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ON THE UNIVERSAL GRÖBNER BASES OF VARIETIES OF
MINIMAL DEGREE

Sonja Petrović

Abstract. A universal Gröbner basis of an ideal is the union of all its reduced Gröbner

bases. It is contained in the Graver basis, the set of all primitive elements. Obtaining
an explicit description of either of these sets, or even a sharp degree bound for their

elements, is a nontrivial task.

In their ’95 paper, Graham, Diaconis and Sturmfels give a nice combinatorial description
of the Graver basis for any rational normal curve in terms of primitive partition identities.

Their result is extended here to rational normal scrolls. The description of the Graver

bases of scrolls is given in terms of colored partition identities. This leads to a sharp
bound on the degree of Graver basis elements, which is always attained by a circuit.

Finally, for any variety obtained from a scroll by a sequence of projections to some of

the coordinate hyperplanes, the degree of any element in any reduced Gröbner basis is
bounded by the degree of the variety.

1. Introduction

Fix a subset A = {a1, . . . , an} of Zd. The set A determines a toric ideal in the
following way. Every vector u ∈ Zn can be written uniquely as u = u+−u− where u+

and u− are nonnegative and have disjoint support. Considering A as a d× n matrix
induces a parametrization of a variety X := XA whose defining ideal is the toric ideal
IA := (xu+ − xu− : Au = 0) in the polynomial ring k[x] := k[x1, . . . , xn]. We may
write IX for IA. A standard reference on toric ideals is [10].

Given any term order ≺ on the monomials of k[x], the initial ideal of IA is defined
to be in≺(IA) := (in≺(f) : f ∈ IA). Any generating set G≺ of the ideal such that
in≺(IA) = (in≺(g) : g ∈ G≺) is called a Gröbner basis. If G≺ is reduced , that is, no
term of g is divisible by in≺(f) for any f, g ∈ G≺, then G≺ is uniquely determined by
the term order ≺. For applications of Gröbner bases, see [9] and [10].

The union of the (finitely many) reduced Gröbner bases of IA is called the universal
Gröbner basis and denoted UA. It is contained in the set of primitive binomials called
the Graver basis GrA of IA; a binomial xu+ − xu− ∈ IA is called primitive if there is
no xv+ −xv− ∈ IA such that xv+ |xu+

and xv− |xu− . A set of primitive binomials with
minimal support is the set CA of circuits of the ideal. It is known that CA ⊂ UA ⊂ GrA.
In general, both containments are proper.

There exists a general bound on the degrees of the elements of the universal Gröbner
basis ([10]), however it is far too large for many specific examples. One might expect
the sharp bound to be smaller for varieties that are special in some sense.

Rational normal scrolls are examples of varieties of minimal degree, that is, the
varieties which attain the general lower bound deg(X) ≥ codim(X) + 1. They have
been classified ([5]) as quadratic hypersurfaces, rational normal scrolls, the Veronese
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surface in P5, and cones over these. The scrolls are the only infinite family among
these. Their defining ideals have the following special property:

Theorem 1.1 (Corollary 4.4). The degree of any binomial in the Graver basis (and
the universal Gröbner basis) of any rational normal scroll is bounded above by the
degree of the scroll.

We also derive a sharp bound (Theorem 4.1), which is usually much smaller than
the degree of the scroll.

Another remarkable property of the defining ideals of rational normal scrolls is that
their Graver bases admit a particularly nice combinatorial description. Namely, each
primitive element in the ideal of a scroll corresponds to a suitable primitive colored
partition identity . Such a characterization of primitive elements imposes a restriction
on the structure of any binomial in the universal Gröbner bases of scrolls.

The paper is organized as follows. Section 2 contains the necessary information
about the defining ideals of rational normal scrolls. In Section 3 we introduce col-
ored partition identities and use them to characterize the Graver bases of the scrolls
(Proposition 3.8), generalizing the result for rational normal curves in [7]. Section 4
contains the degree bounds. An important consequence of the sharp bound in Theo-
rem 4.1 is that if X is any variety that can be obtained from a scroll by a sequence
of projections to some of the coordinate hyperplanes, then the degree of the variety
gives an upper bound on the degrees of elements in the universal Gröbner basis of its
defining ideal IX . In the final section, we conjecture that the universal Gröbner basis
equals the Graver basis for any scroll, and discuss its consequences. We also derive
the dimension of the state polytopes of scrolls.

2. Parametrization of Scrolls

Let S := S(n1 − 1, . . . , nc − 1) be the rational normal scroll in Pn1+···+nc−1. Its
defining ideal is given by I2M , where

M := [Mn1 |Mn2 | . . . |Mnc
], and Mnj

:=
[
xj,1 . . . xj,nj−1

xj,2 . . . xj,nj

]
.

If c = 1, then the 2-minors of the matrix above give the defining ideal of a rational
normal curve S(n− 1) in Pn−1 ([5]).

Lemma 2.1. IS = kerϕ, where ϕ(xj,i) = [v1
1 , . . . , v1

j , v0
j+1, . . . , v

0
c , ti]T for 1 ≤ j ≤ c.

That is, the matrix A that encodes the parametrization of the scroll S is

A =


1 . . . 1 1 . . . 1 . . . 1 . . . 1
0 . . . 0 1 . . . 1 . . . 1 . . . 1
...

...
0 . . . 0 0 . . . 0 . . . 1 . . . 1
1 2 . . . n1 1 . . . n2 . . . 1 . . . nc

 .

Proof. Indeed, let the generators of IS be the minors

mi,j,k,l := xi,kxj,l+1 − xj,lxi,k+1
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for 1 ≤ i, j ≤ c, 1 ≤ k ≤ ni − 1, and 1 ≤ l ≤ nj − 1. (Note that we allow i = j and
k = l.) Then the exponent vector of mi,j,k,l is

vi,j,k,l = [0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0]

where the positive entries are in columns n1 + · · ·+ni−1 +k and n1 + · · ·+nj−1 + l+1,
while the negative entries are in columns n1 + · · ·+nj−1 + l and n1 + · · ·+ni−1 +k+1.
(If i = j and k = l, then the two locations for the negative entries coincide; in that
case, the negative entry is −2.) Denote by Ac the cth column of A. Then clearly

An1+···+ni−1+k +An1+···+nj−1+l+1 = An1+···+nj−1+l +An1+···+ni−1+k+1

since 

1
...
...
1
0
...
0
k


+



1
...
1
0
...
...
0

l + 1


=



1
...
...
1
0
...
0

k + 1


+



1
...
1
0
...
...
0
l


.

Thus mi,j,k,l ∈ IA for each generator mi,j,k,l of IS .
In addition, the matrix A has full rank; thus the dimension of the variety it

parametrizes is rankA − 1 = c. But this is precisely the dimension of the scroll
S. �

Example 2.2. The ideal of the scroll S(3, 2) is IAS(3,2) where

AS(3,2) =

1 1 1 1 1 1 1
0 0 0 0 1 1 1
1 2 3 4 1 2 3

 .

3. Colored partition identities and Graver bases

Let us begin by generalizing the definitions from Chapter 6 of [10].

Definition 3.1. A colored partition identity (or a cpi) in the colors (1),. . . ,(c)
is an identity of the form

a1,1 + · · ·+ a1,k1 + a2,1 + · · ·+ a2,k2+ · · ·+ ac,1 + · · ·+ ac,kc =

b1,1 + · · ·+ b1,s1 + b2,1 + · · ·+ b2,s2+ · · ·+ bc,1 + · · ·+ bc,sc ,(*)

where 1 ≤ ap,j , bp,j ≤ np are positive integers for all j, 1 ≤ p ≤ c and some positive
integers n1, . . . , nc.

If c = 1 then this is precisely the definition of the usual partition identity with
n = n1.

Remark 3.2. A cpi in c colors with n1, . . . , nc as above is a partition identity (in
one color) with largest part n = max{n1, . . . , nc}.
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Example 3.3. Denote by ir the number i colored red, and by ib the number i colored
blue. Then

1r + 4r + 3b = 5b + 1b + 2r

is a colored partition identity with two colors, with n1 = 4 and n2 = 5. Erasing the
coloring gives 1 + 4 + 3 = 5 + 1 + 2, a (usual) partition identity with largest part
n = 5.

Definition 3.4. A colored partition identity (*) is a primitive cpi (or a pcpi) if
there is no proper sub-identity a−,i1 + · · ·+a−,il

= b−,j1 + · · ·+ b−,jt
, with 1 ≤ l+ t <

k1 + · · ·+ kc + s1 + · · ·+ sc, which is a cpi.
A cpi is called homogeneous if k1 + · · · + kc = s1 + · · · + sc. If kj = sj for

1 ≤ j ≤ c, then it is called color-homogeneous. The degree of a pcpi is the
number of summands k1 + · · ·+ kc + s1 + · · ·+ sc.

Note that color-homogeneity implies homogeneity, and that a homogeneous pcpi
need not be primitive in the inhomogeneous sense.

Example 3.5. Here is a list of all primitive color-homogeneous partition identities
with c = 2 colors and n1 = n2 = 3.

11 + 31 = 21 + 21

11 + 22 = 21 + 12

11 + 11 + 32 = 21 + 21 + 12

11 + 32 = 21 + 22

21 + 32 = 31 + 22

21 + 22 = 31 + 12

11 + 32 = 31 + 12

12 + 32 = 22 + 22

11 + 32 + 32 = 31 + 22 + 22

11 + 22 + 22 = 31 + 12 + 12

21 + 21 + 32 = 31 + 31 + 12

We are now ready to relate the ideals of scrolls and the colored partition identities.

Lemma 3.6. A binomial x1,a1,1 . . . x1,a1,k1
. . . xc,ac,1 . . . xc,ac,kc

− x1,b1,1 . . . xc,bc,sc
is

in the ideal IAS(n1−1,...,nc−1) if and only if (*) is a color-homogeneous cpi.

Proof. This follows easily from the definitions and Lemma 2.1. �

Example 3.7. Let c = 2. Then

A := AS(n1−1,n2−1) =

1 . . . 1 1 . . . 1
0 . . . 0 1 . . . 1
1 . . . n1 1 . . . n2


and

IA = I2

[
x1,1 . . . x1,n1−1 x2,1 . . . x2,n2−1

x1,2 . . . x1,n1 x2,2 . . . x2,n2

]
.



GRÖBNER BASES OF SCROLLS 1215

Then x1,a1,1 . . . x1,a1,k1
x2,a2,1 . . . x2,a2,k2

−x1,b1,1 . . . x1,b1,s1
x2,b2,1 . . . x2,b2,s2

∈ IA if and
only if  vk1+k2

1

v0+k2
2

ta1,1+···+a2,k2

 =

 vs1+s2
1

v0+s2
2

tb1,1+···+b2,s2


if and only if k1 + k2 = s1 + s2, k2 = s2, and

a1,1 + · · ·+ a1,k1 + a2,1 + · · ·+ a2,k2 = b1,1 + · · ·+ b1,s1 + b2,1 + · · ·+ b2,s2 .

The last equality clearly describes a color-homogeneous pcpi.

The Lemmas above imply the following characterization of the Graver bases of
rational normal scrolls.

Proposition 3.8. The Graver basis elements for the scroll S(n1 − 1, . . . , nc − 1) are
precisely the color-homogeneous primitive colored partition identities of the form (*).

Proof. With all the tools in hand, it is not difficult to check that the binomial in
the ideal of the scroll is primitive if and only if the corresponding colored partition
identity is primitive. �

If c = 1, this is just the observation in Chapter 6 of [10].

4. Degree bounds

Now we can generalize the degree bound given in [10] for the rational normal curves.
The degree bound is sharp, and it is remarkable that it is always attained by a circuit.
By a subscroll of S(n1 − 1, . . . , nc − 1) we mean a scroll S′ := S(n′1 − 1, . . . , n′c − 1)
such that n′i ≤ ni for each i. Clearly, IS′ can be obtained from IS by eliminating
variables.

Theorem 4.1. Let S := S(n1 − 1, . . . , nc − 1) for c ≥ 2. Let P and Q be the indices
such that

nP = max{ni : 1 ≤ i ≤ c}
and

nQ = max{nj : 1 ≤ j ≤ c, j 6= P}.
Then the degree of any primitive binomial in IS is bounded above by

nP + nQ − 2.

This bound is sharp exactly when nP − 1 and nQ − 1 are relatively prime.
More precisely, the primitive binomials in IS have degree at most

u + v − 2,

where u and v are maximal integers such that S(n′1 − 1, . . . , n′c − 1) is a subscroll of
S with n′i = u and n′j = v for some 1 ≤ i, j ≤ c, and subject to (u− 1, v − 1) = 1.

This degree bound is sharp; there is always a circuit having this degree. For any
number of colors c, such a maximal degree circuit is two-colored.

Before proving the Theorem, let us look at an example.
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Example 4.2. Consider the scroll S(5, 6). Here nP − 1 = 6 and nQ − 1 = 5, and
since they are relatively prime, the sharp degree bound is 5 + 6 = 11. On the other
hand, if S := S(4, 4, 2, 2), then nP − 1 = nQ − 1 = 4 so we look for a subscroll
S′ := S(4, 3, 2, 2). Then u − 1 = 4 and v − 1 = 3, and the degree of any primitive
element is at most 7. Finally, if S := S(5, 5, 5), then nP −1 = nQ−1 = 5. The desired
subscroll is S′ := S(5, 4, 4) so that the degree bound is u− 1 + v − 1 = 5 + 4 = 9.

Proof of Theorem 4.1. Let x1,a1,1 . . . xc,ac,kc
− x1,b1,1 . . . xc,bc,kc

∈ IS . Consider the
corresponding color-homogeneous pcpi:

a1,1 + · · ·+ a1,k1 + a2,1 + · · ·+ a2,k2+ · · ·+ ac,1 + · · ·+ ac,kc
=

b1,1 + · · ·+ b1,k1 + b2,1 + · · ·+ b2,k2+ · · ·+ bc,1 + · · ·+ bc,kc
.(**)

Note that the number of terms on either side of (**) equals the degree of the binomial.
We shall first show that k1 + · · ·+ kc ≤ nP + nQ − 2 holds for (**).

Let di,j = ai,j − bi,j be the differences in the ith-color entries for 1 ≤ j ≤ ki,
1 ≤ i ≤ c. Then ∑

1≤i≤c
1≤j≤ki

di,j = 0.

Separating positive and negative terms gives an inhomogeneous pcpi
∑

d+
i,j =

∑
d−i,j .

Indeed, if it is not primitive then there would be a subidentity in (**). Note that
an inhomogeneous pcpi is defined to be a ppi with arbitrary coloring. Therefore, the
sum-difference algorithm from the proof of Theorem 6.1. in [10] can be applied. For
completeness, let us recall the algorithm.

Set x := 0, P := {d+
i,j}, N := {d−i,j}.

While P ∪N is non-empty do
if x ≥ 0

then select an element ν ∈ N, set x := x− ν and N := N\{ν}
else select an element π ∈ P, set x := x + π and P := P\{π}.

The number of terms in the pcpi is bounded above by the number of values x can
obtain during the run of the algorithm. Primitivity ensures no value is reached twice.
Let

Di,+ := max
j
{di,j : di,j > 0}

and
Di,− := max

j
{−di,j : di,j < 0}.

Then k1 + · · ·+ kc ≤ maxi{Di,+}+ maxi{Di,−} =: D+ + D− (Corollary 6.2 in [10]).
Let D+ and D− occur in colors P and Q, respectively, so that D+ = aP − bP , and
D− = bQ − aQ. Then the sequence of inequalities

1+D++1 ≤ 1+D++bP = 1+aP ≤ 1+nP ≤ aQ+nP = bQ−D−+nP ≤ nQ−D−+nP

implies that
D+ + D− ≤ nP + nQ − 2,

and the degree bound follows.
The maximum degree occurs when there is equality in the above sequence of in-

equalities, and x reaches every possible value during the run of the algorithm. Fol-
lowing the argument of Sturmfels from the proof of Theorem 6.1. in [10], this means



GRÖBNER BASES OF SCROLLS 1217

that the inhomogeneous pcpi
∑

di,j = 0 is of the form

D+ + · · ·+ D+︸ ︷︷ ︸
D− terms

= D− + . . . D−︸ ︷︷ ︸
D+ terms

.

In addition,

1+D++1 = 1+D++bP = 1+aP = 1+nP = aQ+nP = bQ−D−+nP = nQ−D−+nP

implies that bP = 1, aP = nP , aQ = 1, and bQ = nQ. Therefore, the maximal degree
identity

∑
di,j = 0 provides that (**) is of the following form:

1P + · · ·+ 1P︸ ︷︷ ︸
nQ−1 terms

+nQ + · · ·+ nQ︸ ︷︷ ︸
nP−1 terms

= 1Q + · · ·+ 1Q︸ ︷︷ ︸
nP−1 terms

+nP + · · ·+ nP︸ ︷︷ ︸
nQ−1 terms

,

where 1P denotes the number 1 colored using the color P . This colored partition
identity is primitive if and only if there does not exist a proper subidentity if and only
if nP − 1 and nQ − 1 are relatively prime. Indeed, if nP − 1 = zy and nQ − 1 = zw
for some z, y, w ∈ N, then there is a subidentity of the form

1P + · · ·+ 1P︸ ︷︷ ︸
w terms

+nQ + · · ·+ nQ︸ ︷︷ ︸
y terms

= 1Q + · · ·+ 1Q︸ ︷︷ ︸
y terms

+nP + · · ·+ nP︸ ︷︷ ︸
w terms

.

Furthermore, assume that nP −1 and nQ−1 are relatively prime. Then the exponent
vector of the binomial corresponding to the maximal degree identity has support of
cardinality four. It is thus a circuit for any c ≥ 2. Clearly, it is a two-colored circuit,
regardless of the number of colors c in our scroll S.

Finally, if nP −1 and nQ−1 are not relatively prime, the degree nQ+nP −2 cannot
be attained by a primitive binomial. In that case, we may simply eliminate one of the
variables to obtain a smaller scroll, say S′ := S(n1− 1, . . . , nP − 2, . . . , nc− 1), whose
defining ideal is embedded in that of S (that is, u := nP − 1 and v := nQ). Clearly,
primitive binomials from IS′ lie in IS . If u− 1 and v− 1 are relatively prime, then we
have the smaller bound for the degree: nP + nQ − 3. If not, we continue eliminating
variables until the condition is satisfied.

This completes the proof. �

Remark 4.3. In view of the comment on p.36 of [10], it is interesting to note that
in the case of varieties of minimal degree, the maximum degree of any Graver basis
element is attained by a circuit. This is not true in general.

Now the following is trivial.

Corollary 4.4. The degree of any binomial in the Graver basis (and the universal
Gröbner basis) of any rational normal scroll is bounded above by the degree of the
scroll.

In addition, this also gives the upper bound for the degrees of any element in the
universal Gröbner basis of any variety whose parametrization can be embedded into
that of a scroll, generalizing Corollary (6.5) from [10].

Corollary 4.5. Let X be any toric variety that can be obtained from a scroll by a
sequence of projections to some of the coordinate hyperplanes. Then the degree of an
element of any reduced Gröbner basis of IX is at most the degree of the toric variety
X.
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Proof. The claim follows from degree-preserving coordinate projections and the elim-
ination property of the universal Gröbner basis. The variety X = XA is parametrized
by

A =


1 . . . 1 1 . . . 1 . . . 1 . . . 1
0 . . . 0 1 . . . 1 . . . 1 . . . 1
...

...
0 . . . 0 0 . . . 0 . . . 1 . . . 1

i1,1 i1,2 . . . i1,r1 i2,1 . . . i2,r2 . . . ic,1 . . . ic,rc


In what follows, we may assume that 1 = ik,1 < · · · < ik,rk

= nk for 1 ≤ k ≤ c. Then
X can be obtained by coordinate projections from the scroll S := S(n1−1, . . . , nc−1),
parametrized by AS as before. The degree of the toric variety XA is the normalized
volume of the polytope formed by taking the convex hull of the columns of A. But
vol(conv(A)) = vol(conv(AS)) implies that the two varieties have the same degree.

Suppose xu − xv is in some reduced Gröbner basis of IX . Then Proposition 4.13.
and Lemma 4.6. in [10] provide that xu − xv ∈ UA ⊂ UAS

⊂ GrAS
. Applying

Corollary 4.4 completes the proof. �

Remark 4.6. In particular, note that this degree bound (which equals the degree of
the scroll, n1 + · · ·+nc− c) is always better then the general one given for toric ideals
in [10], Corollary 4.15, which equals 1/2(c+2)(n1 + · · ·+nc−c−1)D(A) where D(A)
is the maximum over all (c + 1)-minors of A.

Let us conclude this section by listing the number of all elements in the Graver
basis of some small scrolls, sorted by degree of the binomial. The entries in this table
have been obtained using the software 4ti2 [1], which was essential in this project.

Degrees
Scroll 2 3 4 5 6 7 8 9 10 11
S(2,2) 7 4

S(2,2,2) 18 24
S(4) 7 7 2

S(3,2) 12 16 4 1
S(3,2,2) 26 58 22 4
S(3,3) 20 40 18 4

S(3,3,2,2) 59 242 208 36
S(4,2) 19 39 20 4
S(4,3) 30 86 58 15 2 1
S(4,4) 44 166 146 52 12 4

S(4,3,2,2) 75 391 524 176 6 1
S(5,2) 28 83 72 32 4 1
S(6,2) 40 157 182 95 28 4
S(5,3) 42 166 174 78 16 6 1
S(6,3) 57 290 412 210 62 14 2
S(7,2) 55 280 432 294 130 46 4 1

S(5,5,5) 204 2526 10002 10404 5088 1764 444 78
S(6,5) 105 813 1678 1136 454 149 42 12 2 1



GRÖBNER BASES OF SCROLLS 1219

5. Universal Gröbner bases

The Graver basis is a good approximation to the universal Gröbner basis, but they
are not equal in general. However, extensive computations using the software 4ti2
([1]) show evidence supporting the following conjecture:

Conjecture 5.1. UA = GrA for the defining matrix A of any rational normal scroll.

Note that the defining ideal of S := S(n1−1, . . . , nc−1) is contained in the defining
ideal of the scroll

S(n1 − 1, . . . , nc − 1, 1, . . . , 1︸ ︷︷ ︸
l terms

)

for any l. Define S′ to be any such scroll, where l is chosen so that the inequality

c + l + 3 > 2(nP + nQ − 2− j0)

is satisfied, where nP +nQ−2−j0 is the degree bound for the scroll S′ from Theorem
4.1. This puts a restriction on the size of the support of any primitive binomial. Let
f ∈ GrA. Then f ∈ IA′ where A′ := AS′ . The primitivity of f implies f ∈ GrA′ . If
the conjecture is true for the scroll S′, then f lies in the universal Gröbner basis of
the ideal IA′ , and hence in the universal Gröbner basis of IA.
Therefore, to prove this conjecture, it suffices to prove a weaker one:

Conjecture 5.2. UA = GrA for rational normal scrolls of sufficiently high dimension.

Recently, Hemmecke and Nairn in [6] stated that if the universal Gröbner basis
and Graver basis of IA coincide, then the Gröbner and Graver complexities of A are
equal. We plan to study the higher Lawrence configurations of the rational normal
scrolls.

Next, we consider state polytopes of rational normal scrolls. Knowing a universal
Gröbner basis of IA is equivalent to knowing its state polytope ([10]). It is defined to
be any polytope whose normal fan coincides with the Gröbner fan of the ideal. The
cones of the Gröbner fan correspond to the reduced Gröbner bases G≺ of IA. In addi-
tion, the Gröbner fan is a refinement of the secondary fan N (Σ(A)), which classifies
equivalence classes of lifting functions giving a particular regular triangulation of the
point configuration A.

Theorem 5.3. The dimension of the state polytope of a rational normal scroll is one
less then the degree of the scroll:

dimState(IS(n1−1,...,nc−1)) = n1 + · · ·+ nc − c− 1.

Proof. Eliminating variables results in taking faces of the state polytope. Thus the
state polytope for the scroll S(n1 − 1) is a face of that of S(n1 − 1, 1), which in turn
is a face of the state polytope of S(n1− 1, 2), etc. so that each time we add a column
to the parametrization matrix AS , the dimension of the state polytope grows by at
least one. The ideal of the scroll S(1, . . . , 1) is just the ideal of 2-minors of a generic
2 × c matrix. The minors form a universal Gröbner basis for the ideal which is a
reduced Gröbner basis of the ideal with respect to every term order. Hence, the state
polytope is a Minkowski sum of the Newton polytopes of the minors (Cor. 2.9. in
[10]), a permutohedron Π2,c ([2],[12]). Its dimension is c− 1.
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By induction,

dim State(S(n1 − 1, . . . , nc − 1)) ≥ n1 − 2 + n2 − 1 + · · ·+ nc − 1 =
∑

ni − c− 1.

On the other hand, the ideal of the scroll is homogeneous with respect to the
grading given by all the rows of AS . There are c + 1 independent rows, thus the
vertices of the state polytope lie in c + 1 hyperplanes, and the claim follows. �

Let us conclude with an example.

Example 5.4. Let S be the scroll S(5, 6). Its defining ideal IS is the ideal of 2-minors
of the matrix

M :=
[
x1 . . . x5 y1 . . . y6

x2 . . . x6 y2 . . . y7

]
.

The matrix A providing the parametrization of the scroll is

A =

1 1 . . . 1 1 . . . 1
0 0 . . . 0 1 . . . 1
1 2 . . . 6 1 . . . 7

 .

The number and degrees of elements in the universal Gröbner basis of the ideal
IA can be found in the Table of degrees. The primitive colored partition identity of
maximal degree is

11 + 11 + 11 + 11 + 11 + 11 + 72 + 72 + 72 + 72 + 72

= 12 + 12 + 12 + 12 + 12 + 61 + 61 + 61 + 61 + 61 + 61.

The corresponding binomial in the ideal IA is

x1
6y7

5 = y1
5x6

6.

The state polytope of the ideal IA is 10-dimensional.
There exist primitive elements that are not circuits. In fact, using [1], we can see

that there is a circuit in every degree from 2 to 11 except degree 10, but the number of
circuits in each degree is considerably smaller then the number of primitive binomials.

Acknowledgments

The author would like to thank Bernd Sturmfels for suggesting a generalization of
primitive partition identities, and my advisor, Uwe Nagel, for his continuous support
and guidance.

References

[1] 4ti2 team, 4ti2—A software package for algebraic, geometric and combinatorial problems on

linear spaces, Available at www.4ti2.de.
[2] D. Bernstein and A. Zelevinsky, Combinatorics of Maximal Minors, J. Algebraic Comb. 2

(1993), no. 2, 111–121.
[3] J. L. David Cox and D. O’Shea, Using Algebraic Geometry, Vol. 185 of Graduate Texts in

Mathematics, Springer-Verlag, Berlin (1995).

[4] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Vol. 150 of Graduate

Texts in Mathematics, Springer-Verlag, Berlin (1995).
[5] D. Eisenbud and J. Harris, On varieties of minimal degree (a centennial account), Proc. Sympos.

Pure Math. 46 (1987), no. Part 1, 3–13.
[6] R. Hemmecke and K. A. Nairn, On the Gröbner complexity of matrices (2007).
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