simply-connected but gives a simpler presentation. This presentation is calculated in
Section 5 and then used to calculate a presentation with generators similar to those
found by Hilden.

2. The method

Suppose that X is a connected simply-connected cellular 2-complex such that each
attaching map is injective and that each cell is uniquely determined by its boundary.
Suppose that G is a group acting cellularly on the right of X, and that this action
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is transitive on the vertex set X0. Pick a vertex v0 ∈ X0 as a basepoint and let
H denote its stabiliser in G, ie H = {g ∈ G | v0 · g = v0}. Suppose that H has a
presentation with generating set S0 and relations R0, ie H = 〈S0|R0〉.

Given vertices u, v ∈ X0 such that {u, v} is the boundary of an edge of X we will
write (u, v) for this (oriented) edge. Given a sequence v1, v2, . . . , vk of vertices such
that either vi = vi+1 or (vi, vi+1) forms an edge we will write (v1, v2, . . . , vk) for the
path traversing these edges. Whenever vi = vi+1 we shall say that vi is a stationary
point.

Let E denote the set of all oriented edges starting at v0, so H acts on E. Suppose
that {eλ}λ∈Λ is a set of representatives for the H–orbits of the edges in E, ie E =⋃

λ∈Λ Heλ and Heλ = Heλ′ only if λ = λ′. Since the action of G is transitive on X0

we can find rλ ∈ G such that eλ = (v0, v0 · rλ). Let S1 = {rλ}λ∈Λ.
The edges {eλ}λ∈Λ also form a set of representatives for the edge orbits of the

G–action on X. To see this suppose that two of these edges lie in the same G–orbit,
ie (v0, v) = (v0, u) · g. Then we have that v0 = v0 · g therefore g ∈ H.

Suppose that {fµ}µ∈M is a set of representatives for the G–orbits of the faces of
X. Since the action is transitive on X0, we may assume that the boundary of each
face fµ contains the vertex v0.

Definition 2.1. An h-product of length k is a word of the form

hk+1 rλk
hk rλk−1hk−1 · · · rλ1h1

where each λi ∈ Λ and each of the hi are words in H. To each h-product we can
associate an edge path P = (v0, v1, . . . , vk) in X starting at v0 then visiting the
vertices v1 = v0 · rλ1h1, v2 = v0 · rλ2h2 rλ1h1, etc. This means that the edge (vi−1, vi)
is in the orbit of (v0, v0 · rλi). Given any edge path starting at v0 we can choose an
h-product to represent it.

We can now choose the following three sets of relations.
R1: For each edge orbit representative eλ pick a generating set T for the stabiliser

of this edge, ie 〈T 〉 = StabG(v0) ∩ StabG(v0 · rλ). For each t ∈ T we have the
relation rλtr−1

λ = h for some word h ∈ H.
R2: For each eλ we have a relation rλ′h rλ = h′ where the LHS is a choice of

h-product for the path (v0, v0 · rλ, v0) and h′ is some word in H.
R3: For each face orbit representative fµ with boundary (v0, v1, . . . , vk−1, v0)

choose an h-product representing this path and a word h ∈ H such that
rλk

hk · · · rλ1h1 = h.

Theorem 2.2. The group G has the following presentation.

G = 〈S0 ∪ S1|R0 ∪R1 ∪R2 ∪R3〉

Corollary 2.3. Suppose that H is finitely presented, that the number of edge and
face orbits is finite and that each edge stabiliser is finitely generated. Then G has a
finite presentation.

We prove Theorem 2.2 in several steps.

Claim 1. The set S0 ∪ S1 generates G.
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Proof. Given any g ∈ G, let v = v0 · g. Now as X is connected there is an edge path
connecting v0 to v. Choose an h-product g1 = hk+1 rλk

hk · · · rλ1h1 representing this
path. Then v0 · gg−1

1 = v0 so g = hg1 for some h ∈ H. �

Claim 2. If two h-products, p1 and p2, give rise to the same path and are equal in G
then they are equivalent modulo R0 ∪R1.

Proof. Because p1 and p2 represent the same path they must have equal length.
Suppose that p1 = hk+1 rλk

hk · · · rλ1h1 and p2 = fk+1 rλ′k
fk · · · rλ′1

f1. Clearly, if the
two h-products are of length 0 then they are both words in H and so are equivalent
modulo R0. Now suppose that k 6= 0. The fact that p1 and p2 represent the same
path means that

(v0, v0 · rλ1h1, v0 · rλ2h2 rλ1h1, . . .) = (v0, v0 · rλ′1
f1, v0 · rλ′2

f2 rλ′1
f1, . . .),

therefore
(v0, v0 · rλ1) = (v0, v0 · rλ′1

) · f1h
−1
1 .

So λ1 = λ′1 and f1h
−1
1 is in the stabiliser of the edge eλ1 . Hence, for some word f ′2 in

H

fk+1 rλ′k
fk · · · rλ′2

f2 rλ′1
f1h

−1
1 h1 = fk+1 rλ′k

fk · · · rλ′2
f ′2 rλ1h1

modulo R1. By induction the two shorter h-products hk+1 rλk
hk · · · rλ2h2 and

fk+1 rλ′k
fk · · · rλ′2

f ′2 are equivalent modulo R0∪R1, and so p1 = p2 modulo R0∪R1. �

Claim 3. Suppose that two h-products represent the same element of G and induce
edge paths that are equivalent modulo backtracking. Then they are equivalent modulo
R0 ∪R1 ∪R2.

Proof. It is enough to show that any h-product is equivalent to an h-product that
represents a path without any backtracking. Furthermore, if we proceed by induc-
tion on the length of the h-product, it is enough to show that any h-product whose
associated path has backtracking at the end is equivalent to a shorter h-product.

Suppose that g = hk+3 rλk+2hk+2 rλk+1hk+1 gk is such an h-product, ie

vk = v0 · gk

vk+1 = v0 · rλk+1hk+1 gk

vk+2 = vk = v0 · rλk+2hk+2 rλk+1hk+1 gk

and gk is a shorter h-product. So, multiplying by g−1
k h−1

k+1, we find that
rλk+2hk+2 rλk+1 is an h-product with associated path (v0, v0 · rλk+1 , v0). Suppose
that rλ′hrλ = h′ is the R2 relation corresponding to this path. Then λ = λk+1 and
v0 · rλ′h = v0 · rλk+2hk+2. So λ′ = λk+2 and hk+2h

−1 is in the stabiliser of the edge
eλk+1 . Therefore there exists a word f in H such that

hk+3 rλk+2hk+2 rλk+1hk+1 gk = hk+3f rλ′h rλhk+1 gk

modulo R1. Hence modulo R2 this is equal to hk+3fh′hk+1gk, a shorter h-product. �

Claim 4. Any h-product equal to the identity in G is equivalent to the identity modulo
R0 ∪R1 ∪R2 ∪R3.
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Proof. Given any h-product gk equal to the identity in G its associated edge path
must be a loop. Since X is simply-connected this loop is the boundary of a union of
faces of X. So choose one of these faces f touching the loop at a vertex v then modulo
R0 ∪ R1 ∪ R2 we can add backtracking starting at v going around the boundary of
f . Modulo R3 we can remove one pass round ∂f . This leaves a new loop that can
be spanned by one less face, which, by induction on the minimum number of faces
needed to span a loop, is equivalent to the identity. �

Proof of Theorem 2.2. Given any word in the generators, S0∪S1, that is equal to the
identity in G then modulo R2 it is equivalent to an h-product and so by Claim 4 is
equivalent to the identity modulo R0 ∪R1 ∪R2 ∪R3. �

3. The complex Xn

An embedded disc D ⊆ H3 is said to cut out ai if the interior of D is disjoint
from a∗, the arc ai is contained in the boundary of D and the boundary of D lies in
ai ∪ ∂H3, ie ai ⊂ ∂D and ∂D ⊂ ai ∪ ∂H3. A cut system for a∗ is the isotopy class
of n pairwise disjoint discs 〈D1, D2, . . . Dn〉 where each Di cuts out the arc ai. Say
that two cut systems 〈D1, D2, . . . , Dn〉 and 〈E1, E2, . . . , En〉 differ by a simple i-move
if Di ∩ Ei = ai and Dj = Ej for all j 6= i. If this is the case we will suppress the
non-changing discs and write 〈Di〉 → 〈Ei〉.

Definition 3.1. Define the cut system complex Xn as follows. The set of all cut
systems for a∗ forms the vertex set X

0

n. Two vertices are connected by a single edge
iff they differ by a simple move. Finally, glue faces into every loop of the following
form, giving triangular and rectangular faces.

〈Di〉 〈D′
i〉

		
		

		

〈D′′
i 〉

555555

〈Di, Dj〉 〈D′
i, Dj〉

〈Di, D
′
j〉 〈D′

i, D
′
j〉

Define the basepoint to be v0 = 〈d1, d2, . . . , dn〉 where the di are vertical discs below
the ai, see Figure 1. Sometimes it is convenient to think of the ai and di rotated by

���������������������

���������������������

���� ��
�� ���� ��

�� ���� ��
��. . .

a1 a2 an

d1 d2 dn

Figure 1. The arcs ai and the discs di

a quarter turn.
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Before we prove that this complex is simply connected we need the following lemma
about substituting one disc for another.

Suppose that v = 〈D1, D2, . . . Dn〉 is a vertex of Xn and that D and D∗ are two
discs cutting out the arc ai. We will say that the tuple (v,D,D∗) forms a valid
substitution if either D 6= Di for any i, or if there exists some i such that D = Di and
that for all j 6= i we have that Dj∩D∗ = ∅. In other words if D is in v then (v,D,D∗)
forms a valid substitution if there exists an edge 〈D = Di〉—〈D∗〉. If (v,D,D∗) forms
a valid substitution then we can replace D with D∗ to get a vertex v∗, ie

v∗ =

{
v if Di 6= D,
〈D∗〉 if Di = D.

Similarly, for any edge path P with a choice of discs representing each vertex, we
say (P,D,D∗) forms a valid substitution if for each vertex v of P the tuple (v,D,D∗)
forms a valid substitution and for each edge (vi, vi+1) of P there is an edge (v∗i , v∗i+1).
If (P,D,D∗) forms a valid substitution then we can replace each occurrence of D with
D∗, ie replace each vertex v with v∗, giving a new path P ∗.

Lemma 3.2. If (P,D,D∗) forms a valid substitution, where P = (v1, . . . , vk), then
P ∗ is a path and the loop

v1
P vk

v∗1
P∗

v∗k

is homotopic to a point. Moreover, if P is a loop then so is P ∗ and they are homotopic
as loops.

Proof. Clearly we may assume that D and D∗ are not isotopic, otherwise P = P ∗.
Suppose that D and D∗ cut out the arc ai. For each vertex v of P we have that either
v = v∗ or (v, v∗) is an edge of Xn.

For each edge (u, v) in P , where u = 〈Dj〉 and v = 〈D′
j〉, we have the following

possibilities. If D is not in u nor in v then (u, v) = (u∗, v∗). Otherwise we have two
cases depending on whether i = j or not.

If i = j then only one of either u or v contains D. Suppose that D ∈ u, ie Dj = D.
If D∗ = D′

j then u∗ = v∗ = v and (u, v) is homotopic to (u∗, v∗) in X
1

n. Otherwise, if
D∗ 6= Dj , we have the following face of Xn.

u
P

v = v∗

u∗
P∗

wwwwwwwww

If i 6= j the we have the following face of Xn.

〈D,Dj〉 P 〈D,D′
j〉

〈D∗, Dj〉 P∗
〈D∗, D′

j〉
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In either case there is a homotopy from (u, v) to (u∗, v∗) that agrees with the
homotopies between the vertices of P and P ∗. Therefore P is homotopic to P ∗. �

Theorem 3.3. The complex Xn is connected and simply connected.

Proof. It suffices to show that any loop is homotopic to the constant loop at v0. Given
a loop in Xn it is homotopic to an edge path P . Now choose discs to represent each
vertex of P . We shall write D ∈ P if D is one of the discs chosen as a representative
of some vertex of P .

Claim. The path P is homotopic to a path whose vertices admit representative discs
which intersect the discs d1, d2, . . . , dn only in the arcs a1, a2, . . . , an.

Assuming that the intersection of the discs D ∈ P with d1 ∪ d2 ∪ . . .∪ dn isn’t only
a1, a2, . . . , an we can carry out the following procedure.

For some i the union of the discs in P intersects di in a non-empty collection of
arcs. Pick an arc α of this intersection that is lowest in the sense that it doesn’t
separate the entirety of any other arc from ∂H3∩di. For example, see Figure 2 where
α and γ are lowest but β is not.

α β

γ

Figure 2. Lowest arcs α and γ

The arc α comes from some D ∈ P . Now cut D along α, discard the section not
containing ai and glue in a disc parallel to di. This results in a new disc D∗ whose
intersection with di contains at least one less arc.

Any disc E ∈ P for which E∩D = aj or ∅ also has E∩D∗ = aj or ∅ respectively; if
not E must intersect D∗ in the section parallel to di and this contradicts the condition
that α is a lowest arc. Therefore the triple (P,D,D∗) form a valid substitution and,
by Lemma 3.2, we can replace D with D∗ to get a new homotopic loop P ∗.

We now have a homotopic loop P ∗ that has fewer intersections with d1∪d2∪. . .∪dn.
So by induction on the number of intersections we have proved the claim.

So we may assume that the path P meets d1, d2, . . . , dn only in the arcs
a1, a2, . . . , an. Therefore, for each D ∈ P cutting out the arc ai, the triple (P,D, di)
forms a valid substitution and so by in turn replacing each D ∈ P with di we see that
P is homotopic to the constant path v0. The connectedness of Xn follows by taking
P to be a constant loop. �

Up to homotopy the group H2n acts on (H3, a∗) by homeomorphisms, therefore it
takes cut systems to cut systems. The edges and faces of Xn are determined by the
intersections of pairs of discs, hence this action on X

0

n extends to a cellular action on
Xn.

Theorem 3.4. The action of H2n on X
0

n is transitive.
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Proof. Given a vertex 〈D1, D2, . . . , Dn〉 of Xn, if we take each i in turn and look at
the intersection of Di with ∂H3. We see that this defines a path from one end of ai

to the other. If we now move one end around this path until it is close to the other
and then move it straight back to its starting point we have an element of H2n that
moves Di to di. Combining all of these we see that 〈D1, D2, . . . , Dn〉 is in the orbit
of v0, ie the action is transitive on X

0

n. �

4. The complex Xn

We now construct a subcomplex Xn of Xn with the same vertex set but with fewer
edges and faces.

Given an edge e = (〈D〉, 〈D′〉) of Xn define its length, l(e), to be the number of
arcs underneath D ∪D′. In other words, since H3 \D ∪D′ has two components, one
bounded and one unbounded, we can define the length as follows

l(e) = #{i | ai is contained in the bounded component of H3 \D ∪D′}.

Given two edges e and e′ with the same length there exists an element of H2n taking
e to e′.

We will say that a rectangle (〈D,E〉, 〈D′, E〉, 〈D′, E′〉, 〈D,E′〉) is nested if E ∪ E′

lies in the bounded component of H3 \D∪D′ or vice versa, ie if one pair of changing
discs lies underneath the other.

For i ≤ j let Tij denote the subcomplex consisting of all triangular faces of Xn with
shortest two edges of length i and j. Note, this implies that the remaining edge has
length i+ j. Given a rectangular face of Xn we have two cases depending on whether
it is nested or not. Let Rij denote the subcomplex consisting of all rectangular nested
faces with inner edge of length i and outer edge of length j. For i ≤ j let Sij denote
the subcomplex consisting of all non-nested rectangular faces with edges of length i
and j.

Definition 4.1. Let Xn be the subcomplex of Xn with the same vertex set, all edges
of length 1 and 2 and all faces from R12, S11 and T11, ie Xn = R12 ∪ S11 ∪ T11. As
the length of an edge is invariant under the action of H2n on Xn this action preserves
each Tij , Rij and Sij and so preserves Xn.

A vertex v = 〈D1, . . . , Dn〉 is completely determined by the intersection of the
discs Di with ∂H3. Using this we can define the vertices xi for 0 ≤ i ≤ n − 1, yij

for 0 ≤ i ≤ n − 2 and j = 0 or i < j ≤ n − 1 and zij for 0 ≤ i, j, i + j ≤ n − 2
as in Figure 3. So we have l(v0, xi) = i, l(v0, y0j) = j, l(v0, yi0) = i, l(v0, zi0) = i
and l(v0, z0j) = j. Note, there is some redundancy in this notation, ie xi = y0i and
x0 = y00 = z00 = v0.

We now define the faces Rij ∈ Rij , Sij ∈ Sij , Tij ∈ Tij of Xn as follows.

Rij =

y00 yi0

y0j yij

Sij =

z00 zi0

z0j zij

Tij =

x0 xi











xi+j

222222

For every face in Xn there is an element of H2n taking it to one of these representa-
tives.
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xi = · · · · · ·

HHH

vvv
Ei

d2 di di+2 di+3 dn

yij = · · · · · · · · ·

KKK
K

sss
s

HHH

vvv

d3
di+2 di+3 dj+1 dj+2 dn

zij = · · · · · · · · ·

DD
D

zz
z

zz
z

DD
D

d2 di+1 di+2 dn−j
dn−1

Figure 3. The vertices xi, yij and zij

Theorem 4.2. The complex Xn is simply connected.

Proof. Figure 4 shows that the boundary of each of the faces Rij for 1 < i < j and Sij

for 1 < i, j can be expressed as the boundary of a union of faces with shorter edges.
The first column shows how to replace faces where the first index is not 1. Then the
second column can be used to reduce the second index to either 2 or 1 respectively.

As each of the rectangular faces can be moved to one of Rij or Sij by some element
of H2n it follows that every loop in Xn is null-homotopic in

R12 ∪ S11 ∪
⋃

1≤i≤j≤n

Tij .

Let the Ei be the discs as shown in Figure 3, ie xi = 〈Ei, d2, d3, . . . , dn〉. For j > 2
let Aj the be full subcomplex of Xn containing all the vertices “between” x0 and xj ,
ie

A0
j = {〈D, d2, d3, . . . , dn〉 ∈ X

0

n

| D 6= d0 or Ej , interior of D ⊂ bounded component of H3 \ E0 ∪ Ej}.

Choose x1 as a base point of Aj .
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Rij :

y00

GG
GG

GG
GG

G yi0

wwwwwwww

yi−1,0

yi−1,j

wwwwwwww

GGGGGGGG

y0j yij

T1,i−1

T1,i−1

Ri−1,j R1j R1j :

y00

GG
GG

GG
GG

G y10

ww
ww

ww
ww

w

y0,j−1

wwwwwwww
y1,j−1

GG
GG

GG
GG

G

y0j y1j

R1,j−1

T1,j−1 T1,j−1

S11

Sij :

z00

GG
GG

GG
GG

G zi0

wwwwwwww

zi−1,0

zi−1,j

wwwwwwww

FFFFFFFF

z0j zij

T1,i−2

Si−1,j S1j

T1,i−2

S1j :

z00

GG
GG

GG
GG

G z10

ww
ww

ww
ww

w

z0,j−1

wwwwwwww
z1,j−1

GGGGGGGG

z0j z1j

S1,j−1

T1,j−1 T1,j−1

S11

Figure 4. Decomposing rectangular faces

For every edge (u, v) of Aj we have the following two triangles in Xn. Note that
all edges have length less than j.

x0

}}
}}

}}
}}

AA
AA

AA
AA

u

AA
AA

AA
A v

}}
}}

}}
}

xj

Lemma 4.3. The subcomplex Aj is path connected.

Proof. Given a vertex v = 〈D, d2, . . . dn〉 ∈ A0
j . First suppose that for some 2 < i ≤ j

there exists a path γ on ∂H3 from di to Ej such that γ does not cross E1, D or dl

for l 6= i. Let D′ be a disc parallel to Ej except in a neighbourhood of γ where we
glue in the boundary of a neighbourhood of γ ∪ di. Then there is a path (v, v′, x1) in
Aj where v′ = 〈D′〉. See Figure 5.

Now suppose that no such path exists on ∂H3. Each vertex u = 〈Du〉 of Aj

partitions the set {d2, d3, . . . dj+1} into two non-empty subsets. The first containing
those discs that are between d1 and Du, the second those between Du and Ej . (If
one of these sets were empty then we would have that either Du = d1 or Du = Ej .)
As j > 2 at least one of these sets contains more than one disc. Choose an i 6= 1 such
that di is in this set.
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E1

i

γ

D

Ej

D′

Figure 5. Tunnelling along γ

Now draw a path γ on ∂H3 from di to Ej that doesn’t intersect dl for l = 3, . . . , j
or E1 and only intersects D transversely. Starting at di move along γ and label the
successive points of γ ∩D as p1, p2, . . . , pk. Now we can construct a sequence of discs
D = D0, D1, . . . , Dk where each Dl+1 is parallel to Dl except in a neighbourhood of
pl+1 where we glue in the boundary of a sufficiently small neighbourhood of the disc
di and the segment of γ up to pl+1. With each successive Dl the disc di moves from
one side of the partition to the other. At each step neither side of the partition is
empty so 〈Dl〉 is a vertex of Aj . This gives a path (v = 〈D0〉, 〈D1〉, . . . , 〈Dk〉) in Aj .
Now, 〈Dk〉 satisfies the hypothesis above, therefore this path can be continued to the
base point x1. �

We can now complete the proof of Theorem 4.2. So far we have shown that any
loop in Xn is the boundary of a union of faces in R12 ∪ S11 ∪

⋃
1≤i≤j≤n Tij . For a

given loop take an edge (u, v) of maximal length j in this union. If j > 2 then the
faces on either side of (u, v) must be triangular with the remaining edges of length
less than j. So we have the following situation for some u′, v′ ∈ X

0

n.

u

~~
~~

~~
~

@@
@@

@@
@

u′

@@
@@

@@
@ v′

~~
~~

~~
~

v

By Lemma 4.3 we can replace these two triangles with the following.

u

mmmmmmmmmmmmmmm

{{
{{

{{
{{

FF
FF

FF
FF

F

SSSSSSSSSSSSSSSSS

u0

QQQQQQQQQQQQQQQ u1

CC
CC

CC
CC

· · · uk−1

xx
xx

xx
xx

x
uk

kkkkkkkkkkkkkkkkk

v
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Where u0 = u′ and uk = v′. Here each edge has length less than j. Therefore all
edges of length greater that 2 can be replaced and so the loop is null-homotopic in
Xn. �

5. Calculating the presentation

By Section 4 we have an H2n–action on a simply connected cellular complex. So
we can now follow the method given in Section 2.

Using the fact that H2n is a subgroup of B2n, we can define the following elements
of H2n in terms of σ1, . . . , σ2n−1 the generators of B2n.

r1 = σ2σ1σ
−1
3 σ−1

2

r2 = σ4σ3σ2σ1σ
−1
5 σ−1

4 σ−1
3 σ−1

2

si = σ2iσ2i−1σ2i+1σ2i for i ∈ {1, . . . , n− 1}
ti = σ2i−1 for i ∈ {1, . . . , n}

So r1 is the first arc passing through the second, r2 is the first two arcs passing through
the third, si is the ith and i + 1st arcs crossing and ti is the ith arc performing a half
twist. Subsequently we will prove that these generate H2n.

Proposition 5.1. The stabiliser of the vertex v0 is isomorphic to the framed braid
group and hence has a presentation 〈S0 | R0〉 where

S0 = {s1, s2, . . . , sn−1, t1, t2, . . . , tn}
R0 =

{
sisj = sjsi for |i− j| > 1,

sisjsi = sjsisj for |i− j| = 1,
titj = tjti for all i, j,
sitj = tjsi if j /∈ {i, i + 1},
sitj = tksi if {i, i + 1} = {j, k}

}
Proof. If we restrict to ∂H3, elements of H2n can be thought of as motions of the
end points of the ai. For elements of the vertex stabiliser this motion moves the
di ∩ ∂H3 among themselves, ie this is the fundamental group of configurations of n
line segments in the plain, the framed braid group. �

We have two edge orbits, one consisting of edges of length 1 and the other consisting
of edges of length 2. Note that our choice of r1 and r2 mean that

(v0, v0 · r1) ∈ l−1(1)

(v0, v0 · r2) ∈ l−1(2).

For i = 1, 2, let Ii denote the stabiliser of the edge (v0, v0 · ri), ie the subgroup of all
elements that fix both v0 and v0 · ri.

Proposition 5.2. The subgroups I1 and I2 are generated as follows.

I1 = 〈t2, t3, . . . , tn, s3, s4, . . . , sn−1, s1s1t1t1, s2s1s1s2〉
I2 = 〈t2, t3, . . . , tn, s2, s4, s5, . . . , sn−1, s1s2s2s1t1t1, s3s2s1s1s2s3〉
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Proof. For I1 [I2] the motion of the di outside of d1 ∪ E2 [d1 ∪ E3] is generated by
t3, t4, . . . , tn, s3, s4, . . . , sn−1 and s2s1s1s2 [t4, t5, . . . , tn, s4, s5, . . . , sn−1 and
s3s2s1s1s2s3], the motion of the di inside d1∪E2 [d1∪E3] is generated by t2 [t2, t3, s2]
and the motion of d1 ∪ E2 [d1 ∪ E3] is generated by s1s1t1t1 [s1s2s2s1t1t1]. �

We are now ready to calculate relations for R1, R2 and R3. The following relations
are easily verifiable, in fact most of them take place in B8.

The R1 relations. To calculate the R1 relations we have to find, for each edge
orbit representative (v0, v0 · ri) and each generator t of Ii, a word h in S0 such that
ritr

−1
i = h. One possibility is the following.

r1t2r
−1
1 = t1(R11)

r1tkr−1
1 = tk for k > 2(R12)

r1skr−1
1 = sk for k > 2(R13)

r1s1s1t1t1r
−1
1 = s1s1t2t2(R14)

r1s2s1s1s2r
−1
1 = s2s1s1s2(R15)

r2t2r
−1
2 = t1(R16)

r2t3r
−1
2 = t2(R17)

r2tkr−1
2 = tk for k > 3(R18)

r2s2r
−1
2 = s1(R19)

r2skr−1
2 = sk for k > 3(R110)

r2s1s2s2s1t1t1r
−1
2 = s2s1s1s2t3t3(R111)

r2s3s2s1s1s2s3r
−1
2 = s3s2s1s1s2s3(R112)

The R2 relations. To calculate the R2 relations we need to find, for each edge orbit
representative (v0, v0 · ri), an h-product rih ri for the path (v0, v0 · ri, v0) and a word
h′ in S0 such that rih ri = h′.

r1t1s1 r1 = s1t1(R21)

r2s1t2s2 r2 = s2s1t1(R22)

The R3 relations. To calculate the R3 relations we need to find, for each edge orbit,
an h-product representing the boundary of a face in the orbit and an equivalent word
in S0. The following are such relations for the S11, R12 and T11 orbits respectively.

r1s1s2s3s1s2 r1s1s2s3s1s2t2t4 r1s2s3s1s2 r1

= s1s2s3s1s2s1s2s1s3s2s2s3s1s2t1t3
(R31)

r1 r2s1s2s1t2t3 r1 r2 = s2s1s2t1t2(R32)

r2s1t2 r1s2s1 r1 = s1s2s1t1(R33)

If we use a different set of generators, similar to those found by Hilden, then we
can get a more braid like presentation. Let pi = σ2iσ2i−1σ

−1
2i+1σ

−1
2i for 1 ≤ i < n. So

pi is the ith arc passing under the i + 1st arc, see Figure 7.
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Figure 6. The path given by the h-product on the LHS of (R31)

Theorem 5.3. The group H2n has a presentation with generators pi, sj and tk for
1 ≤ i, j < n and 1 ≤ k ≤ n and the following relations.

pipj = pjpi for |i− j| > 1(P1)

pipjpi = pjpipj for |i− j| = 1(P2)

sisj = sjsi for |i− j| > 1(P3)

sisjsi = sjsisj for |i− j| = 1(P4)

pisj = sjpi for |i− j| > 1(P5)

pisi+1si = si+1sipi+1(P6)

pi+1pisi+1 = sipi+1pi(P7)

pi+1sisi+1 = sisi+1pi(P8)

pitisipi = siti(P9)

pitj = tjpi for j 6= i, or i + 1(P10)

piti+1 = tipi(P11)

sitj = tjsi if j 6= i or i + 1(P12)

sitj = tksi if {i, i + 1} = {j, k}(P13)

titj = tjti for 1 ≤ i, j ≤ n(P14)

si = pi = ti =

Figure 7. Generators of H2n

These generators and relations can be represented pictorially as in Figure 8 and
Figure 9.
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p s t

p−1 s−1 t−1

Figure 8. Pictorial representation of the p, s, t and their inverses

= = =

(P6) (P7) (P9)

Figure 9. Pictorial representation of (P6), (P7) and (P9)

Proof. Since H2n is a subgroup of the braid group it is easy to check that these
relations all hold. So it remains to prove that each of the relations in R0, R1, R2 and
R3 can be deduced from (P1)–(P14) using the fact that r1 = p1 and r2 = p2p1. First
note that R0 is a subset of these relations. The relations (R11), (R12), (R13) and
(R21) follow directly from (P11), (P10), (P5) and (P9) respectively. The remaining
relations can be deduced as follows. Some of these relations are quite long and are
perhaps better understood using pictorial representations. For the longest, (R31), see
Figure 10 for a pictorial version.

(R14): r1s1s1t1t1r
−1
1 = p1s1s1t1t1p

−1
1 (P13)2

= p1t1s1s1t1p
−1
1 (P9)

= s1t1p
−1
1 s1t1p

−1
1 (P9)

= s1t1t1s1 (P13)2

= s1s1t2t2

(R15): r1s2s1s1s2r
−1
1 = p1s2s1s1s2p

−1
1 (P6)

= s2s1p2s1s2p
−1
1 (P8)

= s2s1s1s2

(R16): r2t2r
−1
2 = p2p1t2p

−1
1 p−1

2 (P11)
= p2t1p

−1
2 (P10)

= t1

(R17): r2t3r
−1
2 = p2p1t3p

−1
1 p−1

2 (P10)
= p2t3p

−1
2 (P11)

= t2

(R18): r2tkr−1
2 = p2p1tkp−1

1 p−1
2 (P10)
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= p2tkp−1
2 (P10)

= tk

(R19): r2s2r
−1
2 = p2p1s2p

−1
1 p−1

2 (P7)
= s1

(R110): r2skr−1
2 = p2p1skp−1

1 p−1
2 (P5)2

= sk

To deduce (R111) we make use of the following deduction.

(?)

p2p1s1s2t3p2p1 (P7)
= s−1

1 p2p1s2s1s2t3p2p1 (P4)
= s−1

1 p2p1s1s2s1t3p2p1 (P12)(P13)2

= s−1
1 p2p1t1s1s2s1p2p1 (P6)

= s−1
1 p2p1t1s1p1s2s1p1 (P9)

= s−1
1 p2s1t1s2s1p1 (P8)

= s2p1s
−1
2 t1s2s1p1 (P12)

= s2p1t1s1p1 (P9)
= s2s1t1

(R111): r2s1s2s2s1t1t1r
−1
2 = p2p1s1s2s2s1t1t1p

−1
1 p−1

2 (P13)2

= p2p1s1s2t3s2s1t1p
−1
1 p−1

2 (?)
= p2p1s1s2t3p2p1s1s2t3 (?)
= s2s1t1s1s2t3 (P13)2

= s2s1s1s2t3t3

(R112): r2s3s2s1s1s2s3r
−1
2 = p2p1s3s2s1s1s2s3p

−1
1 p−1

2 (P5)
= p2s3p1s2s1s1s2s3p

−1
1 p−1

2 (P6)
= p2s3s2s1p2s1s2s3p

−1
1 p−1

2 (P8)
= p2s3s2s1s1s2p1s3p

−1
1 p−1

2 (P5)
= p2s3s2s1s1s2s3p

−1
2 (P6)

= s3s2p3s1s1s2s3p
−1
2 (P5)2

= s3s2s1s1p3s2s3p
−1
2 (P8)

= s3s2s1s1s2s3

(R22): r2s1t2s2r2 = p2p1s1t2s2p2p1 (P9)
= p2p1s1p

−1
2 s2t2p1 (P9)

= p2p1s1p
−1
2 s2t2s

−1
1 t−1

1 p−1
1 s1t1 (P13)

= p2p1s1p
−1
2 s2s

−1
1 p−1

1 s1t1 (P6)
= p2p1s

−1
2 p−1

1 s2s1s2s
−1
1 p−1

1 s1t1 (P4)
= p2p1s

−1
2 p−1

1 s1s2p
−1
1 s1t1 (P8)

= p2p1s
−1
2 p−1

1 p−1
2 s1s2s1t1 (P7)

= s2s1t1

(R31): r1s1s2s3s1s2r1s1s2s3s1s2t2t4r1s2s3s1s2r1

= p1s1s2s3s1s2p1s1s2s3s1s2t2t4p1s2s3s1s2p1 (P13)(P12)
= p1s1s2s3s1s2p1s1s2s3t3s1s2t4p1s2s3s1s2p1 (P13)(P12)2
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= p1s1s2s3s1s2p1t4s1s2s3s1s2t4p1s2s3s1s2p1 (P10)(P12)2

= p1s1s2s3t4s1s2p1s1s2s3s1s2t4p1s2s3s1s2p1 (P13)3

= p1t1s1s2s3s1s2p1s1s2s3s1s2t4p1s2s3s1s2p1 (P10)
= p1t1s1s2s3s1s2p1s1s2s3s1s2p1t4s2s3s1s2p1 (P8)2

= p1t1s1s2s3s1s2p1s1p3s2s3s1s2t4s2s3s1s2p1 (P5)(P1)
= p1t1s1s2s3s1s2p3p1s1s2s3s1s2t4s2s3s1s2p1 (P3)
= p1t1s1s2s1s3s2p3p1s1s2s3s1s2t4s2s3s1s2p1 (P6)
= p1t1s1s2s1p2s3s2p1s1s2s3s1s2t4s2s3s1s2p1 (P6)
= p1t1s1p1s2s1s3s2p1s1s2s3s1s2t4s2s3s1s2p1 (P3)
= p1t1s1p1s2s3s1s2p1s1s2s3s1s2t4s2s3s1s2p1 (P9)
= s1t1s2s3s1s2p1s1s2s3s1s2t4s2s3s1s2p1 (P8)2

= s1t1s2s3s1s2p1s1s2s3s1s2t4p3s2s3s1s2 (P12)2(P13)3

= s1t1s2s3s1s2p1t1s1s2s3s1s2p3s2s3s1s2 (P3)
= s1t1s2s3s1s2p1t1s1s2s1s3s2p3s2s3s1s2 (P6)2

= s1t1s2s3s1s2p1t1s1p1s2s1s3s2s2s3s1s2 (P9)
= s1t1s2s3s1s2s1t1s2s1s3s2s2s3s1s2 (P12)(P13)
= s1t1s2s3s1s2s1s2s1t2s3s2s2s3s1s2 (P12)(P13)2

= s1t1s2s3s1s2s1s2s1s3s2s2t2s3s1s2 (P12)(P13)
= s1t1s2s3s1s2s1s2s1s3s2s2s3s1t1s2 (P12)
= s1t1s2s3s1s2s1s2s1s3s2s2s3s1s2t1 (P12)2(P13)2

= s1s2s3s1s2t3s1s2s1s3s2s2s3s1s2t1 (P12)(P13)2

= s1s2s3s1s2s1s2s1t1s3s2s2s3s1s2t1 (P12)4(P13)2

= s1s2s3s1s2s1s2s1s3s2s2s3s1s2t3t1 (P14)
= s1s2s3s1s2s1s2s1s3s2s2s3s1s2t1t3

(R32): r1r2s1s2s1t3t2r1r2 = p1p2p1s1s2s1t3t2p1p2p1 (P12)(P13)2

= p1p2p1t1s1s2s1t2p1p2p1 (P9)
= p1p2s1t1p

−1
1 s2s1t2p1p2p1 (P6)

= p1p2s1t1s2s1p
−1
2 t2p1p2p1 (P7)

= p1p2s1t1s2s1p
−1
2 t2p2p1p2 (P11)

= p1p2s1t1s2s1t3p1p2 (P12)(P10)
= p1p2s1s2t1s1p1t3p2 (P9)
= p1p2s1s2p

−1
1 s1t1t3p2 (P8)

= p1s1s2s1t1t3p2 (P4)
= p1s2s1s2t1t3p2 (P6)
= s2s1p2s2t1t3p2 (P14)(P10)
= s2s1p2s2t3p2t1 (P9)
= s2s1s2t2t1

(R33): r2s1t2r1s2s1r1 = p2p1s1t2p1s2s1p1 (P9)
= p2s1t1s2s1p1 (P10)
= p2s1s2t1s1p1 (P8)
= s1s2p1t1s1p1 (P9)
= s1s2s1t1

�
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Figure 10. Deducing the (R31) relation
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