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AN ADDITIVE THEOREM AND RESTRICTED SUMSETS

ZHI-WEI SUN

ABSTRACT. Let G be any additive abelian group with cyclic torsion subgroup, and let
A, B and C be finite subsets of G with cardinality n > 0. We show that there is a

numbering {a;}?_; of the elements of A, a numbering {b;}?_; of the elements of B and

a numbering {c¢;}_; of the elements of C, such that all the sums a; +b; +¢; (1 < i< n)
are (pairwise) distinct. Consequently, each subcube of the Latin cube formed by the
Cayley addition table of Z/NZ contains a Latin transversal. This additive theorem is
an essential result which can be further extended via restricted sumsets in a field.

1. Introduction

In 1999 Snevily [Sn] raised the following beautiful conjecture in additive combina-
torics which is currently an active area of research.

Snevily’s Conjecture. Let G be an additive abelian group with |G| odd. Let A and
B be subsets of G with cardinality n € ZT = {1,2,3,...}. Then there is a numbering
{a;}_, of the elements of A and a numbering {b;}_, of the elements of B such that
the sums aj + b1, ... ,an + by, are (pairwise) distinct.

When |G| is an odd prime, this conjecture was proved by Alon [A2] via the polyno-
mial method rooted in Alon and Tarsi [AT], and developed by Alon, Nathanson and
Ruzsa [ANR] (see also [N, pp. 98-107] and [TV, pp. 329-345]) and refined by Alon [A1]
in 1999. In 2001 Dasgupta, Karolyi, Serra and Szegedy [DKSS] confirmed Snevily’s
conjecture for any cyclic group of odd order. In 2003 Sun [Su3] obtained some further
extensions of the Dasgupta-Karolyi-Serra-Szegedy result via restricted sums in a field.

In Snevily’s conjecture the abelian group is required to have odd order. (An abelian
group of even order has an element g of order 2 and hence we don’t have the described
result for A = B = {0,¢g}.) For a general abelian group G with its torsion subgroup
Tor(G) = {a € G : a has a finite order} cyclic, if we make no hypothesis on the
order of GG, what additive properties can we impose on several finite subsets of G with
cardinality n? In this direction we establish the following new theorem of additive
nature.
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Theorem 1.1. Let G be any additive abelian group with cyclic torsion subgroup, and
let Aq,..., A, be arbitrary subsets of G with cardinality n € Z, where m is odd.
Then the elements of A; (1 < i < m) can be listed in a suitable order a;1,... ,ain,
so that all the sums > v, a;; (1 < j < n) are distinct. In other words, for a certain
subset Apq1 of G with |Ay 1| = n, there is a matriz (a;j)i1<i<m+1, 1<j<n Such that
{ai1,... ,am} = A; foralli=1,... ,m+1 and the column sum Z;’:{l a;; vanishes
for every j =1,... ,n.

Remark 1.1. Theorem 1.1 in the case m = 3 is essential; the result for m = 5,7,...
can be obtained by repeated use of the case m = 3.

Example 1.1. In Theorem 1.1 the condition 2 { m is indispensable. Let G be an
additive cyclic group of even order n. Then G has a unique element g of order 2 and
hence a # —a for alla € G\ {0,9}. Thus ), .,a=0+g=g. Foreachi=1,... ,m
let a;1,...,a;, be a list of the n elements of G. If those Z;zl a;; with 1 < j < n are
distinct, then

n m m

IED D WIED WD B2

a€G j=11i=1 i=1 j=1 a€G
hence (m —1)g = (m — 1) >, a = 0 and therefore m is odd.

Example 1.2. The group G in Theorem 1.1 cannot be replaced by an arbitrary
abelian group. To illustrate this, we look at the Klein quaternion group

Z)2Z & Z,)2Z = {(0,0), (0, 1), (1,0), (1,1)}

and its subsets

Ay = {(070)7 (Oa 1)}7 Ay = {(070)7 (170)}7 Az =-=A, = {(07 0)7 (17 1)}7
where m > 3 is odd. For i = 1,... ,m let a;,a; be a list of the two elements of A;,
then .

> (ai+aj) = (0,1) + (1,0) + (m — 2)(1,1) = (0,0)
=1

and hence > 1" a; = — Y. 0 ab=>" al.

Recall that a line of an n X n matrix is a row or column of the matrix. We define a
line of an n X n X n cube in a similar way. A Latin cube over a set S of cardinality n
is an n X n X n cube whose entries come from the set S and no line of which contains
a repeated element. A transversal of an n X n X n cube is a collection of n cells no
two of which lie in the same line. A Latin transversal of a cube is a transversal whose
cells contain no repeated element.

Corollary 1.1. Let N be any positive integer. For the N x N x N Latin cube over
Z/NZ formed by the Cayley addition table, each nxnxn subcube withn < N contains
a Latin transversal.

Proof. Just apply Theorem 1.1 with G = Z/NZ and m =3. O

In 1967 Ryser [R] conjectured that every Latin square of odd order has a Latin
transversal. Another conjecture of Brualdi (cf. [D], [DK, p.103] and [EHNS]) states
that every Latin square of order n has a partial Latin transversal of size n — 1. These
and Corollary 1.1 suggest that our following conjecture might be reasonable.
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Conjecture 1.1. Every n x n x n Latin cube contains a Latin transversal.

Note that Conjecture 1.1 does not imply Theorem 1.1 since an n X n X n subcube
of a Latin cube might have more than n distinct entries.

Corollary 1.2. Let G be any additive abelian group with cyclic torsion subgroup, and
let Ay,..., A, be subsets of G with cardinality n € Z*, where m is even. Suppose
that all the elements of Ay, have odd order. Then the elements of A; (1 < i< m) can
be listed in a suitable order a1, ... ,a, so that all the sums Y ;v a;; (1 < j < n)
are distinct.

Proof. As m — 1 is odd, by Theorem 1.1 the elements of A; (1 <7 < m — 1) can
be listed in a suitable order a;1,. .. , a;,, such that all the sums s; = Zzn:_ll a;; (1<
j < n) are distinct. Since all the elements of A,, have odd order, by [Su3, Theorem
1.1(ii)] there is a numbering {a;,;}}_; of the elements of A,, such that all the sums
Sj+ amj =Y i a;; (1 <j<n)are distinct. We are done. [

As an essential result, Theorem 1.1 might have various potential applications in
additive number theory and combinatorial designs.

We can extend Theorem 1.1 via restricted sumsets in a field. The additive order
of the multiplicative identity of a field F' is either infinite or a prime; we call it the
characteristic of F and denote it by ch(F'). The reader is referred to [DH], [ANR],
[Su2], [HS], [LS], [PS1], [Su3], [SY] and [PS2] for various results on restricted sumsets
of the type

{a1+-+an: a1 € A1,... ,a, € A, and P(ay,... ,a,) # 0},

where Ay,... , A, C F and P(z1,...,2,) € Flz1,..., 2]

For a finite sequence {A;} , of sets, if a; € Ay,... ,a, € A, and ay,... ,a, are
distinct, then the sequence {a;}!" , is called a system of distinct representives (SDR)
of {A;}_,. This concept plays an important role in combinatorics and a celebrated
theorem of Hall tells us when {A4;}" ; has an SDR (see, e.g., [Sul]). Most results in
our paper involve SDRs of several subsets of a field.

Now we state our second theorem which is much more general than Theorem 1.1.

Theorem 1.2. Let h,k,l,m,n be positive integers satisfying
(1.1) k—=1>=2m(n—1) and 1 —12> h(n—1).

Let F be a field with ch(F) > max{K, L}, where

(1.2) K:(k—1)n—(m+1)<;‘) andL:(l—l)n—(h—i—l)(Z).

Assume that c1, ... ,c, € F are distinct and A1, ..., Ay, B1,...,B, are subsets of F’
with
(1.3) |Ai|=--=|A,| =k and |By|=--- = |B,| = 1.

Let Py (x),...,Py(z),Q1(z),...,Qn(x) € Fz] be monic polynomials with deg P;(z) =
m and degQ;(x) = h for i = 1,...,n. Then, for any S, T C F with |S|] < K
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and |T| < L, there exist ay € Ai,...,an € An,by € By,...,b, € By such that
a1+t a, €S, by +---+b, €T, and also
(1.4) aibici 7& ajbjcj, Pi(ai) 7'é Pj(aj), Ql(bl) 7'é QJ(bJ) ifl <14 <j <n.

Remark 1.2. If h, k, 1, m,n are positive integers satisfying (1.1), then the integers K
and L given by (1.2) are nonnegative since

K>m(n1)n(m+1)<;‘) :(ml)(Z) andL>(h1)<g).

From Theorem 1.2 we can deduce the following extension of Theorem 1.1.

Theorem 1.3. Let G be an additive abelian group with cyclic torsion subgroup. Let

h,k,l,m,n be positive integers satisfying (1.1). Assume that c1,... ,c, € G are dis-
tinct, and Aq,...,An, B1,..., By are subsets of G with |A1] = -+ = |A,| = k and
|By| = -+ = |By| =1. Then, for any sets S and T with |S| < (k—1)n — (m+1)(5)

and |T| < (lfl)nf(thl)(g), there are aq € A1,...,a, € A,,b1 € B1,...,b, € B,
such that {ay,... ,an} €S, {b1,...,bn} €T, and also
(1.5) a; + b +¢; # aj +b; +c;, ma; #ma;, hb; #hb; if 1 <i<j<n.
Proof. Let H be the subgroup of G generated by the finite set

AU UA,UByU---UB, U{c1,...,cn}.

Since Tor(H) is cyclic and finite, as in the proof of [Su3, Theorem 1.1] we can identify
the additive group H with a subgroup of the multiplicative group C* = C\ {0}, where
C is the field of complex numbers. So, without loss of generality, below we simply
view G as the multiplicative group C*.

Let S and T be two sets with [S| < (k—1)n — (m +1)(3) and |T| < (I — 1)n —
(h+1)(3). Then

S'={ar1+--+an: a1 € Ay,... ,a, € Ay, {a1,... ,a,} €S}
and
T/Z{b1++bn by € By,...,b, € By, {bl,... ,bn}ET}

are subsets of C with |S’| < |S| and |T”| < |T'|. By Theorem 1.2 with P;(x) = 2™ and
Qi(r) = 2" (1 <i < n), there are a; € Ay,... ,a, € Ap,by € By,...,b, € B, such
that ay + -+ a, € S’ (and hence {ay,... ,a,} € S), by +---+ b, € T’ (and hence
{b1,...,b,} €T), and also

a;bic; # ajbjcj, ai" # al’, bl £ b;-‘ if1<i<j<n.
This concludes the proof. [

Remark 1.3. Theorem 1.1 in the case m = 3 is a special case of Theorem 1.3.

Here is another extension of Theorem 1.1 via restricted sumsets in a field.



AN ADDITIVE THEOREM AND RESTRICTED SUMSETS 1267

Theorem 1.4. Let k,m,n be positive integers with k — 1 = m(n — 1), and let F be
a field with ch(F) > max{mn, (k —1 —m(n —1))n}. Assume that c1,...,c, € F are
distinct, and Ay,... ,An, B1,... , B, are subsets of F' with |A1| =---=]A,| =k and
|Bi| = -+ = |By| =n. Let S;; C F with |S;;| < 2m for all1 < i < j < n. Then there
is an SDR {b;}7_, of {B;}—, such that the restricted sumset

(1.6) S = {(11 4+ -ta,:a; €A, a; — a; & Sij and a;b;c; # ajbjcj ifi < ]}

has at least (k —1—m(n —1))n+ 1 elements.

Now we introduce some basic notations in this paper. Let R be any commutative
ring with identity. The permanent of a matrix A = (a;j)1<i,j<n Over R is given by

(1.7) per(A) = |laijlli<ij<n = Z a1,6(1) """ On,o(n)s
ceSy
where S,, is the symmetric group of all the permutations on {1,... ,n}. Recall that

the determinant of A is defined by

(1.8) det(A) = laijhicijen = Y €(0)a100) " Gno(n),
ogES,

where (o) is 1 or —1 according as o is even or odd. We remind the difference

between the notations | - | and || - ||. For the sake of convenience, the coefficient of
the monomial % --- 2% in a polynomial P(xy,...,x,) over R will be denoted by
[zh - zkn Pz, ... 2).

In the next section we are going to prove Theorem 1.1 in two different ways. Section
3 is devoted to the study of duality between determinant and permanent. On the basis
of Section 3, we will show Theorem 1.2 in Section 4 via the polynomial method. In
Section 5, we will present our proof of Theorem 1.4.

2. Two proofs of Theorem 1.1

Lemma 2.1. Let R be a commutative ring with identity, and let a;; € R for i =
1,...,mand j=1,... ,n, where m € {3,5,...}. The we have the identity

m—1 m—1
Z 6(01 cee Um71) H <amj H Aso,(5) — Qmi H aszu(i))
s=1 s=1

(21) 01,00 ,0m—1E€ESy 1<i<j<n

= H (a1 —aii) - (@mj — Ami)-

1<i<j<n

Proof. Recall that \x§_1|1<i7j<n = [li<icj<n(zj — 2;) (Vandermonde). Let ¥ denote
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the left-hand side of (2.1). Then

x= Z e(01 Om-1)l(@1,0,() " G2 (5 @ms)" " 1< i<
O'Ia-“yo-rnflesn
= Z g(o1) x -+ xe(om—1)
01,---,Um7165n
n
x Y &™) [[O101 () -+ Gmtim s () Fmr ()
TESH =1
n m—1 n
i—1 i—1
= Z €<T)7nHa;n,T(i) X H Z 6(0’57')1_[(1;057_(1-)
TES, i=1 s=1 0,ES, i=1
m—1 n
— Z elr mHamT() X H Z s(U)Ha;:f(i).
TES, s=1 oc€S,, i=1

Since m is odd, we finally have

m—1

m

i1 i

2 =lap, i hi<igen [ lag theis H H (asj — asi).
s=11<i<j

s=1 i<n

This proves (2.1). O

Remark 2.1. When m € {2,4,6, ...}, the right-hand side of (2.1) should be replaced
by

lait h<ijen [T (a1 = a1 (@mo15 = am-1.)-
1<i<j<n

Definition 2.1. A subset S of a commutative ring R with identity is said to be
regular if all those a — b with a,b € S and a # b are units (i.e., invertible elements) of

R.

Theorem 2.1. Let R be a commutative ring with identity, and let m > 0 be odd.
Then, for any reqular subsets A1, ..., A, of R with cardinality n € Z*, the elements
of A; (1 <i < m) can be listed in a suitable order a;1, ... , aipn, so that all the products
T2, aij (1<j<n) are distinct.

Proof. The case m = 1 is trivial. Below we let m € {3,5,...}.
Write Ag = {bs1,... ,bsn} for s =1,... ,m. As all those by; — bs; with 1 <s<m
and 1 < ¢ < j < n are units of R, the product

I =) (bmj = bimi)

1<i<j<n

is also a unit of R and hence nonzero. Thus, by Lemma 2.1 there are o1,... ,0,,_1 €
Sy, such that whenever 1 < i < j < n we have

bio1 () Om—1,0m 1 (0)Pmi 7 D1,01() ** Om—1,000 1 (5) Omij-
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For 1 < s<mand 1< j<n,letay = by, ;) if s <m, and as; = by; if s = m.
Then {as1,... ,asn} = As, and all the products [~ as; (j =1,...,n) are distinct.
This concludes the proof. [

Proof of Theorem 1.1. As mentioned in the proof of Theorem 1.3 via Theorem 1.2,
without loss of generality we may simply take G to be the multiplicative group C* =
C\ {0}. As any nonzero element of a field is a unit in the field, the desired result
follows from Theorem 2.1 immediately. O

Now we turn to our second approach to Theorem 1.1.

Lemma 2.2. Let cy,...,c, be elements of a commutative ring with identity. Then
we have
[y H (zj — @) (y; — vi)(cjzyy; — ciwivi)
(2.2) 1<i<j<n
= H (Cj — Ci).
1<i<j<n

Proof. Observe that

I G =y —vi)(cizsy; — cimyi)

1<i<j<n

i—1 i—1 i
—\mg \1<i,j<n|yf |1<i,j<n|(0ﬂiyi)j 1|1<z’,j<n

= Z E(U)ﬁx?(i)—l y Z S(T)ﬁyf(i)_l y Z 6(}\)12[(01_%%),\(1')71
ogES, =1 TESH i=1 AES, i=1

= Z e(\) ﬁc?(i)fl Z e(or) ﬁ <x?(i)+a(i)*2y;\(i)+7(i)*2) .
AES, i=1 o,TESy i=1

Thus the left-hand side of (2.2) coincides with

5 (0 IT)e = heisen = TT e -c)

AES,

where A(i) =n +1—\(i) fori = 1,... ,n. We are done. [
Let us recall the following central principle of the polynomial method.

Combinatorial Nullstellensatz [Al]. Let Aq,..., A, be finite subsets of a field F

with |A;| > k; fori=1,... n, where ky, ..., k, are nonnegative integers. If the total
degree of f(x1,... ,xn) € Flz1,... ,xn] is ki +---+kn and [z - zke]f(21,. .. 2,)
is nonzero, then f(ay,...,a,) # 0 for some a1 € Ay,... ,a, € A,,.

Theorem 2.2. Let Ay,..., A, and By, ..., By, be subsets of a field F' with cardinality
n. And let cq,... ¢, be distinct elements of F. Then there is an SDR {a;}!, of



1270 ZHI-WEI SUN

{A;}7-, and an SDR {b;}I'_, of {Bi}I—, such that the products aibici,... ,apnbncy
are distinct.

Proof. As ¢, ... ,cy, are distinct, (2.2) implies that

ity gt T s = ) (s — v (s — cimiys) # 0.
1<i<j<n

Applying the Combinatorial Nullstellensatz, we obtain the desired result. [

Remark 2.2. When F =C, Ay =---= A, and B; = --- = B, Theorem 2.2 yields
Theorem 1.1 with m = 3. Note also that Theorems 1.2 and 1.4 are different extensions
of Theorem 2.2.

3. Duality between determinant and permanent

Let us first summarize Theorem 2.1 and Corollary 2.1 of Sun [Su3] in the following
theorem.

Theorem 3.1 (Sun [Su3]). Let R be a commutative ring with identity, and let A =
(@ij)i<ij<n be a matriz over R.

(i) Let k1,... kn,my,... ,my, € N={0,1,2,...} with M = 3" m; +(}) <
S ki where 6 € {0,1}. Then

n Yty ki—M
[xllcl e xﬁn]|aZ]xTz |1<i7j<" H (.CL'] B :Ei)(s 8 (Z xs)

1<i<j<n s=1
_ ZJGSH,D(,QNS(U)NU | i@y U 0=0,
deTn E(Ul)Na H?:l Q4,0(1) Zf 0= 17
where
D, :{ka(l) —my,... 7ka(n) - mn}a
T, ={oc € S,: D, CN and |D,| = n},
k coot+ky — M)
N, = Uy t-- ) ez,

H?:l H0<j<kg(i>*mi<ka(i) —m; = j)
j@D, if 6=1

and o’ (with o € T),) is the unique permutation in S, such that
0 < Eo(or1)) = Mor(1) <+ < Ko(o'(m)) = Mot ()-

(ii) Let k,my,... ,my, € N withmy < --- <m, < k. Then

[ - apllasa <o jen (@ + - - 4 @) FrT 2=

(3.1) (kn — 2?21 m;)!

= =5 = det(A).
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In the case my < --- < my,, we also have

n
[@h - abllagal heijen [ (25— @) x (sz
1<i<ign
o (b= () -5 m)

[T I mi<ice (G —ma)
JE{ms:i<s<n}

(3.2)

In view of the minor difference between the definitions of determinant and perma-
nent, by modifying the proof of the above result in [Su3] slightly we get the following
dual of Theorem 3.1.

Theorem 3.2. Let R be a commutative ring with identity, and let A = (aij)i<i,j<n
be a matriz over R.

(i) Let ky,mq,...  kn,my, € N with M = 31" m; +6(3) < Yi | ki where § €
{0,1}. Then

)

pTi . ) - i b
gz li<ij<n H (zj — xi)° X sz

1<i<j<n s—1
_ ZUESn, p,cnNo 17y aioey if0=0,
ZoeTn e(o0’) N,y H?:l o (i) ifo =1,

where Dy, Ty, N, and o' are as in Theorem 3.1(i).

(i) Let k,mq,... ,my, € N with my <--- <my, < k. Then
[} - b ]llasa " i gen (@ + - 4 )T
3.3 kn — S |
(3:3) — ( nn izl ml') per(A).

Hi:l(k —m;)!

In the case m1 < --- < my,, we also have

[ ablllaga] hcogen [ (25— ) x <vas
1<i<j<n
_ (™) _ n Y
e = () = Ei ma)!
[To I mi<ji<e (G —ma)

JE{ms:i<s<n}

(3.4)

det(A).

Remark 3.1. Part (ii) of Theorem 3.2 follows from the first part.

Theorem 3.3. Let R be a commutative ring with identity, and let a;; € R for all
i,j=1,...,n. Let k,ly,... ,ln,my,... ,my € N with N =kn—> " (I + m;) > 0.
(i) (Sun [Su3, Theorem 2.2]) There holds the identity

(3.5) [} af]laijal <ijsn |20 i<igan (m1 + - 4 20)Y
=[2} - aplaiz] i<ojen 125 i<ijen (o1 + - 4+ 20) V.
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(ii) We also have the following symmetric identities:

(3.6) [xlf '-fo]Haijx? l1<i,j<n |$;n’ li<ijcn (@1 4+ + z, )N
=[z} - wfllasa] i jsn 25 hi<igan (214 -+ 20)7,

(3.7) [z} - ab a2l i<igcn 127 h<igan (@1 + - 4 20) Y
=[2} - abllaa i jon 125 licigen (T 4+ + )Y,

and

(3.8) 2 - willaial i< jn 127 1gijen (@1 4+ 20)™
=(&} - 2b]llagz] icijn 125 licigcn (@1 + -+ 20) .

Theorem 3.3(ii) can be proved by modifying the proof of [Su3, Theorem 2.2] slightly.

4. Proof of Theorem 1.2

,Cn be
s Lny Y1y - - 7yn)

Lemma 4.1. Let h,k,l,m,n be positive integers satisfying (1.1). Let cq,...
elements of a commutative ring R with identity, and let P(xq,...
denote the polynomial

I (cmivs — cimiv) @] — 2 (WF —ylt) x (@1 + -+ 20) (1 + -+ yn) "
1<i<j<n

where K and L are given by (1.2). Then

[‘r]f_l mfz_lyll_l"'yvli_l]P(xh - Tn, Y1, - 7yn)
4.1 K!'L!
(4.1) - == I1 (c—c
1<i<j<n
where
n—1
B —(n (k—1—=rm)!(l—1—rh)! n
(4.2) N = (hm)~( )HO e c 7+,

Proof. In view of Theorem 3.3(i) and Theorem 3.1(ii),

it T (s — comya) (W) =yl < (1 + -+ ya)
1<i<j<n
1

— — i—1 i— i—1)h
[yé yfl 1]|(Cj$j)Z 1yj 1|1<i,j<n|y](‘ Y |1<i,j<n(y1+"'+yn)L
— _ j— 1—1
iy () Tyl

o L .
(—1)(2)fo||(cj$j) igig<ns

h i —
Micijenly i jen a4+ )"
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where

i=1 (i—1)h<j<l—1 @
J/h&{s€l: i<s<n}

Dl-1—-(G—-1Dh)! 31 (I —1—7rh)
:H (n—i)!h”*i =h (2)1_[7

(_1)(2)[37]{:71 o .xfl_lyiil o .y'f'L_l]P(x17" M 7$n7y17" M ’yn)
. I n K
71 — . ) —
ol I ) e [T G el (Ya)
0 1<i<j<n s=1
L k—1 k—17y i—1,i—1 (i—1)m K
Zfo[ﬂfl ey e 2 higiggn T li<ij<n(T1+ 0+ 2n)
L. I -
:L*Wf 19051 1]||C;' lﬂcy 1)m||1<i,j<n|x} 1\1<i,j<n(x1+-~+xn)K
0
L! wn Ko »y KL
Zf(—l)(z)?@ Yi<ijan = (—1)(2)K 7 IT (¢ —e.
0 0 oLo | i,
where
n n—1
o _(n (k—1—rm)!
=1 (i—1)m<j<k—1 r=0

j/mg{s€Z: i<s<n}

Therefore (4.1) holds with N = KoLo € Z*. O

Proof of Theorem 1.2. Let f(z1,...,Zn,Y1,-.-,Yn) denote the polynomial

IT (Pi(as) = Pi(=i))(@;(yy) — Qi(wi))(cjmsy; — cimiyi)

1<i<ign
X (21 4 - ap) KIS H(:Jc1+~~+xnfa)
acsS
(it y) T [+ 4y = 0).
beT

Then

degfé(m+h+2)<g>+|K|+|L:(k—1+l—1)n:Z(|Ai—1+|Bi!—1).

i=1
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Since ch(F) > max{K, L} and [],;;<,(¢; —¢ci) # 0, in view of Lemma 4.1 we have

[xlfil e mﬁ_lyiil e yf’z_l]f(xla s s Ty Yy e 7yn)
:[xlf_l xfl_lyll_l U yi_l]P(xla cee s Ty YLy 7yn) 7é 07

where P(z1,...,%n,Y1,...,Yn) is defined as in Lemma 4.1. Applying the Com-
binatorial Nullstellensatz we find that f(ai,...,an,b1,...,b,) # 0 for some a; €
Ai,...,an € Ay, by € By,... b, € By,. Thus (1.4) holds, and also a; + -+ 4+ a, € S
and by +---+ b, €T. We are done. [J

5. Proof of Theorem 1.4

Non-vanishing permanents are useful in combinatorics. For example, Alon’s per-
manent lemma [Al] states that, if A = (a;j)1<i,j<n 1S & matrix over a field F' with
per(A) # 0, and Xi,...,X, are subsets of F with cardinality 2, then for any
bi,...,b, € F there are z1 € X1,...,x, € X,, such that 2?21 ai;jr; # b; for all
i=1,...,n.

In contrast with [Su3, Theorem 1.2(ii)], we have the following auxiliary result.
Theorem 5.1. Let Aq,..., A, be finite subsets of a field F with |A1] = -+ =
|A,| = k, and let Pi(z),...,P,(x) € Flx] have degree at most m € Z* with
[Py (x), ..., [x™]P,(x) distinct. Suppose that k — 1 > m(n — 1) and ch(F) >
(k—1)n— (m+1)(3). Then the restricted sumset

(5.1) C= {Zai D a; € Aiy ai # aj fori# j, and ||Pj(a;) " hi<ijgn # 0}

i=1
has cardinality at least (k —1)n — (m+1)(5) +1> (m—1)(}).
Proof. Assume that |C] < K = (k—1)n — (m+ 1)(}). Clearly the polynomial
fln,mn) = ] (@ =) < IIP(x)" i jsn
1<i<y<n
ceC

has degree not exceeding (k — 1)n = Y. ,(J]A;| — 1). Since ch(F) is greater than K,
and those b; = [™]P;(z) with 1 < i < n are distinct, with the help of Theorem 3.2(ii)
we have

e f (e, )
:[xlffl .. xﬁ*l} H (mj B xz) % ||b;71m§lf )m||1<i7j<n(z‘rs>
1<i<j<n s=1
=)&) i g = (DE T (05— b)) #0,

Ky

0 1<i<j<n
where Ky is given by (4.3). Thus, by the Combinatorial Nullstellensatz, f (a1y... ,ap)
# 0 for some a; € Ay,...,a, € A,. Clearly Z?:l a; € Cif ||Pj(aj)l_1||1<i7j<n 0
and a; # a; for all 1 < i < j < n. So we also have f(a1,... ,a,) = 0 by the definition
of f(z1,...,x,). The contradiction ends our proof. [
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Corollary 5.1. Let Ay,..., A, and B = {b1,...,b,} be subsets of a field with
cardinality n. Then there is an SDR {a;}}'_, of {A} ', such that the permanent
1(a;0;)" l1<ijsn is nonzero.

Proof. Simply apply Theorem 5.1 with k£ =n and Pj(z) = bjz for j=1,...,n. O
Lemma 5.1. Let k,m,n € Z" with k —1 > m(n —1). Then

eyt T G =2 gy — i) (i%)N

(5.2) 1<i<j<n s=1
: n—1
() (mn)!N! (rm)! i—1
== G (m!)rn! (k—1—1rm)! X Myi ™ Mhisicn,

where N = (k—1—m(n —1))n.

Proof. Since both sides of (5.2) are polynomials in y1, ... ,yp, it suffices to show that
(5.2) with y1,... ,y, replaced by aq,... ,a, € C always holds.
By Lemma 2.1 and (2.6) of [SY], we have

oyt I (2 ey - ai) % (iws>N

1<i<j<n s=1

- O R e TT 116
. 0<r<n s=1
()N rm)l

=(=1) © (m!)nn! 5™ lh<iisn H (k=1—rm)l’

r=0
This concludes the proof. [
Proof of Theorem 1.4. Since ¢y, ... ,c, are distinct and |By| = = |B,| = n, by

Corollary 5.1 there is an SDR {b;}7—, of {B;}I"; such that ||(b; c]) Yigijn # 0.
Suppose that |[S| < N = (k—1—m(n —1))n. We want to derive a contradiction.

Let f(x1,...,x,) denote the polynomial
H <(bjCj1‘j - biCixi)(x] - 1' 2m 1=1541 H —x;+c >
1<i<j<n c€Sij
X (21 + - A a,) VIS H(an +-+x, —a).
a€esS
Then "
n
deg f < 2 N=Fk-1n="S (4] -1).
ew s <om() + = (k= m =34
With the help of Lemma 5.1, we have
A F C P
=gk e )Y H (bjcjaj — biciw)(zj — x;) 2™
1<i<j<n
mn)'N' (rm i
=(~1)™( H  (bje)  Hhigijcn # 0

| |
(m!)nn! sty
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since ch(F') > max{mn, N}. By the Combinatorial Nullstellensatz, there are a; €
Aq,...,a, € A, such that f(ay,...,a,) # 0. On the other hand, we do have
flai,...,a,) =0, because a1 + ---+a, € S if a; —a; € Si; and a;bic; # a;jbjc; for
all 1 <7 < j <n. So we get a contradiction. [J
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