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IRREGULAR BALL-QUOTIENT SURFACES WITH
NON-POSITIVE KODAIRA DIMENSION

Aleksander Momot

Dedicated to Rolf-Peter Holzapfel on occasion of his retirement

Abstract. Let Γ ⊂ PU(2, 1) be a lattice. Γ then acts on the complex open unit ball
B ⊂ C2. Suppose that Γ is not cocompact and ‘sufficiently’ neat. Then there exists

a compactification X = Γ \B with the property that X is a smooth projective surface

and D = X \ (Γ\B) is a disjoint sum of elliptic curves. The main result is: kod(X) ≤ 0,
h1(OX) > 0 ⇔ X admits an abelian surface Y as minimal model, and Y carries a divisor

S =
P

Si which consists of elliptic curves such that 4 · |sing S| =
P
|Si ∩ sing S|.

1. Introduction

1.1. Motivation. Let U be a complex manifold which has the complex open unit-
ball B ⊂ C2 as universal holomorphic covering. If U is compact then it is of general
type. The situation changes if one considers surfaces X which are toroidal compactifi-
cations of non-compact unramified ball-quotients U ⊂ X. Then the compactification
divisor D = X \ U is a disjoint sum of elliptic curves and X may be of special type.
The article is concerned with this problem. It marks the beginning of a classification
of surfaces X = U ∪D by purely geometric methods. For simplicity, the class of such
surfaces will be denoted by T .

Recall that PU(2, 1) is identified with the group of holomorphic automorphisms of

B =
{
[x0 : x1 : x2] ∈ P2; |x0|2 + |x1|2 < |x2|2

}
in a natural way. Therefore, surfaces in T typically arise from the minimal singularity
resolution of Baily-Borel compactifications of ball-quotients U = Γ \B by neat sub-
groups Γ ⊂ PU(2, 1) which are arithmetic but not cocompact. Natural candidates are
subgroups Γ ⊂ PU(2, 1;OK) with K an imaginary quadratic field, and their quotients
serve as a natural pendant to Hilbert modular surfaces. More generally, however, any
discrete Γ ⊂ PU(2, 1) contains a neat subgroup of finite index inducing a surface
in T , provided that Γ \ B is not compact and admits a fundamental domain with
finite Bergman-volume. Hence, T forms in fact the class of ’generic’ compactified
ball-quotients.

The french mathematician E. Picard discovered the ball 125 years ago as co-domain
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of multivalued hypergeometric integrals and also noticed the analogy to the j-line
in the theory of elliptic functions (cf. [9]). Systematic research in this area was,
among others, started by Holzapfel. He called the surfaces, which arise from sub-
groups Γ ⊂ PU(2, 1;OK), Picard modular surfaces. Already in the middle of the
1980’s, Holzapfel was able to boast an amount of classification results for these special
ball-quotients. We refer to [4] and to the new book [8] for an overview and a bibliog-
raphy. These results, however, are based on an arithmetic theory of ball-lattices and
are proved using arithmetically defined lattice invariants. By way of contrast, the
fundamental work of Deligne-Mostow [2] shows that also non-arithmetic ball-lattices
should be considered. Moreover, even for the arithmetic case it is not clear to what
extent there are general obstructions for ball-quotient surfaces with respect to the
Enriques-Kodaira classification.

1.2. Statement and discussion of the main result. In the hypotheses of our
main theorem all complex surfaces are smooth and compact.

Theorem 1.1. Let Y be a relatively minimal surface with non-positive Kodaira di-
mension. Assume that Y is irregular, that is, h1(OY ) > 0. Then the following are
equivalent:

(1) Y is birationally dominated by a surface in T .
(2) Y is an abelian surface. It supports a reduced elliptic divisor S =

∑
Si

satisfying the proportionality condition

4|M | =
∑

si

where M = sing S is the set of singular points of the curve S and si = |Si∩M |.
If (2) holds then Y is isogenous to a product C×C of an elliptic curve C, and we have:
si > 0 for each i; sx = | {Si;x ∈ Si} | ≥ 3 for x ∈ M ; blowing up once along each
x ∈ M produces a surface in T with compactification divisor the proper transform of
S.

The proof relies on two steps. We will show that an X ∈ T with Kodaira dimension
kod(X) ≤ 0 admits only abelian minimal models or is regular. This assertion is
completely new. Then, up to the claim about si, sx (which results from Cor. 3.2 and
Lemma 3.3), the gap from the latter result to the stated theorem is closed by the
following criterion of Holzapfel [7, Thm. 2.5]:

Theorem 1.2 (Holzapfel). Let Y be an abelian surface admitting a reduced divisor
S =

∑
Si of elliptic curves. Let M = sing S be the set of singular point of S and

set si = |Si ∩M |. Then Y is the minimal model of an X ∈ T with compactification
divisor D the proper transform of S if and only if the porportionality condition

4|M | =
∑

si

holds with si > 0 for each i. More precisely, if the conditions are satisfied then X
results from blowing up once along each point x ∈ M and Y is isogenous to a product
C × C of an elliptic curve C.

The value of Thm. 1.1 and Thm. 1.2 arises from the following modular intepretation.
For m ≥ 2, the vector space [Γ,m] of Γ-modular forms of weight m ≥ 2 is naturally
identified with H0(X, m(KX + D)). Now, together with the surfaces X and Y , to
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a large extend the corresponding rings of automorphic forms can also be effectively
compared to each other. The automorphic forms belonging to a square C × C of an
elliptic curve C may be expressed by means of the classical theta function, and hence
the Γ-automorphic forms coming from the ball-lattice Γ corresponding to X may be
‘transferred’ into such ‘theta-expressions’. In [6], Holzapfel laid the foundation for
this approach by constructing ‘appropriate’ quotients of elliptic theta functions and
illustrated the advantages of such representations for the determination of X and the
ring of Γ-automorphic forms. In [5], he also calculated the dimension of [Γ,m] in the
abelian case. The proof given there readily extends to the general case. To be more
precise, we have

dimC[Γ,m] =
3
2
m(m− 1)e(X) + χ(X) + hX (m ≥ 2)

where e(X) is the topological Euler number, χ(X) =
∑

(−1)ihi(X,OX) and hX is
the number of components of the compactification divisor D.

However, it is known that ‘most’ surfaces in T are of general type. The log pair
(X, D) is logarithmically of general type, i.e. kod(X, KX + D) = 2. Thus our struc-
ture result seems to deal with exceptional cases. And in fact, up to isogeny only few
commensurability classes of surfaces in T of special type are known yet; all of them
admit abelian minimal models (cf. [7]).

1.3. Organization of the proof. The proof of Thm. 1.1 is essentially based on
classification theory of algebraic surfaces. In order to make our result more accessible
for researchers who, for instance, come from arithmetic but are no experts in geometric
methods, we repeat in Section 2 some general facts from the geometry of surfaces.
In Section 3 we state first properties of surfaces in X ∈ T which are needed in all
parts of the proof. In the two remaining sections we prove our main result. After the
preparations, each step is rather easy.

2. Short review of surface theory

2.1. From the classification theory of algebraic surfaces. We focus on the cat-
egory of algebraic surfaces over C which are non-singular, integral and projective.
Throughtout, a ‘surface’ will always mean a two dimensional C-variety of this type as
long as the converse is not explicitly stated. A surface X is called relatively mini-
mal if it does not contain a (−1)-curve L, i.e. a rational curve with self-intersection
= −1. It is a minimal surface if all relatively minimal models in the birational
class of X are pairwise isomorphic. The latter holds automatically if the Kodaira
dimension kod(X) is non-negative. Starting with an arbitrary smooth surface X, one
obtains a birational morphism to a relatively minimal model by succesively blowing
down arbitrary (−1)- curves. For this and what follows, we refer to [1]. A geometri-
cally ruled surface is by definition a smooth surface X together with a P1-bundle
π : X −→ C over an irreducible smooth curve C. More generally, a fibration that
factors through a geometrically ruled surface is called a ruling, and a ruled surface
is a surface together with a ruling. By classification theory for algebraic surfaces we
have:
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(1) If kod(X) = −∞ and q(X) > 0 then X admits a ruling over a curve C with
the property that q(X) = gC , the genus of C. In this case, X is birational
to P1 × C. Moreover, Num(X), the group of divisors modulo numerical
equivalence, is free of rank 2 and generated by a fibre F and an arbitrary
section Co of π (cf. [3, Ch.V, Prop. 2.3]).

(2) If X is a minimal surface so that kod(X) = 0 then KX is numerically trivial.
If q(X) > 0 then a minimal surface X is either abelian, or a hyperelliptic
surface. In the second case, there exists an etale covering A −→ X by an
abelian surface A, and b2(X) = 2.

2.2. A result on ruled surfaces. We will need the following easy lemma.

Lemma 2.1. Let π : X −→ C be a ruled surface. Let Co ⊂ X be a section of π.
Then there exists a diagram X

φ−→ Y
π̃−→ C such that φ is an isomorphism in an

open neighbourhood of Co and π̃ : Y −→ C is a geometrically ruled surface.

Proof. Let F =
∑

Ek be a reducible π-fibre. Since FCo = 1, there is precisely one
Eko

having non-trivial intersection with Co. Therefore, we have to show that one can
find a succession of blowing downs of the Ek’s with the property that the image of
Eko

becomes a smooth fibre. By induction on the number n of components Ek, all we
have to verify is the following: As long as n ≥ 2, F =

∑
Ek supports one (−1)-curve

Ek1 with Ek1Co = 0. The assertion is certainly clear if n = 2. Assume the assertion
holds for a n ≥ 2, and let Fn be a fibre consisting of n components. Blowing up once
along x ∈ Fn, the resulting (−1)-curve satifies our requirement if x /∈ Co. If x ∈ Co

let Ek1 6= Eko
be a (−1)-curve not intersecting Co. Then the proper transform of Ek1

on the new fibre Fn+1 is still a (−1)-curve not intersecting (the proper transform of)
Co. The assertion follows, because each fibre with n + 1 components is a blown up
Fn. �

3. Fundamental properties of surfaces in T

We return to toroidally compactified ball-quotient surfaces. The most important
properties of surfaces in T are summarized in the following theorem. It is a special
case of Tian-Yau’s inequality [10, Thm. 3.1].

Theorem 3.1. Let X be a complex projective surface together with a normal-crossing
divisor D ⊂ X. Assume:

(1) KX + D is nef and KX + D is ample modulo D.
(2) 3c2(X) = (KX + D)2 > 0.

Then X \ D admits the open unit ball B ⊂ C2 as universal holomorphic covering.
Conversely, an unramified ball-quotient surface X \ D with compactification divisor
D which is a sum of elliptic curves fulfills (1) and (2).

In (1), ‘ample modulo D’ means that OC(KX +D) is positive for each curve C ⊂ X
not supported in D. (1) is equivalent to the fact that for large m the sheaf L⊗m, where
L = OX(KX +D), is generated by global sections and provides an embedding of X\D
into projective space (cf. [10, Rem. p. 613]).
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Corollary 3.2. Let X be a surface in T with compactification divisor D. Then
D is contractible such that the contraction space is a normal projective variety. In
particular, each component Di of D has a negative self-intersection number D2

i < 0.

Although readily verified, the next two observations are indispensible ingredients
in the proof of our main result.

Lemma 3.3. Let X be in T with compactification divisor D and consider a rational
curve L ⊂ X. Then |L ∩D| ≥ 3.

Proof. Assume |L ∩ D| = 2. Then L \ D is up to isomorphism C∗, and admits the
complex line a universal holomorphic covering. Similarly, if |L∩D| = 1 then L\D ' C.
Proceeding to universal coverings we would thus obtain a holomorphic map from C
to B, which is not trivial. This contradicts Liouville’s theorem. �

Lemma 3.4. Let π : X −→ C be a fibration of an element in T over an elliptic curve
C. Assume that φ(D) = C. Then there exists a commutative diagram

X̃

β

��

π̃ // C̃

g

��
X

π // C

such that β and g are etale; that is, X̃ is a surface in T with compactification divisor
D̃ = β−1(D) and fibred over C̃, and with the additional property that each component
of D̃ is a section of π̃, as soon as it dominates C̃.

Proof. Let F be a general fibre of π. The proof is by induction on n(X) :=
max {DiF}, where Di ranges over all curves in the compactification divisor domi-
nating C. We suppose w.l.o.g. that n(X) = D1F > 1, since otherwise there is nothing
to prove. By general properties of the fibre product, the projection

π1 := prD1 : X1 = X ×C D1 −→ C1 = D1

has a copy T1 ⊂ X1 of D1 as a section. One checks that the projection β1 : X1 −→ X
is etale, and that a general fibre of π is dominated by n(X) = deg (D1 → C) fibres of
π1. Therefore, X1 is smooth, deg β1 = n(X), and β−1

1 (D1) is of the form T1 +B with
a divisor B. More precisely, noting that β−1

1 (X \D) must have the ball B as universal
holomorphic covering, one recognizes that X1 is a surface in T with compactification
part β−1

1 (D). Hence, B consists of a disjoint sum of elliptic curves contained in the
compactification divisor of X1. Fix a Di dominating C and let Dij range over the
curves in β−1

1 (Di). We claim:

(3.1)
∑

j

deg (Dij → C1) = deg (Di → C) (i fixed)

We have deg (D1 → C) = deg (C1 → C). Thus, an easy calculation yields for all j:

(3.2) deg (Dij → Di) · deg (Di → C) = deg (Dij → C1) · deg (D1 → C).
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Moreover, recalling that n(X) = deg (D1 → C) = deg β1, we get

(3.3) n(X) = deg (β−1
1 (Di) → Di) =

∑
j

deg (Dij → Di)

where Dij variies over all curves dominating Di. Combining (3.2) and (3.3), we
receive (3.1). Proceeding this way, we obtain a sequence Xn of fibred etale covers.
(3.1) shows that for n >> 0 the surface X̃ = Xn and the fibration π̃ = πn satisfy the
requirement. �

4. The case ‘kod(X) = −∞,q(X) > 0’

In this section we are going to prove that no irregular surface in T has negative
Kodaira dimension. We proceed by way of contradiction. Thus, assume that X ∈ T
has negative Kodaira dimension. Then there exists a birational morphism φ : X −→ Y
onto a relatively minimal model such that Y is geometrically ruled over a curve C.
Here, the genus of C is the irregularity of Y (cf. Subsection 2.1). So, C is elliptic,
because C is dominated by components of D. We define Si, S to be φ(Di), φ(D)
respectively. The next is clear from Section 3.

Claim 4.1. It is sufficient to derive a contradiction in the case where the curves Si

are all sections of the ruling.

We assume the hypotheses of Claim 4.1. We define hX to be the number of com-
ponents of D. Note that by Lemma 3.2, hX = SF ≥ 3 where F is a general fibre of
π. Next, we derive from Subsction 2.2:

Claim 4.2. We can assume that DhX
is not affected during the transition from X

to Y , i.e. that S2
hX

= D2
hX

< 0 and SiShX
= 0 for all i < hX .

With respect to numerical equivalence it holds then

(4.1) Si ≡ ShX
− S2

hX
F (i < hX)

In fact, by Subsection 2.1 Num(Y ) = ZShX
⊕ZF , and we have Si ≡ ShX

+ biF with
a bi ∈ Z. Hence, bi = SiShX

− S2
hX

= −S2
hX

. Note that this is up to now the second
place where we use that the Si’s are sections. In particular, SiF = 1 and

(4.2) S2
i = ShX

Si − S2
hX

= −S2
hX

> 0 (i < hX)

We also need to use the fact that K2
Y = c2(Y ) = 0 (cf. [1, p. 244]). Together with

Tian-Yau’s theorem 3.1 we find

(4.3) −D2 = 4s,

where s is the number of blow-ups in the transition from Y to X. Recall that KY Si +
S2

i = 0 for all i. Now, let x vary over all points that are centers of blowing ups in
the transition from Y to X, and write sx for the multiplicity of the proper transform
of S at x. We apply [3, Ch. V, Exmpl. 3.9.2], the adjunction formula and Claim 4.2,
and receive

0 = KXD + D2 = KY S + S2 −
∑

x

sx(sx − 1) =
∑

1≤i 6=j<hX

SiSj −
∑

x

sx(sx − 1).
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Combining with (4.1) and (4.2), and letting t = −D2
hX

= −S2
hX

, we deduce

(4.4) (hX − 1)(hX − 2)t =
∑

x

s2
x −

∑
x

sx.

On the other hand,
∑

i<hX
S2

i = (hX − 1)t and for each i the multiplicity si,x of the
proper transform of Si at x equals 0 or 1. By [3, Ch. V, Prop. 3.6], D2

i = S2
i −

∑
x s2

i,x.
With this and because of (4.3), we get

4s = −D2
hX

−
∑

i<hX

D2
i = t +

∑
i,x

s2
i,x − (hX − 1)t

 = −(hX − 2)t +
∑

x

sx,

i.e.

(4.5) (hX − 2)t =
∑

x

(sx − 4).

Now, define m3 to be the number of points x such that sx = 3, and let m4 be the
number of points x with sx = 4. Note that always sx ≥ 3, as results from Lemma
3.3 and the fact that the φ-exceptional divisor consists of rational curves. So,

(hX − 2)t =
∑

x,sx≥5

sx −m3,

that is,

4m3 + 4m4 + (hX − 2)t =
∑

x

sx
(4.5)
= 4s + (hX − 2)t.

We conclude that m3 +m4 = s, so 3 ≤ sx ≤ 4 for all x. For the final step, we combine
(4.4) with (4.5), and obtain∑

x

(
s2

x + 4(hX − 1)− hXsx

)
= 0.

As 3 ≤ sx ≤ 4, this yields

m3(5 + hX) + 12m4 = 0,

an obvious contradiction. We are done with this case.

5. The Case ‘kod(X) = 0,q(X) > 0’

We start by proving:

Lemma 5.1. Let Y be a complex irregular minimal surface with kod(Y ) = 0. Then
any two distinct elliptic curves S1, S2 ⊂ Y intersect each other transversally (if at
all).

Proof. We know from Subsection 2.1 that Y is either abelian or it is a hyperelliptic
surface. If Y is hyperelliptic then it admits an abelian etale covering, and we are
therefore reduced to the case where Y is abelian. Let x ∈ S1 ∩ S2. We may assume
that x serves as the neutral element of the underlying abstract groups on S1, S2 and
Y . If ιi : Si −→ Y denotes the respective embedding for i = 1, 2 then the Lie functor
yields a linear mapping

Lieιi
: Lie(Si) = C −→ Lie(Y ) = C2.
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A priori, the lines Lieι1(C) and Lieι2(C) are equal or intersect transversally in 0 ∈ C2.
By assumption, the second possiblity holds true. The result is now immediate. �

With this in mind, let Y be a minimal model of an irregular surface in X ∈ T and
assume that kod(Y ) = 0. By Subsection 2.1, Y is either abelian or it is a hyperelliptic
surface. By way of contradiction, assume the second mentioned possibility: Y is
hyperelliptic. Note that X 6= Y . Namely, KY is numerically trivial and therefore
Y does not contain elliptic curves with negative self-intersection, whereas X does
(Cor. 3.2). Denote by Si the image curve of Di.

Claim 5.2. Each curve Si is smooth elliptic.

Proof. Let D =
∑

Di be the compactification divisor of X and consider a birational
morphism φ : X −→ Y . Y admits an etale covering α : Ỹ −→ Y by an abelian surface
Ỹ , and α induces an etale covering β : X̃ −→ X. Let D̃ = β−1(D). Then, (X̃, D̃) is a
T -pair, because X̃ \ D̃ must have B as universal holomorphic covering. Let S̃ be the
respective divisor on Ỹ , i.e. S̃ = α−1(S). We know from Thm. 1.2 that S̃ is a sum of
elliptic curves

∑
S̃ij satisfying 4s̃ =

∑
s̃ij with s̃ = |sing S̃| and s̃ij = |S̃ij ∩ sing S̃|

(the first index means that S̃ij dominates Si). Let U be a small ball around a point
x ∈ sing S̃. It results from Lemma 5.1 that the sheets S ∩ U become disjoint after
blowing up once along x. Thus, it follows from Lemma 3.2 that X̃ results from
Ỹ by blowing-up once at each point x ∈ sing S̃; in particular, D̃ always intersects
transversally with an exceptional curve. Therefore,

K2
X̃

= K2
Ỹ
− s̃ = −s̃

and
c2(X̃) = c2(Ỹ ) + s̃ = s̃,

so that −D̃2 = 4s̃ by Thm. 3.1. Moreover, since β is etale, the single blowing ups along
M = sing D produce X, and D̃ always intersects transversally with an exceptional
curve.
Now, suppose that for some i a point x ∈ Si is a singularity of S with the property
that for a small open ball U ⊂ X around x a sheet of Si∩U admits a cusp singularity
at x. Then the exceptional curve L ⊂ X arising from the blow-up at x does not
intersect Di transversally. As β is etale, neither do a D̃ij and an exceptional curve
L̃ ⊂ α−1(L). By contraposition, no sheet of Si ∩U has cusp singularities. Therefore,
if νi : Di −→ Si is the restriction of φ to Di, then

D2
i = S2

i − |ν−1
i (Si ∩M)|.

It still remains to show that each curve Si is indeed smooth. But, clearly, for n = deg α
we have n ·

∑
i |ν

−1
i (Si ∩M)| =

∑
ij s̃ij . Since nD2 = D̃2 = 4s̃, we deduce

−4 · s̃

n
= D2 =

∑
i

(S2
i − |ν−1

i (Si ∩M)|) =
∑

i

S2
i −

∑
ij s̃ij

n
.

Recalling that 4s̃ =
∑

s̃ij and noting that a priori (KY +Si)Si = S2
i ≥ 0, we conclude

(KY + Si)Si = 0. So, the claim follows from adjunction formula: pa(Si) = 1. �
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As already noticed above, X results from A by single blowing-ups along the points
in sing S. Since each component of S is smooth by Lemma 5.1, it follows from Lemma
3.3 that there exists a point y ∈ Y which is the intersection point of three distinct
elliptic curves S1, S2, and S3. On the other hand, the rank of Num(Y ) is ≤ b2(Y ) = 2.
Thus, for some numbers a, b ∈ Q, we receive a numerical equivalence

S1 ≡ aS2 + bS3.

Using that S2
1 = S2

2 = S3
3 = 0, one readily derives a contradiction.
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