
Math. Res. Lett. 15 (2008), no. 6, 1223–1231 c© International Press 2008

A FINITENESS CONJECTURE ON ABELIAN VARIETIES
WITH CONSTRAINED PRIME POWER TORSION

Christopher Rasmussen and Akio Tamagawa

Abstract. The pro-` Galois representation attached to the arithmetic fundamental
group of a curve influences heavily the arithmetic of its branched ‘`-covers.’ In many

cases, the `-power torsion on the Jacobian of such a cover is fixed by the kernel of this

representation, giving explicit information about this kernel. Motivated by the relative
scarcity of interesting examples for `-covers of the projective line minus three points, the

authors formulate a conjecture to quantify this scarcity. A proof for certain genus one

cases is given, and an exact set of curves satisfying the required arithmetic conditions
in the base case is determined.

0. Introduction and Motivation

Fix a prime `, and an algebraic closure Q̄ of Q, the field of rational numbers. Let
µN denote the group of Nth roots of unity in Q̄, and let Λ` ⊂ Q̄ denote the maximal
pro-` extension of Q(µ`), unramified away from `. Let P1

01∞ := P1
Q̄ r{0, 1,∞}. There

is a natural outer Galois representation on the pro-` algebraic fundamental group of
P1

01∞,
ρ` : GQ −→ Out

(
π`

1(P1
01∞)

)
.

Let Ω` denote the fixed field of the kernel of ρ`. Ihara, in [5], noticed that Ω` is
a subfield of Λ`. Further, Anderson and Ihara showed, in [1], that Ω` is an infinite
nonabelian extension of Q(µ`∞), and gave a beautiful description of Ω`: it is generated
over Q by the ramification sets of certain genus 0 coverings of P1.

It is an open problem, first posed by Ihara in the 1980s, to describe the difference
between the fields Ω` and Λ`, or even to decide whether or not the two are equal.
There is a line of investigation for this question, which proceeds roughly as follows.
Let k be a subfield of Ω`, and let C be a complete nonsingular curve over k, with good
reduction away from `. Let AC denote the Jacobian of C, and let kC := Q(AC [`∞]),
the field generated by the `-power torsion of AC . If k(AC [`]) ⊂ Λ`, it follows from
the results of Serre and Tate [11] that kC is a subfield of Λ`.

Suppose the curve C admits the structure of a geometric `-cover of P1
01∞, that is,

there exists a morphism f : C → P1 defined over k such that the Galois closure of
f ⊗ Q̄ is branched only over {0, 1,∞} and has `-power degree. In this situation, there
is a known sufficient condition on f which implies that kC lies inside of Ω`. This is a
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result of Anderson and Ihara [1], who proved “Ω`-rationality” for the `-power torsion
of Jacobians for several families of curves, e.g., Fermat curves of `-power level and
principal modular curves of level 2n (` = 2). Using the same approach, analogous
results have been proven for elliptic curves over Q when ` ≤ 3 [10], [9] and for principal
modular curves of level 3n (` = 3) [9].

Intuitively, the constraints on the abelian variety AC are quite strong. Ignoring the
geometric requirement, even the arithmetic restraints are quite powerful. Because Λ`

ramifies only over `, AC must have good reduction away from `. By Faltings’ proof
of the Shafarevich Conjecture for abelian varieties, [4, Satz 6], for a fixed number
field k, a fixed positive integer g and a fixed prime `, there are only finitely many
abelian varieties A/k of dimension g (up to k-isomorphism) satisfying k(A[`∞]) ⊂ Λ`.
However, this understates the situation considerably. The purpose of this article is to
suggest that such finiteness results hold even as ` varies over all primes, and prove
such a result in the ‘base case’ k = Q, g = 1. We extend this result (still with g = 1)
to all but finitely many quadratic number fields.

In §1, we give the necessary material to state the conjecture precisely. In §2, we
prove a lemma on the structure of the Galois representation on the `-torsion of such
an abelian variety. In §3, we give the proof, by interpreting the lemma in the case
of elliptic curves. Proving finiteness independent of the prime ` relies on the deep
result of Mazur (and extensions by Momose) characterizing the non-cuspidal rational
points of modular curves. In §4, we compute explicitly the finite set of elliptic curves
E/Q satisfying the Q(E[`∞]) ⊂ Λ`. In §5, we demonstrate the stronger containment
Q(E[`∞]) ⊆ Ω` holds for almost all of these elliptic curves.

1. Statement of Conjecture and Results

Let K be a number field. For any prime `, let K̃` denote the maximal pro-`
extension of K(µ`) which is unramified away from ` (for example, if K = Q, then
K̃` = Λ`). For any number field K and any integer g ≥ 0, let A (K, g, `) denote the
set of K-isomorphism classes of abelian varieties A/K, of dimension g, which satisfy

K(A[`∞]) ⊆ K̃`.

For fixed K and g, define also the set

A (K, g) :=
{
([A], `) : [A] ∈ A (K, g, `)

}
.

Again, it follows from the finiteness theorems on abelian varieties with prescribed
reduction type that the sets A (K, g, `) must be finite. However, it is not clear a priori
why the set A (K, g) should be finite – that is, why should one expect A (K, g, `) = ∅
for all ` sufficiently large? As we will show in §2, the Galois structure of the `-torsion
of such an abelian variety is constrained in such a way to make the appearance of
large ` quite unlikely.

Conjecture 1. Let K be a number field and let g ≥ 0. Then the set A (K, g) is
finite.

In evidence of the conjecture, we will demonstrate the following.

Theorem 2. The set A (Q, 1) is finite. That is, there are only finitely many pairs
([E], `) of Q-isomorphism classes of elliptic curves E over Q and primes ` for which
Q(E[`∞]) ⊆ Λ`.
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Specifically, if ([E], `) ∈ A (Q, 1), then ` ≤ 163. In fact, we determine exactly the
set A (Q, 1) in this paper. One can deduce quickly from the Riemann-Hurwitz formula
that a genus 1 curve can admit the structure of a geometric `-cover of P1

01∞ only if
` ≤ 3. Hence, there exist curves C/Q which do not admit the structure of a geometric
`-cover of P1

01∞, but whose Jacobians satisfy Q(AC [`∞]) ⊆ Λ`. In fact, most of the
curves in A (Q, 1) also satisfy Q(AC [`∞]) ⊆ Ω`. To the authors’ knowledge, these are
the first explicit examples of curves which have this property, but which do not admit
the structure of a geometric `-cover of P1

01∞.
By using the results of Momose, we extend Theorem 2 to prove finiteness for

A (K, 1) for almost all quadratic extensions K/Q. A precise statement is given in §3.

2. Lemma on Galois Action

Consider the tower of fields Q ⊂ Q(µ`) ⊂ Λ`, corresponding to the exact sequence

(1) 1 // Gal (Λ`/Q(µ`)) // Gal (Λ`/Q) // Gal (Q(µ`)/Q) // 1 .

The purpose of this section is to show that when the group in the middle of the above
sequence acts on a finite dimensional F`-vector space (e.g., the `-torsion of an abelian
variety), the action is highly constrained.

In this section, let G be a group with a normal pro-` subgroup N , such that the
quotient ∆ = G/N is isomorphic to F×` . Because N is pro-`, it has trivial image under
any character ψ : G→ F×` . Hence, there is always an induced character ψ̄ : ∆ → F×` .
Let χ : G→ F×` be a character such that the induced character χ̄ is an isomorphism.
Finally, let V be a finite dimensional F`-vector space of dimension d on which G acts
continuously.

Lemma 3. The vector space V admits a filtration

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vd−1 ⊂ Vd = V

such that each Vi has dimension i and is fixed (as a set) by G. Further, for each
1 ≤ i ≤ d, G-action on the space Vi/Vi−1 is given by g · v̄ = χ(g)ki · v̄ for some ki ∈ Z,
0 ≤ ki ≤ `− 2.

Remarks. Choose an ordered basis {v1, v2, . . . , vd} of V with each vi ∈ VirVi−1. The
lemma implies that with respect to this basis, the action of G has the upper-triangular
form 

χk1 ∗ · · · ∗
χk2 · · · ∗

. . .
...
χkd

 .

In the following sections, we will specialize to the case where G = Gal(Λ`/Q), N =
Gal(Λ`/Q(µ`)), χ is the `-cyclotomic character mod `, and V = A[`] for some abelian
variety A. However, the lemma needs none of these additional assumptions.

Proof of Lemma 3. The proof will proceed by induction on d. The d = 1 case is
trivial – G must act via a power of χ. So assume the result holds for F`-vector spaces
of dimension d− 1, and let V be an F`-vector space of dimension d.
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Consider the action of N on V , which necessarily factors through some finite `-
group N0. Hence, the N -orbits of V must all have order a power of ` and so the
subspace V N of fixed points is non-trivial (V N = {0} implies ` divides |V | − 1, which
is impossible). Further, because N is normal in G, we have that V N is G-stable, and
so a well-defined action of ∆ on V N is induced. More explicitly, for any δ ∈ ∆, choose
a lift g ∈ G, and define δ · v = g · v. The action is well-defined, because two lifts differ
by an element n ∈ N , which fixes all v ∈ V N .

Now, suppose ∆ = 〈δ〉. Fix a basis for V N , and let ρ : ∆ → GL(V N ) be the
associated representation. Because δ`−1 = e, we know that the matrix A = ρ(δ)
satisfies A`−1 = I. Consequently, the minimal polynomial for A splits completely
over F`, and so A has an eigenvector w with some eigenvalue λ ∈ F×` . Choose
0 ≤ k1 ≤ ` − 2 so that χ̄k1(δ) = λ. Hence, ∆ fixes the subspace W = 〈w〉, and acts
via χ̄k1 on W : δi · w = λiw = χ̄k1(δi)w.

Since W ⊆ V N , χk1 actually gives the action of G on W , and so W is G-stable.
Hence, there is an induced G-action on the quotient space V ′ = V/W , which has
dimension d− 1. By the induction hypothesis, there is a filtration

(2) {0} = V ′0 ⊂ V ′1 ⊂ · · · ⊂ V ′d−1 = V ′

such that G acts on each quotient V ′i /V
′
i−1 via χk′i . Let π : V → V ′ be the natural

projection, and define V0 = {0}, Vi := π−1(V ′i−1). Because W is G-stable, π is
G-equivariant. In particular, Vi is G-stable.

We know G acts via a power of χ on V1 = W . Let i ≥ 2. Then, for any g ∈ G,
v ∈ Vi, we see that

π(g · v) = g · π(v)

= χk′i−1(g) · π(v) + v′ v′ ∈ V ′i−2

= π
(
χk′i−1(g) · v + v∗

)
,

(3)

where v∗ ∈ Vi−1 is such that π(v∗) = v′. Hence, there exists w ∈W such that

(4) g · v = χk′i−1(g) · v + v∗ + w.

Since v∗ +w ∈ Vi−1, we see G acts on Vi/Vi−1 via χk′i−1 . This completes the proof of
the lemma (letting ki = k′i−1 for i ≥ 2). �

3. Applying the Lemma

Proof of Theorem 2. We want to show that the set A (Q, 1) is finite. First, recall that
for any `, A (Q, 1, `) must be finite, since any element of the set is represented by an
E with good reduction away from `. Hence, it is enough to demonstrate a bound for
all ` appearing in a pair ([E], `) ∈ A (Q, 1).

Let ([E], `) ∈ A (Q, 1). Since the `-power torsion of E is rational over Λ`, the group
G = Gal(Λ`/Q) acts on the F`-vector space E[`]. By Lemma 3, the representation of
this action

(5) ρE,` : G −→ Aut(E[`]) ∼= GL2(F`)

must have the form

(6) ρE,` =
(
χi ∗
0 χ1−i

)
,
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where χ : G → F×` is the `-cyclotomic character mod ` (The powers of χ on the
diagonal are determined by the condition det ρE,` = χ). Hence, E[`] has a G-stable
subspace C of dimension 1, corresponding to the space 〈

(
1
0

)
〉 ⊂ F2

` . Of course, C is
therefore a (cyclic) subgroup of order ` of E which is rational over Q.

Recall that Y0(N) denotes the moduli space (over Z[1/N ]) for isomorphism classes
of pairs (E′, C ′), where E′ is an elliptic curve, and C ′ is a cyclic subgroup of E′ of
order N . A point of Y0(N) corresponding to a class [(E′, C ′)] is defined over a field k
if and only if both E′ and C ′ are defined over k.

So the pair (E,C) corresponds to a point in the set Y0(`)(Q). However, Mazur [7]
has proven that for sufficiently large `, Y0(`)(Q) = ∅. More precisely, Y0(`)(Q) 6= ∅
if and only if

` ∈ {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}.
(We call this the exceptional set of primes.) Thus, the set A (Q, 1) is finite. �

In the proof, our restriction to the field Q is due to the fact that Mazur’s result
is not known for general number fields. However, let K be any quadratic number
field other than one of the nine quadratic imaginary fields of class number one. Then
Momose [8, Thm. B] has shown that there are only finitely many primes ` for which
Y0(`)(K) 6= ∅. Hence, we also have:

Theorem 4. Let K be a quadratic number field other than the imaginary quadratic
fields of class number one. Then the set A (K, 1) is finite.

Proof. The argument is essentially the same as for Theorem 2, replacing the group
Gal(Λ`/Q) with Gal(K̃`/K). The only concern is the application of Lemma 3. If
K ⊆ Q(µ`), then the group ∆ = Gal(K(µ`)/K) 6∼= F×` , violating a hypothesis of
Lemma 3. However, this concerns at most one prime `0. Because A (K, 1, `0) is
certainly finite, it follows that A (K, 1) is finite also. �

In the proof of Theorem 2, we have shown that ([E], `) ∈ A (Q, 1) implies E has
good reduction away from ` and that E has a rational `-isogeny (corresponding to
the rational cyclic subgroup of order `). The converse also holds, and we finish the
section with a proof of this fact. We will need this in the next section to determine
the set A (Q, 1) precisely.

Proposition 5. Let E be an elliptic curve defined over Q, and let ` be a prime
number. If E has good reduction away from ` and possesses a Q-rational `-isogeny,
then Q(E[`∞]) ⊆ Λ`.

Proof. From the assumption that E is good away from `, we know that Q(E[`∞])
is unramified away from `, and is a pro-` extension of Q(E[`]). Hence, it suffices to
show that the extension Q(E[`])/Q(µ`) has degree a power of `. Denote by G◦ the
group Gal

(
Q(E[`])/Q(µ`)

)
.

Choose P ∈ E[`] so that 〈P 〉 is the kernel of the rational `-isogeny. As a set, 〈P 〉
is defined over Q. Choose Q ∈ E[`] so that {P,Q} is a basis for E[`]. Relative to this
basis, the Galois representation on E[`], ρE,`, is upper-triangular. Hence, there exists
a multiplicative character ψ : GQ → F×` such that ρE,` has the form(

ψ ∗
0 χ · ψ−1

)
.
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The form of the lower right entry is again forced by the determinant condition. Of
course, ψ factors through Gab

Q '
∏

p Z×p (viewed as a product of inertia groups). The
assumptions on E guarantee that ρE,` is unramified at all p 6= `, and so the same
holds for ψ. For p 6= ` the image of inertia at p must be trivial, and so ψ must
factor through Z×` ' F×` × (1 + `Z`). However, the second component is pro-`, so
ψ must further factor through F×` ! Any such character is necessarily a power of χ.
Consequently, the form of ρE,` must be(

χi ∗
0 χ1−i

)
.

Further, ρE,` is injective on Gal(Q(E[`])/Q), and so is still injective on the subgroup
G◦. But if σ ∈ G◦, then χ(σ) = 1, because σ fixes Q(µ`). So ρE,`(G◦) must be
contained in the `-group {(

1 λ
0 1

)
: λ ∈ F`

}
.

Thus, #G◦ divides `, and it follows that Q(E[`∞]) ⊆ Λ`. �

4. Analysis of A (Q, 1)

We now turn to the task of identifying precisely the set A (Q, 1). Let S denote the
finite set of Q-isomorphism classes of elliptic curves over Q which have good reduction
away from exactly one prime in the exceptional set of primes. Of course, the curves
representing classes in S are already known – for example, they are given explicitly
in Cremona’s tables [3].

Note that for any element ([E], `) ∈ A (Q, 1), ` is determined by [E], as ` must
be the unique prime dividing the conductor of E. Hence, we will abuse the notation
A (Q, 1) and consider it as just a set of isomorphism classes of elliptic curves. In this
sense, it follows that A (Q, 1) ⊆ S by the results of the previous section.

Let ϕ : C1 → C2 be a non-constant morphism between projective smooth curves
defined over Q. Then there is a natural inclusion of the `-adic Tate modules of the
associated Jacobian varieties T`J2 ↪→ T`J1 (Ji := Jac(Ci)) as Galois modules, and
so we have the containment Q(J2[`∞]) ⊆ Q(J1[`∞]). Consequently, if [E] lies in the
set A (Q, 1), then so do all classes [E′] for curves E′ which are Q-isogenous to E.
Hence, it is only necessary to decide membership in A (Q, 1) for one curve in each
Q-isogeny class. Following Cremona’s notation for such classes, we note that S is the
union of the classes in Table 1. We will find A (Q, 1) by computing its complement
inside S . Let E be an elliptic curve over Q with good reduction away from `, and
suppose E possesses an `-isogeny. Let p 6= ` be another prime number, and let Frp

denote the Frobenius element satisfying Frp(ζ) = ζp for any primitive ζ ∈ µ`. Then
χ(Frp) ≡ p (mod `). Hence, there exists an integer 0 ≤ i ≤ ` − 2, such that for all
p 6= `

(7) ρE,`(Frp) =
(
pi ∗
0 p1−i

)
.

Recall that for each prime we define the integer ap by

(8) #E(Fp) = 1 + p− ap,
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` Q-isogeny classes in S

2 32a, 64a, 128a, 128b, 128c, 128d, 256a, 256b, 256c, 256d
3 27a, 243a, 243b
5 none
7 49a

11 11a, 121a, 121b, 121c, 121d
13 none
17 17a, 289a
19 19a, 361a, 361b
37 37a, 37b, 1369a, 1369b, 1369c, 1369d, 1369e, 1369f
43 43a, 1849a, 1849b, 1849c, 1849d
67 67a, 4489a, 4489b

163 163a, 26569a, 26569b

Table 1. Isogeny classes in S .

which is known to give the trace of the image of ρE,` on the Frp. Consequently, for
all p 6= `:

(9) pi + p1−i ≡ ap (mod `).

Now, let [E] ∈ S . We have [E] ∈ A (Q, 1) only if there exists a fixed number i, for
which (9) holds for all p 6= ` (otherwise E cannot possess an `-isogeny). For most of
the isogeny classes in S , a computer search easily finds a prime p 6= ` for which (9)
fails for every i. Hence, these classes cannot belong to A (Q, 1).

One expects that the remaining classes in S do possess an `-isogeny, and this is
indeed the case. Stein [13] has produced a probable list of all isogenies among elliptic
curves over Q with small conductor N < 40000 – this extends the list for N < 200
provided in [2]. By ‘probable,’ it is meant that it is possible (though unlikely) that
there exist Q-isogenies not appearing on the list. It does not matter here; Stein’s
list verifies existence of an `-isogeny for each remaining class in S . This proves the
following result.

Proposition 6. The set A (Q, 1) consists precisely of the 50 Q-isomorphism classes
spanned by the 21 Q-isogeny classes listed in Table 2.

Most of the classes in A (Q, 1) have complex multiplication over a quadratic ex-
tension F ⊂ Q(µ`∞). If ` > 2, F = Q(

√
−`). The only classes without complex

multiplication occur when ` = 2 or ` = 11. Those exceptions are set in boldface in
Table 2.

5. Containment in Ω`.

We conclude with a brief argument showing that most of the classes in A (Q, 1)
have `-power torsion rational over the possibly smaller field Ω`. This has already
been proven for ` ≤ 3 in [10], [9]. For the remainder, suppose ` > 3 is a prime in the
exceptional set.
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` Q-isogeny classes in A (Q, 1, `)
2 32 a, 64 a, 128 a, 128 b, 128 c, 128 d, 256 a, 256 b, 256 c, 256 d
3 27 a, 243 a, 243 b
7 49 a

11 121 a, 121 b, 121 c
19 361 a
43 1849 a
67 4489 a

163 26569 a

Table 2. Isogeny classes in A (Q, 1).

As in [6], set K := Q(µ`∞), and let L be the maximal abelian pro-` extension of K
unramified away from `. Set

(10) S :=
{

(1− ζ)1/`n

: n ≥ 1, ζ ∈ µ`∞ , ζ 6= 1
}
,

and let L̃ = K(S). Then by definition K ⊂ L̃ ⊆ L ⊂ Λ`. By explicit construction
(see [1]), one has L̃ ⊂ Ω`.

Set G := Gal(L/K). As an abelian pro-` group, G is naturally a Z`-module. Let c
denote the automorphism of complex conjugation, or its restriction to any appropriate
field. Then conjugation-by-c gives an automorphism of G, under which G decomposes
into a direct sum G+ ⊕ G−, where G± := {σ ∈ G : cσc = σ±1}. Let L± denote the
subfields of L fixed by G∓, respectively. For all ` in the exceptional set, the Vandiver
conjecture is known to hold, and as a consequence L− = L̃. ([6, pg. 248]).

Let E be an elliptic curve representing a class in A (Q, 1). With only two excep-
tions, E has complex multiplication over the field F = Q(

√
−`). Therefore, the field

T := Q(E[`∞]) is an abelian pro-` extension of F (hence of K), and we have T ⊂ L.
Define T± := L± ∩ T .

Proposition 7. Assuming E has complex multiplication over F , T− = T .

Proof. It is enough to prove that T+ = K, or equivalently, that Gal(T+/Q) is abelian.
We of course have an exact sequence

1 // A := Gal(T+/F ) // H := Gal(T+/Q) // B := Gal(F/Q) // 1 ,

which is split by the homomorphism c|F 7→ c|T+ . Because T+ ⊂ L+, we know c
commutes with any σ ∈ A. We claim A is contained in the center of H. Fix α ∈ A,
and choose σ ∈ H. If σ|F = idF , then σ ∈ A, which is abelian, and so σ commutes
with α. Otherwise, σ|F = c|F , and so (σc)|F = idF . Therefore, σc ∈ A by definition.
We have σα = σ(cαc) = α(σc)c = ασ, and so A ⊂ Z(H). Thus, H is a split central
extension by the abelian groups A and B, and hence H is also abelian. This means
T+/Q is an abelian extension, which implies T+ = K and T = T− ⊂ L−. �

Corollary 8. With at most two exceptions (i.e., 121a and 121c in Table 2), an elliptic
curve E representing a class in A (Q, 1) satisfies Q(E[`∞]) ⊂ Ω`.
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It is desirable to resolve the situation for the remaining two classes (E: 121a,
121c). In the (very unlikely) case that Q(E[11∞]) 6⊂ Ω11, this gives a counterexample
to Deligne’s conjecture at ` = 11 ([12, Theorem 1.1]). More likely, the field gives an
explicit example of an infinite non-abelian subextension of Ω11/K.
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(1983), no. 3, 349–366.
[5] Y. Ihara, Profinite braid groups, Galois representations and complex multiplications, Ann. of

Math. (2) 123 (1986), no. 1, 43–106.
[6] ———, Some arithmetic aspects of Galois actions in the pro-p fundamental group of P1 −

{0, 1,∞}, in Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999),

Vol. 70 of Proc. Sympos. Pure Math., 247–273, Amer. Math. Soc., Providence, RI (2002).
[7] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math.

44 (1978), no. 2, 129–162.

[8] F. Momose, Isogenies of prime degree over number fields, Compositio Math. 97 (1995), no. 3,
329–348.

[9] M. Papanikolas and C. Rasmussen, On the torsion of Jacobians of principal modular curves of

level 3n, Arch. Math. (Basel) 88 (2007), no. 1, 19–28.
[10] C. Rasmussen, On the fields of 2-power torsion of certain elliptic curves, Math. Res. Lett. 11

(2004), no. 4, 529–538.

[11] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968) 492–517.
[12] R. T. Sharifi, Relationships between conjectures on the structure of pro-p Galois groups unram-

ified outside p, in Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA,
1999), Vol. 70 of Proc. Sympos. Pure Math., 275–284, Amer. Math. Soc., Providence, RI (2002).

[13] W. Stein, Isogeny Matrix Table (2005). URL: http://modular.math.washington.edu

/Tables/allisog/.

Wesleyan University, Middletown, CT, 06459, USA
E-mail address: crasmussen@wesleyan.edu

Research Institute for Mathematical Sciences, Kyoto 606–8502, JAPAN
E-mail address: tamagawa@kurims.kyoto-u.ac.jp


