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A PRESENTATION FOR HILDEN’S SUBGROUP OF THE BRAID
GROUP

STEPHEN TAWN

ABSTRACT. Consider the unit ball, B = Dx|0, 1], containing n unknotted arcs a1, ..., an
such that the boundary of each a; lies in D x {0}. We give a finite presentation for
the mapping class group of B fixing the arcs {ai,...,an} setwise and fixing D x {1}
pointwise. This presentation is calculated using the action of this group on a simply-
connected complex.

1. Introduction

Let H? denote the closed upper half-space of R3, let ai,as,...,a, C H> be n
pairwise disjoint properly embedded unknotted arcs and let a, = a1 Uas U --- U ay,.
Viewing the braid group as the mapping class group of the punctured disc, if this disc
is included in 0H? with da, as the punctures, one can define Hilden’s group, Ha,,
to be the subgroup of Bs, consisting of all mapping classes that can be extended
to H? \ a.. Or equivalently, Hy, is the stabiliser of a, under the action of By, on
0, 2n-tangles.

Hilden[5] found generators for a similar subgroup of the braid group of a sphere.
For any given braid b multiplying on either the left or the right by elements of Hs,
preserves the plat closure, ie plat closure is constant on each double coset. Birman][1]
showed that if two braids have the same plat closure then they can be related by a
sequence of these double coset moves and stabilisation moves that changes the braid
index by 2.

We calculate a presentation for Hs, using the action of this group on a cellular
complex. Hatcher—Thurston[4], Wajnryb[7, 8, 9], Laudenbach[6], etc used the same
method to calculate presentations for mapping class groups. We start in Section 2
by outlining this method. A similar but more general method is given by Brown [3].
Brendle-Hatcher[2] have calculated a presentation for Hy,, using a different method.

In Section 3 we define a simply-connected complex X,,. In Section 4 we remove
some of the edges and faces of this complex resulting in a new complex which remains
simply-connected but gives a simpler presentation. This presentation is calculated in
Section 5 and then used to calculate a presentation with generators similar to those
found by Hilden.

2. The method

Suppose that X is a connected simply-connected cellular 2-complex such that each
attaching map is injective and that each cell is uniquely determined by its boundary.
Suppose that G is a group acting cellularly on the right of X, and that this action
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is transitive on the vertex set X9. Pick a vertex vy € X° as a basepoint and let
H denote its stabiliser in G, ie H = {g € G | vo - ¢ = vo}. Suppose that H has a
presentation with generating set Sp and relations Ry, ie H = (So|Ro).

Given vertices u,v € X° such that {u,v} is the boundary of an edge of X we will
write (u,v) for this (oriented) edge. Given a sequence vy, vs, ..., v of vertices such
that either v; = v;11 or (v;,v;41) forms an edge we will write (vq,vs,...,vy) for the
path traversing these edges. Whenever v; = v;41 we shall say that v; is a stationary
point.

Let E denote the set of all oriented edges starting at vy, so H acts on E. Suppose
that {ex}rca is a set of representatives for the H—orbits of the edges in E, ie E =
Uxea Hex and Hey = Heys only if A = ). Since the action of G is transitive on X°
we can find r) € G such that ey = (vg, v - ). Let S1 = {ra}rea.

The edges {ex}rea also form a set of representatives for the edge orbits of the
G-action on X. To see this suppose that two of these edges lie in the same G-orbit,
ie (vo,v) = (vo,u) - g. Then we have that vy = vy - g therefore g € H.

Suppose that {f,}.en is a set of representatives for the G-orbits of the faces of
X. Since the action is transitive on X, we may assume that the boundary of each
face f,, contains the vertex vy.

Definition 2.1. An h-product of length k is a word of the form

i1 a b 7 he—1 - A P

where each A; € A and each of the h; are words in H. To each h-product we can
associate an edge path P = (vg,v1,...,v) in X starting at vy then visiting the
vertices vy = vg - x, h1, V2 = Vg - Taha a, b1, etc. This means that the edge (vi—1,v;)
is in the orbit of (vg,vg - ry,). Given any edge path starting at vy we can choose an
h-product to represent it.

We can now choose the following three sets of relations.

R;y: For each edge orbit representative ey pick a generating set T for the stabiliser
of this edge, ie (T') = Stabg(vg) N Stabg(vg - 75). For each ¢t € T we have the
relation r,\trxl = h for some word h € H.

Ro: For each ey we have a relation ryh ry = h/ where the LHS is a choice of
h-product for the path (v, vo - rx,v9) and A’ is some word in H.

R3: For each face orbit representative f, with boundary (U0, V1, -+, Uk—1,00)
choose an h-product representing this path and a word h € H such that
T‘)\khk M 'T)\lhl = h.

Theorem 2.2. The group G has the following presentation.
G = (SoUS1|RoUR; URyUR3)

Corollary 2.3. Suppose that H is finitely presented, that the number of edge and
face orbits is finite and that each edge stabiliser is finitely generated. Then G has a
finite presentation.

We prove Theorem 2.2 in several steps.

Claim 1. The set S U S1 generates G.
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Proof. Given any g € G, let v = vy - g. Now as X is connected there is an edge path
connecting vg to v. Choose an h-product g1 = hgy1 7a, by - - -7, b1 representing this
path. Then vg -ggf1 = vy so g = hgy for some h € H. (I

Claim 2. If two h-products, p1 and pa, give rise to the same path and are equal in G
then they are equivalent modulo Ry U R;.

Proof. Because p; and ps represent the same path they must have equal length.
Suppose that p1 = hgy1 ra hg - 1y b1 and po = fr4 TA;fk ---rx f1. Clearly, if the
two h-products are of length 0 then they are both words in H and so are equivalent
modulo Ry. Now suppose that k # 0. The fact that p; and py represent the same
path means that

(vo, vo - Ta P, vo - Tayhe T R, L) = (vo, vo - Tar f1, v Ty f2 T S ),
therefore
(vo,v0 - Ta,) = (vo,v0 - ) - f1hi .

So A1 = X and fihy! is in the stabiliser of the edge ey,. Hence, for some word fj in
H

Jrt1 TAgcfk ) "7")\/2f2 TA'Iflhflhl = fet+1 TA;ka e 'TA’zfé Tl
modulo R;. By induction the two shorter h-products hgi1 rx hi---7Ta,he and
fr+1 T, fro T, 1% are equivalent modulo RyUR;, and so p; = ps modulo RyUR;. O

Claim 3. Suppose that two h-products represent the same element of G and induce
edge paths that are equivalent modulo backtracking. Then they are equivalent modulo
RoU Ry U R,.

Proof. Tt is enough to show that any h-product is equivalent to an h-product that

represents a path without any backtracking. Furthermore, if we proceed by induc-

tion on the length of the h-product, it is enough to show that any h-product whose

associated path has backtracking at the end is equivalent to a shorter h-product.
Suppose that g = higi3 Tx, 40 0k+2 TA, 1 Pky1 gk is such an h-product, ie

UV = Vo- Gk
Vk+1 = Vo 'TAk+1hk+l 9k
Vp42 = Vg = V0 ThpoPk42 Tapy, Pt+1 Gk
+ +

and gp is a shorter h-product. So, multiplying by g,;lh,;}_p we find that
TAji2Pkt2 Ta,p, 15 an h-product with associated path (vg,vo - 7x,,,,v0). Suppose
that ryhry = B’ is the Ry relation corresponding to this path. Then A = Ay 1 and
vo - Tah =g - A kg2, SO N = Apyo and hi4oh™! is in the stabiliser of the edge
€x,+1- Lherefore there exists a word f in H such that

hits TagaPkae T Pear g = hiasf T h mahigr g

modulo R;. Hence modulo Ry this is equal to Ay 3 fh'hir19k, a shorter h-product. O

Claim 4. Any h-product equal to the identity in G is equivalent to the identity modulo
RoUR; URyU R3.
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Proof. Given any h-product gi equal to the identity in G its associated edge path
must be a loop. Since X is simply-connected this loop is the boundary of a union of
faces of X. So choose one of these faces f touching the loop at a vertex v then modulo
Ry U Ry U Ry we can add backtracking starting at v going around the boundary of
f- Modulo R3 we can remove one pass round df. This leaves a new loop that can
be spanned by one less face, which, by induction on the minimum number of faces
needed to span a loop, is equivalent to the identity. O

Proof of Theorem 2.2. Given any word in the generators, Sy U Sy, that is equal to the
identity in G then modulo Rs it is equivalent to an h-product and so by Claim 4 is
equivalent to the identity modulo Ry U Ry U Ry U Rs. O

3. The complex X,

An embedded disc D C H? is said to cut out a; if the interior of D is disjoint
from a., the arc a; is contained in the boundary of D and the boundary of D lies in
a; UOH?, ie a; C OD and 0D C a; UOH?. A cut system for a, is the isotopy class
of n pairwise disjoint discs (D1, Da, ... D,) where each D; cuts out the arc a;. Say
that two cut systems (Dq, Do, ..., D,) and (E1, Es, ..., E,) differ by a simple i-move
if D;NE; = a; and Dj = Ej for all j # <. If this is the case we will suppress the
non-changing discs and write (D;) — (E;).

Definition 3.1. Define the cut system complex X,, as follows. The set of all cut
systems for a, forms the vertex set XSL. Two vertices are connected by a single edge
iff they differ by a simple move. Finally, glue faces into every loop of the following
form, giving triangular and rectangular faces.

(Di) —— (D7) (Di, Dj) —— (D;, Dj)
(D) (Di, D}) —— (Dj, D)
Define the basepoint to be vg = (di,da, . .., d,) where the d; are vertical discs below

the a;, see Figure 1. Sometimes it is convenient to think of the a; and d; rotated by

FIGURE 1. The arcs a; and the discs d;

a quarter turn.
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Before we prove that this complex is simply connected we need the following lemma
about substituting one disc for another.

Suppose that v = (D1, Ds,...D,) is a vertex of X,, and that D and D* are two
discs cutting out the arc a;. We will say that the tuple (v, D, D*) forms a wvalid
substitution if either D # D, for any 14, or if there exists some i such that D = D; and
that for all j # ¢ we have that D;N.D* = (). In other words if D is in v then (v, D, D*)
forms a valid substitution if there exists an edge (D = D;)—(D*). If (v, D, D*) forms
a valid substitution then we can replace D with D* to get a vertex v*, ie

oF = v if Dz 75 D,
| (D*) if D; = D.

Similarly, for any edge path P with a choice of discs representing each vertex, we
say (P, D, D*) forms a valid substitution if for each vertex v of P the tuple (v, D, D*)
forms a valid substitution and for each edge (v;, vs41) of P there is an edge (v}, v, ).
If (P, D, D*) forms a valid substitution then we can replace each occurrence of D with
D*, ie replace each vertex v with v*, giving a new path P*.

Lemma 3.2. If (P,D, D*) forms a valid substitution, where P = (v1,...,vx), then

P* is a path and the loop

V1 #’l}k

< P *
Gl Uk
is homotopic to a point. Moreover, if P is a loop then so is P* and they are homotopic
as loops.

Proof. Clearly we may assume that D and D* are not isotopic, otherwise P = P*.
Suppose that D and D* cut out the arc a;. For each vertex v of P we have that either
v =v* or (v,v*) is an edge of X,,.

For each edge (u,v) in P, where u = (D;) and
possibilities. If D is not in w nor in v then (u,v) =
cases depending on whether ¢ = j or not.

If i = j then only one of either u or v contains D. Suppose that D € u, ie D; = D.

If D* = Dj then u* = v* = v and (u,v) is homotopic to (u*,v*) in fi. Otherwise, if
D* # D;, we have the following face of X,,.

v = (D)), we have the following
(u*,v*). Otherwise we have two

If i # j the we have the following face of X,,.

(D,D;) —X— (D, Dj)

(D*, D;) —£—(D*, D})
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In either case there is a homotopy from (u,v) to (u*,v*) that agrees with the
homotopies between the vertices of P and P*. Therefore P is homotopic to P*. [

Theorem 3.3. The complex X,, is connected and simply connected.

Proof. Tt suffices to show that any loop is homotopic to the constant loop at vy. Given
a loop in X,, it is homotopic to an edge path P. Now choose discs to represent each
vertex of P. We shall write D € P if D is one of the discs chosen as a representative
of some vertex of P.

Claim. The path P is homotopic to a path whose vertices admit representative discs
which intersect the discs dy,ds,...,d, only in the arcs a,as,...,ay.

Assuming that the intersection of the discs D € P with dy UdsU...Ud, isn’t only
ai,as, ..., a, we can carry out the following procedure.

For some ¢ the union of the discs in P intersects d; in a non-empty collection of
arcs. Pick an arc a of this intersection that is lowest in the sense that it doesn’t
separate the entirety of any other arc from OH3Nd;. For example, see Figure 2 where
« and vy are lowest but g is not.

g
~
M

FIGURE 2. Lowest arcs o and

The arc a comes from some D € P. Now cut D along «, discard the section not
containing a; and glue in a disc parallel to d;. This results in a new disc D* whose
intersection with d; contains at least one less arc.

Any disc E € P for which END = a; or () also has END* = a; or () respectively; if
not F must intersect D* in the section parallel to d; and this contradicts the condition
that « is a lowest arc. Therefore the triple (P, D, D*) form a valid substitution and,
by Lemma 3.2, we can replace D with D* to get a new homotopic loop P*.

We now have a homotopic loop P* that has fewer intersections with d;UdsU. . .Ud,,.
So by induction on the number of intersections we have proved the claim.

So we may assume that the path P meets di,ds,...,d, only in the arcs
ay,as,...,a,. Therefore, for each D € P cutting out the arc a;, the triple (P, D, d;)
forms a valid substitution and so by in turn replacing each D € P with d; we see that
P is homotopic to the constant path vy. The connectedness of X,, follows by taking
P to be a constant loop. O

Up to homotopy the group Hs,, acts on (H?,a,) by homeomorphisms, therefore it
takes cut systems to cut systems. The edges and faces of X,, are determined by the

. . . . . . <0 .
intersections of pairs of discs, hence this action on X,, extends to a cellular action on
X,,.

. <0 . .
Theorem 3.4. The action of Ha,, on X,, is transitive.
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Proof. Given a vertex (D1, Do, ..., D,) of X, if we take each i in turn and look at
the intersection of D; with OH?®. We see that this defines a path from one end of a;
to the other. If we now move one end around this path until it is close to the other
and then move it straight back to its starting point we have an element of Hy,, that
moves D; to d;. Combining all of these we see that (Dy, Da,..., D,) is in the orbit

. N o <0
of vy, ie the action is transitive on X,. t

4. The complex X,

We now construct a subcomplex X,, of X,, with the same vertex set but with fewer
edges and faces.

Given an edge e = ({D),(D')) of X,, define its length, I(e), to be the number of
arcs underneath D U D’. In other words, since H3\ D U D’ has two components, one
bounded and one unbounded, we can define the length as follows

I(e) = #{i | a; is contained in the bounded component of H*\ DU D'}.

Given two edges e and e’ with the same length there exists an element of H,, taking
e to €.

We will say that a rectangle ((D, E), (D', E),(D',E'),(D, E")) is nested if EUE’
lies in the bounded component of H3\ DU D’ or vice versa, ie if one pair of changing
discs lies underneath the other.

For i < j let 7;; denote the subcomplex consisting of all triangular faces of X,, with
shortest two edges of length ¢ and j. Note, this implies that the remaining edge has
length i+ j. Given a rectangular face of X,, we have two cases depending on whether
it is nested or not. Let R;; denote the subcomplex consisting of all rectangular nested
faces with inner edge of length 7 and outer edge of length j. For ¢ < j let S;; denote
the subcomplex consisting of all non-nested rectangular faces with edges of length 4
and j.

Definition 4.1. Let X,, be the subcomplex of X,, with the same vertex set, all edges
of length 1 and 2 and all faces from Ri2, S11 and 731, ie Xp =Ri2US11 U Ti1. As
the length of an edge is invariant under the action of Hy,, on X,, this action preserves

each 7;;, R;; and S;; and so preserves X,,.

A vertex v = (D1,...,D,) is completely determined by the intersection of the
discs D; with OH?. Using this we can define the vertices x; for 0 < i < n —1, Yij
for0<i<n—-2and j=0o0ri<j<mn-—1and z; for 0 <4,j,i+j<n—2
as in Figure 3. So we have l(vo, x;) = 1, {(vo,Y0;) = J, {(vo,yi0) = &, (vo, 2i0) = @
and [(vo, z0;) = j. Note, there is some redundancy in this notation, ie x; = yo; and
To = Yoo = 200 = Vo- o

We now define the faces R;; € Ry, Sij € Sij, Tij € T35 of X, as follows.

Yio 200 Zi0 T
Sij =

Yij 205

Yoo 0

x
Tij = \

Zij xi+j

Rij =

Yoy

For every face in X,, there is an element of Hy, taking it to one of these representa-
tives.
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di
do di Jdiyo dit3 dn
Yij =
ds divz/ di s div1/ djvs  dy
Zij:

FIGURE 3. The vertices x;, y;; and z;;
Theorem 4.2. The complex X,, is simply connected.

Proof. Figure 4 shows that the boundary of each of the faces R;; for 1 < i < j and 5;;
for 1 < 4,7 can be expressed as the boundary of a union of faces with shorter edges.
The first column shows how to replace faces where the first index is not 1. Then the
second column can be used to reduce the second index to either 2 or 1 respectively.

As each of the rectangular faces can be moved to one of R;; or S;; by some element
of Hy,, it follows that every loop in X,, is null-homotopic in

Ri2US11 U U Ti;.

1<i<j<n
Let the E; be the discs as shown in Figure 3, ie ©; = (F;,da,ds, ..., d,). For j > 2

let A; the be full subcomplex of X,, containing all the vertices “between” zy and z;,
ie

<0
AY = {(D,dy,ds, ... dy) € X,
| D # do or E;,interior of D C bounded component of H*\ Eq U E;}.

Choose z1 as a base point of A;.
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Yoo Yio

\T”l/ Yoo Y10
Yi—-1,0 \ Rij—1 /

Rij: Ri-1,5 Rij le: Ti,-1 Yo,5-1 Y1,j—1 Tij
Yi—1,5 / S11 \

/71_1\ Yoj Y1j

FIGURE 4. Decomposing rectangular faces

For every edge (u,v) of A; we have the following two triangles in X,,. Note that

all edges have length less than j.

Lemma 4.3. The subcomplex A; is path connected.

Proof. Given a vertex v = (D, da,...d,) € Ag. First suppose that for some 2 < i < j
there exists a path v on OH? from d; to E; such that v does not cross Ey, D or d;
for I # i. Let D’ be a disc parallel to F; except in a neighbourhood of v where we
glue in the boundary of a neighbourhood of 4 Ud;. Then there is a path (v,v’,21) in
A; where v/ = (D’). See Figure 5.

Now suppose that no such path exists on H?. Each vertex u = (D,) of A;
partitions the set {da,ds,...d;41} into two non-empty subsets. The first containing
those discs that are between dy and D, the second those between D, and E;. (If
one of these sets were empty then we would have that either D, = d; or D, = Ej;.)
As j > 2 at least one of these sets contains more than one disc. Choose an i # 1 such
that d; is in this set.



1286 STEPHEN TAWN

FIGURE 5. Tunnelling along v

Now draw a path v on 9H? from d; to E; that doesn’t intersect d; for I = 3,...,
or F; and only intersects D transversely. Starting at d; move along v and label the
successive points of YN D as p1,pa,...,pr. Now we can construct a sequence of discs
D = D% D',..., D* where each D'*! is parallel to D' except in a neighbourhood of
pi+1 where we glue in the boundary of a sufficiently small neighbourhood of the disc
d; and the segment of v up to p;1. With each successive D! the disc d; moves from
one side of the partition to the other. At each step neither side of the partition is
empty so (D') is a vertex of A;. This gives a path (v = (D°),(D),... (D)) in 4;.
Now, (D¥) satisfies the hypothesis above, therefore this path can be continued to the
base point . O

We can now complete the proof of Theorem 4.2. So far we have shown that any
loop in X,, is the boundary of a union of faces in Ri2 U S11 U U1<i<j<n 7;;. For a
given loop take an edge (u,v) of maximal length j in this union. If j > 2 then the
faces on either side of (u,v) must be triangular with the remaining edges of length

less than j. So we have the following situation for some u',v" € XSL.
U
u v
v
By Lemma 4.3 we can replace these two triangles with the following.

/\
\/
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Where ug = v’ and ug = v'. Here each edge has length less than j. Therefore all
edges of length greater that 2 can be replaced and so the loop is null-homotopic in
X,. O

5. Calculating the presentation

By Section 4 we have an Hy,—action on a simply connected cellular complex. So
we can now follow the method given in Section 2.

Using the fact that Hy, is a subgroup of Bso,,, we can define the following elements
of Hy, in terms of o1,...,092,_1 the generators of Bo,.

r = 0201051051

ry = 0403020105_104_103_102_1
S; = 02{02;-102;+102; fori e {1,...,n—1}
t; = 021 fOY’iE{l,...,n}

So r1 is the first arc passing through the second, 5 is the first two arcs passing through
the third, s; is the ith and 7+ 1st arcs crossing and ¢; is the ith arc performing a half
twist. Subsequently we will prove that these generate Hs,.

Proposition 5.1. The stabiliser of the vertex vy is isomorphic to the framed braid
group and hence has a presentation (So | Ro) where

So = {51,82,...,<9»,l_17 tl,tg,...,tn}
Ry = { sisj=s58  forli—j|>1,
$i8j8; = 8;8;8; forli—jl=1,
titj = tjti fO?” all i,j,
sity = tjsi  if j & {i,i+1},
Sitj = tksi Zf {i,i + 1} = {j,k}} }

Proof. If we restrict to OH?3, elements of Hy, can be thought of as motions of the
end points of the a;. For elements of the vertex stabiliser this motion moves the
d; N OH? among themselves, ie this is the fundamental group of configurations of n
line segments in the plain, the framed braid group. (I

‘We have two edge orbits, one consisting of edges of length 1 and the other consisting
of edges of length 2. Note that our choice of r; and ry mean that

(vg,vo - 1) € 171(1)
(’UQ,’UO . 7‘2) S l_1(2>.

For ¢ =1, 2, let I; denote the stabiliser of the edge (vo,vp - 7;), ie the subgroup of all
elements that fix both vg and v - ;.

Proposition 5.2. The subgroups I, and Is are generated as follows.

I = (ta,t3, ..., tn, $3,84,...,50—1, S151t1t1, S2515182)

Ig = <t2,t3,...,tn, S92, S4,85,..-.,8n—-1, 81828281t1t1, 838281818253)
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Proof. For Iy [I5] the motion of the d; outside of dy U Fy [dy U E3] is generated by

t3,t4,...,tn,S3,84,...,Sn_1 and 8285185182 [t4,t5,...,tn, 84,85,...,8n—-1 and
535281818283], the motion of the di inside d1 UE2 [dl UEg] is generated by tg [tQ, t37 52]
and the motion of d; U Ey [d1 U Es] is generated by s1sitity [s1828281t1t1]. O

We are now ready to calculate relations for Ry, Re and Rs. The following relations
are easily verifiable, in fact most of them take place in Bsg.

The R; relations. To calculate the R; relations we have to find, for each edge
orbit representative (vg,vo - ;) and each generator ¢ of I;, a word h in Sy such that
ritr; 1 = h. One possibility is the following.

(Ri1) riteryt =1

(R12) ritery =t for k> 2
(R13) Tlskrfl = sy, for k> 2
(R14) rlslsltltlrfl = 5181tats

(R15) rlsgslslsgrfl = 59515152

(R16) rotory b =1

(R17) ’I“th’l“;l =ty

(R18) rgtkrgl =ty for k>3
(R19) 7“2827”51 =5

(R110) rgskrgl = Sg for k>3
(R111) r231325231t1t1r2_1 = 5951818913t3

(R112) 7’25352315152537’2_1 = 535251515253

The R, relations. To calculate the Ry relations we need to find, for each edge orbit
representative (vg, vg - 1), an h-product r;h r; for the path (vg,vo - r;,v0) and a word
h' in Sy such that r;h r; = h'.

(Ra1) rit181 11 = s1t

(R22) T281t2Se T2 = S25111

The Rj relations. To calculate the R3 relations we need to find, for each edge orbit,
an h-product representing the boundary of a face in the orbit and an equivalent word
in Sy. The following are such relations for the S11, Ri12 and 771 orbits respectively.

718182838182 1'18182835182taty 7152835182 11

Rs1

( ) = 5182535152818281535252535152t1t3
(R32) 71 T2818281t2l3 11 T2 = S28182t1t2
(R33) roS1ta 718281 T1 = S18281t1

If we use a different set of generators, similar to those found by Hilden, then we
can get a more braid like presentation. Let p; = Ugiagi_la;iilaz_il for 1 <7< mn. So
p; is the ith arc passing under the ¢ + 1st arc, see Figure 7.
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I e

FIGURE 6. The path given by the h-product on the LHS of (R31)

Theorem 5.3. The group Ha,, has a presentation with generators p;, s; and tj for
1<i,j<nandl<k<n and the following relations.

(P1) PiPj = PjPi forli—j|>1
(P2) PiPjPi = P;jpiP; for|i—jl=1
(P3) $iSj = 8;8; forli—j]>1
(P4) $i8;jSi = 8jSiS; forli—jl=1
(P5) DiSj = SjDi forli—j|>1
(P6) PiSi+18i = Si+1SiPi+1

(P7) Pi+1PiSi+1 = SiPi+1Pi

(P8) Pi+18iSi+1 = SiSi+1Di

(P9) Ditisipi = Siti

(P10) it = t;pi forj#£i, ori+1
(P11) piti+1 = tip;

(P12) sit; =t;s; ifj#iori+1
(P13) sit; = tis; if {i,i+ 1}y ={j, k}
(P14) tit; = t;t; for1<i,j<n

K4 R

FIGURE 7. Generators of Hy,

These generators and relations can be represented pictorially as in Figure 8 and
Figure 9.
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FIGURE 8. Pictorial representation of the p, s, t and their inverses

IR B

FIGURE 9. Pictorial representation of (P6), (P7) and (P9)

Proof. Since Hs,, is a subgroup of the braid group it is easy to check that these
relations all hold. So it remains to prove that each of the relations in Ry, R1, Ry and
R3 can be deduced from (P1)-(P14) using the fact that r; = p; and ro = pop;. First
note that Ry is a subset of these relations. The relations (R;1), (R;2), (R13) and
(R21) follow directly from (P11), (P10), (P5) and (P9) respectively. The remaining
relations can be deduced as follows. Some of these relations are quite long and are
perhaps better understood using pictorial representations. For the longest, (R31), see
Figure 10 for a pictorial version.

(R14)2 T18181t1t17’1_1 = plslsltltlpl_l (P13)2
= pitisisitipy ! (P9)
= sitipy 'sitipy " (P9)
= Sltltlsl (P13)2
= 51811282

(R15): 1"1323151327’1_1 = plszslslsgpl_l (P6)
= s281p2s152p] (P8)
= 52515152

(R16)Z 7“21527“51 = pg@p{lpgl (Pll)
= potipy ! (P10)
=1

(R17): 7“21537”51 = pg@pflpgl (P10)
- %pgl (P11)
=t

(R18): 7’2tk7’2_1 = pgpltkpl_lpz_1 (P10)
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= patips !

(R19): rosary ' = pap1sapy Py
= 51

(R110): raskTy ' = papiskpy Py
= Sk

To deduce (R;11) we make use of the following deduction.

P2p15152t3P2P1 (P7)
= s 'pap152518atspap (P4)
= sy popisisasitspopr  (P12)(P13)°
= s 'papitisisasipapy (P6)
= s 'papitisipisasipr (P9)
= 51 'pasitisasipr (P8)
= sap1sy his2s1p (P12)
= spibsm (P9)

s251t1

(Ri11):  rosisasasititiry ' = popisisasasititipy 'y '
= pop1s1Sat3sasitipy Dy
= p2p1S182t3P2P1S152ts
= 5251t18152t3
= 82818182t3t3

(R112): 7’25352515152537’2_1 = p2m5251515253p1_1p2_1
= P2S3P15251515283D] Dy
= P2535251P2515253D] D3
= P28382815152P183D1  Pay
= P2S35251515253D5 '
= $350P351515283D5
= 835281811738253]72_1
= 8535251515253

(R22): ro81taSar2 = Pap1S1tasSePap1
= pap151ps  Satapr
= pap181py ' satasy 't 'py ity
= P2P1ﬂ828f1pf181t1
= pop1s, Py 's2s18087 'py tsita
= pop1sy Py s1sap7 tsit
= pap1sy 'py 'py s1s251t
= s28111

(Rg].): 7’181828381827’18182838182t2t47"182$3$1827"1
= P15152838152P15182835182t2t4P152838182P1
= P15152535152P15152531358182t4P152535152P1

(P10)
(P7)

(P5)?

(P13)(P12)
(P13)(P12)°

1291
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= P15152535152P114515253518214P152535152P1 (P10)(P12)>
= p18515253t45152P1515283518284P152538152P1 (P13)3

= P1t15152535152P15152535152t4P152535152P1 (P10)

= P1t15182835152P15152535152P11452838182P1 (P8)2

= p1115152535152P151P3525351521452535152P1 (P5)(P1)
= p1t15152535152P3P151525351528452535152P1 (P3)

= p1t15182518352P3P15152835182t452538152P1 (P6)

= p1t1515251P25352P151525351528452835152P1 (P6)

= p1t151P152515352P151525351528452835152P1 (P3)

= p1t151P152535152P151525351528452535152P1 (P9)

= 51t152535152P15152535152t452535152P1 (P8)2

= 8111595351 S2P151525351 Sot4P3S28351 52 (P12)2(P13)3
= $111525835152P1115182538152P352535152 (P3)

= 51t1825835152P1115152515352P352835182 (P6)2

= $111525835152P11151P15251535252538152 (P9)

= 51t15253515251115251535252535152 (P12)(P13)
= S1t182535182518251t2$38252835182 (PIQ)(P13)2
= 511152535152515251535252625351 52 (P12)(P13)
= Sltl828381828182818382828381151& (P12)

= S1t1828381825152518382828381Sgtl (P12)2(P13)2
— 5152535182135152515352825351Sa2t1 (P12)(P13)2
= 8152535182818281t18382828381Sgtl (P12)4(P13)2

8152538182318281838282838182t3t1 (P14)
= 5152835152515251535252835152%113

(R32):  riras15281tstarire = pipapiSiSasitstapipap (P12)(P13)2
= p1p2p1ti1S18281tap1pep1 (P9)
= p1pesitipy  S281tapiPapt (P6)
= pip2sitis2s1py tap1pepi (P7)
= P1P281t18281P51t2ﬂP1p2 (P11)
= plp231tlﬂslt3ﬂp2 (PlZ)(PlO)
= p1p2S1S2t181P1t3p2 (P9)
= p1p2s18apy Sititspa (P8)
= p1818281t1t3p2 (P4)
= p1828182t1t3po (P6)
= 5251 p2satitspe (P14)(P10)
= S281P2Satapats (P9)
= S98182t2t1
(R33): T281t2T182817T1 = P2p151t2P15281P1 (P9)
= p2si1t18251P1 (P10)
= p2S182t151P1 (P8)
= s152p1t181P1 (P9)

81828111
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FIGURE 10. Deducing the (Rs1) relation
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