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PRODUCTS IN RESIDUE CLASSES

John B. Friedlander, Pär Kurlberg, and Igor E. Shparlinski

Abstract. We consider a problem of P. Erdős, A. M. Odlyzko and A. Sárkőzy about

the representation of residue classes modulo m by products of two not too large primes.

While it seems that even the Extended Riemann Hypothesis is not powerful enough to
achieve the expected results, here we obtain some unconditional results “on average”

over moduli m and residue classes modulo m and somewhat stronger results when the

average is restricted to prime moduli m = p. We also consider the analogous question
wherein the primes are replaced by easier sequences so, quite naturally, we obtain much

stronger results.

1. Introduction

Let m and a be integers with m ≥ 1 and gcd(a,m) = 1. For R and S, sets of
positive integers, we consider the question of whether there are integers r ∈ R and
s ∈ S such that

rs ≡ a (mod m)
and, if so, how small can we choose these factors to be.

An obvious greedy algorithm would be to choose some small value for one of these,
say r, and then look for the least s ∈ S which satisfies the congruence

(1) s ≡ ar (mod m) ,

where r indicates the multiplicative inverse of r modulo m. It is clear that the use
of this strategy usually limits the possibility for choosing s to a range s ≤ m1+o(1).
Hence, to even obtain a bound r < m, s < m requires a more delicate argument and
represents a result of a different order of difficulty. Actually, one could even hope to
attain a bound

r, s ≤ m
1
2+o(1) ,

a better result being hopeless, but such a goal seems far away even in the simplest
case where R = S is the set of all positive integers.

We are especially interested in the problem where R = S is the set of primes. In
this case we denote by P (x;m,a) the number of solutions to the congruence

p1p2 ≡ a (mod m)

in primes p1, p2 ≤ x, and we are interested in studying P (x;m,a) for values of x, as
small as possible, for example for x = m.

Our work has been motivated by the study of the quantity P (x;m,a) in the pa-
per [3] of P. Erdős, A. M. Odlyzko and A. Sárkőzy. They prove a number of results con-
ditional on various assumptions about the zero-free regions for Dirichlet L–functions.
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However, even the Extended Riemann Hypothesis1 (ERH) seems not to be powerful
enough to prove their intended goal that

P (m;m,a) > 0

whenever gcd(a,m) = 1. Furthermore, even various relaxations of this question con-
sidered in [3] have required some unproven assumptions. In particular, under a certain
weakened form of the ERH, the mean-square

P (x,m) =
m∑
a=1

gcd(a,m)=1

(
P (x;m,a)− π(x)2

ϕ(m)

)2

has been estimated successfully in the case x = m and m prime. Here, as usual, ϕ(k)
is the Euler function and π(x) is the number of primes p ≤ x

We further relax the original question but instead concentrate on unconditional
results. In particular, in Section 2 we use the large sieve to estimate P (x, q) on
average over primes M < q ≤ 2M in ranges M ≥ x and also P (x,m) over general
integer moduli m. In the case of the average over prime moduli we can come within
a power of a logarithm of the optimal range.

We also study the problem for some integer sets a little less difficult than the
primes. For example, the sequence of squarefree integers is one which can be handled
with greater success and without any unproved assumptions. Let S(x;m,a) denote
the counterpart of P (x;m,a) wherein the primes p1, p2 are replaced by squarefree
integers. Here, in Section 3, we obtain an asymptotic formula for S(x;m,a) which
is nontrivial for x ≥ m3/4+ε for any fixed ε > 0 and sufficiently large m. As hinted
above, one might hope that such formulas hold even down as far as x ≥ m1/2+ε but if
so this seems quite difficult. We do not know how to get a wider range of uniformity
(apart from the ε) even for the apparently easier problem where we do not insist that
the factors be squarefree! In this case, where R = S is the set of all positive integers,
the exponent 3/4 rests on the Weil bound for Kloosterman sums and has resisted
improvement for half a century. See however [8, 15] for recent work related to this
problem.

In Section 4 we consider the hybrid problem with products ps of a prime p and
a squarefree integer s in the range p, s ≤ m1/2+ε and show that, for any integer m,
these products represent almost all reduced residue classes modulo m the expected
number of times.

Finally, in Section 5 we consider a different example wherein one of the two factor
sets is a sumset, a case in which rather general results can be obtained provided
neither set is very thin. We also consider the case of products of two primes and one
shifted prime which is also accessible by present methods.

Throughout the paper the letters p and q are reserved for prime numbers. The
Möbius function µ and divisor function τ have their usual meanings.

2. Products of Primes

We note that, for a sufficiently large constant c, the result of Heath-Brown [12] on
the Linnik problem of the least prime in an arithmetic progression implies by (1) that

1The assertion that all nontrivial zeros of any Dirichlet L–function lie on the critical line.
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P (x;m,a) > 0 for any a such that gcd(a,m) = 1, provided x ≥ cm11/2, and it has
long been known that, under the ERH, the exponent 11/2 may be replaced by any
number larger than 2.

It is even expected that x ≥ m1+ε for any fixed ε > 0 is admissible but ideas for any
reasonable approach to this are lacking, at least for individual progressions. However,
one can show, again using the greedy algorithm (1) but now in conjunction with the
Barban-Davenport-Halberstam Theorem (see [13, Theorem 17.2]), that P (x;m,a) > 0
for most m ≤M and most reduced classes modulo m provided that x/M(logM)3 →
∞. However, we are able to do better than that with a different argument.

Let us define

R(x,M) =
∑

M<m≤2M

P (x,m) and Rπ(x,M) =
∑

M<q≤2M

P (x, q) ,

where, as usual, q runs over primes.
We now improve on the trivial bounds:

R(x,M) � x4 and Rπ(x,M) � x4/ log x.

Theorem 1. The following bounds hold:

R(x,M) � x4(log x)−A +Mx2,

for any A, with an implied constant that depends on A, and

Rπ(x,M) �
(
M−1x4 +Mx2

)
(log x)−2 .

Proof. Let Xm be the set of all ϕ(m) multiplicative characters modulo m, and X ∗m the
set of primitive characters modulo m (which in the case of prime modulus q includes
all such characters other than the principal character).

Using the orthogonality relation

1
ϕ(m)

∑
χ∈Xm

χ (r) =
{

1 if r ≡ 1 (mod m),
0 otherwise,

for gcd(a,m) = 1, we write

P (x;m,a) =
∑

p1,p2≤x

1
ϕ(m)

∑
χ∈Xm

χ
(
p1p2a

−1
)

=
π(x)2

ϕ(m)
+

1
ϕ(m)

∑
χ∈Xm
χ6=χ0

χ
(
a−1

) ∑
p1,p2≤x

χ (p1p2)

=
π(x)2

ϕ(m)
+

1
ϕ(m)

∑
χ∈Xm
χ6=χ0

χ
(
a−1

)
Tχ(x)2

where

Tχ(x) =
∑
p≤x

χ (p) .
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In particular,

P (x,m) =
1

ϕ(m)2
∑

(a,m)=1

( ∑
χ∈Xm
χ6=χ0

χ
(
a−1

) (∑
p≤x

χ (p)
)2
)2

≤ 1
ϕ(m)2

∑
(a,m)=1

∣∣∣∣∣ ∑
χ∈Xm
χ6=χ0

χ (a)Tχ(x)2
∣∣∣∣∣
2

=
1

ϕ(m)2
∑

(a,m)=1

∑
χ1,χ2 6=χ0

χ1 (a)χ2 (a)Tχ1(x)
2Tχ2

(x)2

=
1

ϕ(m)2
∑

χ1,χ2 6=χ0

Tχ1(x)
2Tχ2

(x)2
∑

(a,m)=1

χ1 (a)χ2 (a) ,

where χ denotes the conjugate character. Since∑
(a,m)=1

χ1 (a)χ2 (a) =
{
ϕ(m) if χ1 = χ2,

0 otherwise,

we obtain

P (x,m) ≤ 1
ϕ(m)

∑
χ6=χ0

Tχ(x)2Tχ(x)2 =
1

ϕ(m)

∑
χ6=χ0

|Tχ(x)|4 .

We remark that
Tχ(x)2 =

∑
n≤x2

anχ(n)

where an = 2 if n = p1p2 for two distinct primes p1, p2 ≤ x, an = 1 if n is the square
of a prime p ≤ x, and an = 0 otherwise. Hence

P (x,m) ≤ 1
ϕ(m)

∑
χ∈Xm
χ6=χ0

∣∣∣∑
n≤x2

anχ(n)
∣∣∣2

which leads to the bound

(2)
∑

M<m≤2M

P (x,m) ≤
∑

M<m≤2M

1
ϕ(m)

∑
χ∈Xm
χ6=χ0

∣∣∣∑
n≤x2

anχ(n)
∣∣∣2 .

We first treat the simpler case where the average is over prime moduli m = q so
that all non-principal characters modulo q are primitive and (2) can be replaced by
the bound ∑

M<q≤2M

P (x, q) � 1
M

∑
M<q≤2M

∑
χ∈X∗q

∣∣∣∑
n≤x2

anχ(n)
∣∣∣2 .

By the multiplicative form of the large sieve inequality, see for example [13, Theo-
rem 7.13], we have∑

M<q≤2M

∑
χ∈X∗q

∣∣∣∑
n≤x2

anχ(n)
∣∣∣2 � (M2 + x2)

∑
n≤x2

a2
n

� (M2 + x2)x2(log x)−2 .
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Therefore,

Rπ(x,M) =
∑

M<q≤2M

P (x, q) � (Mx2 +M−1x4)(log x)−2 ,

which concludes the proof for the case of prime moduli.
We now turn to the case of general modulus m and need to estimate, this time in

general, the sum

S =
∑

M<m≤2M

1
ϕ(m)

∑
χ∈Xm
χ6=χ0

∣∣∣∑
n≤x2

anχ(n)
∣∣∣2

on the right hand side of inequality (2). Given a character χ modulo m occurring in
this sum, let χ be induced by a primitive character ψ modulo f where m = fe and,
since χ is non-principal, f > 1. We have∑

n≤x2

anχ(n) =
∑
n≤x2

gcd(n,e)=1

anψ(n) =
∑
n≤x2

anψ(n) +O(log2 e)

in view of the definition of an. Using this and the inequality ϕ(fe) ≥ ϕ(f)ϕ(e), we
have

S ≤
∑
e≤2M

1
ϕ(e)

∑
2≤f≤2M/e

1
ϕ(f)

∑
ψ∈X∗f

∣∣∣∑
n≤x2

anψ(n)
∣∣∣2+O(Mx2)

=
∑
e≤2M

1
ϕ(e)

{Se(f ≤ F ) + Se(f > F )}+O(Mx2) ,

say, where F = (log x)B for some large fixed B and Se(f ≤ F ) and Se(f > F ) are the
parts of the inner sums taken over f ≤ F and f > F , respectively. (Note that we can
assume logM � log x else the theorem is trivial.) For 2 ≤ f ≤ F we split the sum
over n into arithmetic progressions modulo f and apply to each of them the bound∑

n≤x2

n≡b (mod f)

an −
1

ϕ(f)

∑
n≤x2

gcd(n,f)=1

an � x2(log x)−C

for any C, which follows quickly from the Siegel-Walfisz theorem. Using orthogonality
the main term in the sum over n disappears and we obtain for each ψ the bound∑

n≤x2

anψ(n) � Fx2(log x)−C

from which we derive
Se(f ≤ F ) � F 3x4(log x)−2C .

For the sum over f > F we split the sum into � log 2M dyadic intervals (V, 2V ] and
apply again the same large sieve inequality as we did in the case of prime moduli. We
obtain

Se(f > F ) � log 2M sup
F≤V≤2M

V −1(V 2 + x2)
∑
n≤x2

|an|2

� (M + F−1x2)x2 �Mx2 + x4(log x)−B .

We take C = 2B, B = A+ 1, and sum over e, completing the proof. ut
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We remark that the Siegel-Walfisz theorem restricts us to choose F no larger than
a fixed power of log x which limits the saving in Theorem 1 in this case of general
modulus.

Let W (M,x) be the number of pairs (q, a) where the prime q and integer a satisfy
M < q ≤ 2M and 1 ≤ a < q and such that P (x; q, a) = 0. Then

π(x)4

4M2
W (M,x) ≤ Rπ(x,M).

Hence by Theorem 1 we have

W (M,x) = o(Mπ(M))

for any x ≤ M satisfying xM−1/2(logM)−3/2 →∞, which is thus within a power of
the logarithm of being best possible. This may be compared with a result of M. Z.
Garaev [7] wherein a better power of the logarithm is obtained, but for products of
integers, not necessarily prime.

Finally, taking x = M we see that,

W (M,M) �M(logM)2.

3. Products of Squarefree Integers

As in the case of products of primes we can quickly deduce some bound by appealing
to the known results, in this case for the smallest square-free integer in an arithmetic
progression. Thus, from the result of Heath-Brown [11] on that problem it follows
trivially that S(x;m,a) > 0 for any a such that gcd(a,m) is square-free, provided
x ≥ m13/9+ε.

Theorem 2. For all integers m ≥ 1 and a with gcd(a,m) = 1 and real positive x,
we have

S(x;m,a) =
36
π4

· x
2

m

∏
p|m

(
1 +

1
p
− 1
p2

+
1
p3

)−1

+O
(
xm−1/4+o(1)

)
,

where the product is taken over all prime numbers p | m.

We remark that, as stated in the introduction, this gives the asymptotic formula
in the range x ≥ m3/4+ε for fixed positive ε. We take x < m in the proof. A very
slight modification is needed for larger x.

Proof. For real U and V we demote by N(U, V ;m, b) the number of solutions to the
congruence uv ≡ b (mod m) in positive integers u ≤ U , v ≤ V .

Recall that µ(d) denotes the Möbius function. By the inclusion-exclusion principle,
we write

(3) S(x;m,a) =
∞∑

d,e=1
gcd(de,m)=1

µ(d)µ(e)N(x/d2, x/e2;m,ad−2e−2).

A standard application of bounds for incomplete Kloosterman sums (see [13, Corol-
lary 11.12]) leads to the asymptotic formula

(4) N(U, V ;m, b) = UV
ϕ(m)
m2

+O(m1/2+o(1))
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uniformly over integers b with gcd(b,m) = 1, see [1, 6] and references therein.
For τ(w), the number of positive divisors of w, we recall the well known bound

(5) τ(w) = wo(1),

see for example [19, Section I.5.2].
We define two quantities

(6) y = xm−3/4 and z = xm−1/2 ,

which will feature in the proof.
We use the asymptotic formula (4) for de ≤ y. which after substitution in (3)

yields

S(x;m,a) = x2ϕ(m)
m2

∑
de≤y

gcd(de,m)=1

µ(d)µ(e)
d2e2

+ O

(
ym1/2+o(1) +

∑
de>y

gcd(de,m)=1

N(x/d2, x/e2;m,ad−2e−2)

)

(since by (5) there are at most y1+o(1) = ymo(1) such pairs (d, e) in the first sum).
Using (5), for the first term we obtain

∑
de≤y

gcd(de,m)=1

µ(d)µ(e)
d2e2

=
∞∑

d,e=1
gcd(de,m)=1

µ(d)µ(e)
d2e2

+O

∑
k≥y

τ(k)
k2



=

( ∞∑
d=1

gcd(d,m)=1

µ(d)
d2

)2

+O(y−1+o(1)).

We have
∞∑
d=1

gcd(d,m)=1

µ(d)
d2

=
∏
p-m

(
1− 1

p2

)
= ζ(2)

∏
p|m

(
1− 1

p2

)−1

,

where ζ(s) is the Riemann zeta-function. Therefore

S(x;m,a) =
36
π4
x2ϕ(m)

m2

∏
p|m

(
1− 1

p2

)−1

+O

ym1/2+o(1) + x2y−1m−1+o(1) +
J∑
j=0

∆j

 ,

(7)

where
J = d2 log(x/z)e

and
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∆0 =
∑

z≥de>y
gcd(de,m)=1

N(x/d2, x/e2;m,ad−2e−2),

∆j =
∑

2jz≥de>2j−1z
gcd(de,m)=1

N(x/d2, x/e2;m,ad−2e−2), j = 1, . . . J.

To estimate ∆0, we note that if uv ≡ ad−2e−2 (mod m) and with 1 ≤ u ≤ x/d2 and
1 ≤ v ≤ x/e2 then for each fixed pair (d, e), the product w = uv ≤ x2d−2e−2 belongs
to a prescribed residue class modulo m and thus takes at most x2d−2e−2m−1 + 1
possible values. In turn, each value of w gives rise to τ(w) = wo(1) = mo(1) pairs
(u, v) with uv = w, see (5). Therefore

∆0 ≤
∑

z≥de>y
gcd(de,m)=1

(
x2

d2e2m
+ 1
)
mo(1) = x2m−1+o(1)

∑
de≥y

1
d2e2

+ zmo(1)

= x2m−1+o(1)
∑
k≥y

τ(k)
k2

+ zmo(1) = x2y−1m−1+o(1) + zmo(1).

To estimate ∆j , with j ≥ 1, we note that ∆j does not exceed the number of
pairs (d, e) of positive integers such that de ≤ 2jz, gcd(de,m) = 1 and ad−2e−2 ≡ w
(mod m) for some positive integer w ≤Wj where

Wj = 4
x2

22jz2
, j = 1, . . . J.

Furthermore, due to our choice of z, see (6), we have Wj ≤ m. Thus if d and
e are fixed, then solutions to the congruence uv ≡ ad−2e−2 ≡ w (mod m), where
1 ≤ w < m, in positive integers u ≤ x/d2, v ≤ x/e2 satisfy the equation uv = w.
Hence, by (5), every pair d and e leads to τ(w) = mo(1) possible pairs (u, v). Collecting
together d and e with the same value of de = k, and using (5) again,

∆j ≤ mo(1)T (2jz,Wj), j = 1, . . . , J,

where T (K,W ) is the number of positive integers k ≤ K, gcd(k,m) = 1 and ak−2 ≡ w
(mod m) for some positive integer w ≤W .

Using exactly the same arguments as, for example in [17, Lemma 1] (Fourier ex-
pansion of the remainder term in the counting function, completion of the relevant
exponential sum, and finally application of Weil’s theorem to the completed sum), we
obtain that if W < m then

T (K,W ) =
W

m

K∑
k=1

gcd(k,m)=1

1 +O
(
m1/2+o(1)

)
≤ KW

m
+O

(
m1/2+o(1)

)
,

which in turn implies that

∆j ≤ mo(1)

(
x2

2jzm
+m1/2

)
, j = 1, . . . , J.
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Therefore
J∑
j=1

∆j ≤ x2z−1m−1+o(1)
J∑
j=1

1
2j

+ Jm1/2+o(1)

≤ x2z−1m−1+o(1) +m1/2+o(1).

Substituting the bounds on ∆0 and on ∆j , j = 1, . . . , J , in (7) we obtain

S(x;m,a) =
36
π4
x2ϕ(m)

m2

∏
p|m

(
1− 1

p2

)−1

+O
(
ym1/2+o(1) + x2y−1m−1+o(1) + zmo(1)

)
.

Recalling the choice (6) of y and z, we conclude the proof. ut

4. Products of Primes and Squarefree Integers

Here we study congruences ps ≡ a (mod m) in primes p ≤ x and squarefree integers
s ≤ x.

In fact our approach works for congruences rs ≡ a (mod m) where r ≤ x is
an element of a very general set R with gcd(r,m) = 1 and s ≤ x is squarefree.
Accordingly, we write Q(R, x;m,a) for the number of solutions of such a congruence.

Theorem 3. For all positive integers m, real x and sets R ⊆ [1, x] of integers r with
gcd(r,m) = 1, we have

m∑
a=1

gcd(a,m)=1

∣∣∣∣Q(R, x;m,a)− ϑm
|R|x
m

∣∣∣∣ ≤ |R|3/4x3/4m1/4+o(1),

where

ϑm =
6
π2

∏
p|m

(
1− 1

p2

)−1

.

Proof. Since
m∑
a=1

gcd(a,m)=1

Q(R, x;m,a) ≤ |R|x ,

we see that unless

(8) |R|x > m

the bound is trivial.
Let U(R, y;m,a) be the number of solutions to the congruence ru ≡ a (mod m)

in r ∈ R and positive integers u ≤ y. Our main tool is the bound

(9)
m∑
a=1

∣∣∣∣U(R, y;m,a)− |R|y
m

∣∣∣∣2 ≤ |R|xmo(1),

for y ≤ x, which has been given in [18].
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For every positive integer d ≤ x1/2 we denote by Vd(R, x;m,a) the number of
solutions to the congruence rv ≡ a (mod m) in r ∈ R and positive integers v ≤ x
with v ≡ 0 (mod d2).

Using the inclusion-exclusion principle, we write

(10) Q(R, x;m,a) =
∞∑
d=1

µ(d)Vd(R, x;m,a),

where, as before, µ(d) is the Möbius function.
Clearly, if gcd(a,m) = 1 but gcd(d,m) > 1, then Vd(R, x;m,a) = 0. Furthermore,

for gcd(ad,m) = 1 we have

Vd(R, x;m,a) = U(R, xd;m,ad),

where xd =
⌊
x/d2

⌋
and ad is defined by the congruence add2 ≡ a (mod m), 1 ≤ ad <

m.
We now choose some parameter z ≥ 1, to be specified later and write (10)

Q(R, x;m,a) =
∞∑
d=1

gcd(d,m)=1

µ(d)U(R, xd;m,ad)

=
∑
d≤z

gcd(d,m)=1

µ(d)U(R, xd;m,ad)

+ O

 ∑
x1/2≥d>z

U(R, xd;m,ad)


=

∑
d≤z

gcd(d,m)=1

µ(d)
|R|xd
m

+O (σ1(a) + σ2(a)) ,

where

σ1(a) =
∑
d≤z

gcd(d,m)=1

∣∣∣∣U(R, xd;m,ad)−
|R|xd
m

∣∣∣∣
σ2(a) =

∑
x1/2≥d>z

gcd(d,m)=1

U(R, xd;m,ad).

As in the proof of Theorem 2, for the main term we obtain∑
d≤z

gcd(d,m)=1

µ(d)
|R|xd
m

=
|R|x
m

∑
d≤z

gcd(d,m)=1

µ(d)
1
d2

+O

(
z|R|
m

)

= ϑm
|R|x
m

+O

(
|R|x
zm

+
z|R|
m

)
.
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Accordingly we obtain

(11)
m∑
a=1

gcd(a,m)=1

∣∣∣∣Q(R, x;m,a)− ϑm
|R|x
m

∣∣∣∣� |R|x
z

+ z|R|+ Σ1 + Σ2,

where

Σ1 =
m∑
a=1

gcd(a,m)=1

σ1(a) and Σ2 =
m∑
a=1

gcd(a,m)=1

σ2(a).

Changing the order of summation and noting that due to the condition gcd(d,m) =
1, as a runs through all the reduced residue classes modulo m then so does ad, we
write

Σ1 =
∑
d≤z

gcd(d,m)=1

m∑
a=1

gcd(a,m)=1

∣∣∣∣U(R, xd;m,a)−
|R|xd
m

∣∣∣∣ ,
Σ2 =

∑
x1/2≥d>z

gcd(d,m)=1

m∑
a=1

gcd(a,m)=1

U(R, xd;m,a).

By the Cauchy inequality and the bound (9), we have

(12) Σ1 ≤
∑
d≤z

gcd(d,m)=1

|R|1/2x1/2m1/2+o(1) ≤ z|R|1/2x1/2m1/2+o(1).

Furthermore, it is clear that
m∑
a=1

gcd(a,m)=1

U(R, xd;m,a) ≤ |R|xd ≤ |R|x/d2.

Therefore

(13) Σ2 � |R|x
∑

x1/2≥d>z
gcd(d,m)=1

1
d2

� |R|x
z

.

Substituting the bounds (12) and (13) in (11), we derive
m∑
a=1

gcd(a,m)=1

∣∣∣∣Q(R, x;m,a)− ϑm
|R|x
m

∣∣∣∣
� |R|x

z
+ z|R|+ z|R|1/2x1/2m1/2+o(1).

Clearly z|R| ≤ z|R|1/2x1/2m1/2, thus the second term in the last inequality can be
dropped. Now taking z = |R|1/4x1/4m−1/4 and remarking that (8) implies that z > 1,
we conclude the proof. ut
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We see that each reduced residue class modulo m which contains no integer of the
form rs with r ∈ R and a squarefree integer s ≤ x contributes a term of order |R|x/m
to the sum estimated in Theorem 3.

If we take x = m1/2+ε for some fixed ε and R to be the set of primes p ≤ x with
p - m, we see that the number of reduced classes modulo m which are not of the form
ps with a prime p ≤ x and a squarefree integer s ≤ x, is at most

|R|3/4x3/4m1/4+o(1)m(|R|x)−1 ≤ |R|−1/4x−1/4m5/4+o(1)

≤ m1−ε/2+o(1) ≤ m1−ε/3 ,

provided that m is large enough.

5. Some Other Products

Our work in this section is motivated by another nice, albeit conditional, result
in [3], wherein it has been shown that if ε > 0 and q is large enough, then all
invertible elements modulo q can be written as a product of three primes p1, p2, p3 < q
under the assumption that all Dirichlet L-series L(s, χ) are non-vanishing for Re(s) >
1− (3 + ε) log log q/ log q and |Im(s)| ≤ q, for all non-trivial characters χ modulo q.

If we alter the problem slightly and consider numbers that are products of a prime
and a sum of two primes, that is numbers of the form p1(p2 + p3), we can uncondi-
tionally show that it suffices to take p1, p2, p3 < q1−δ for some δ > 0 to obtain all
residues modulo q. We also consider another modification, namely the representation
of residue classes by the product p1p2(p3 + b) of two primes and a shifted prime.

Theorem 4. Let q be a prime. Given any invertible element a in ZZ/qZZ, there are
π(X)3/q + O(q3/16+o(1)X57/32) primes p1, p2, p3 ≤ X < q such that p1(p2 + p3) ≡ a
(mod q).

Proof. We have

|{p1, p2, p3 ≤ X : p1(p2 + p3) ≡ a (mod q)}|

=
1
q

q∑
t=1

∑
p1,p2,p3≤X

eq(t(p2 + p3 − ap1))

=
π(X)3

q
+

1
q

q−1∑
t=1

∑
p1≤X

eq(−tap1)
∑

p2,p3≤X

eq(t(p2 + p3)).

The error term is bounded by

1
q

max
t6≡0 (mod q)

∣∣∣∣∣∣
∑
p1≤X

eq(−tap1)

∣∣∣∣∣∣ ·
q−1∑
t=1

∣∣∣∣∣∣
∑

p2,p3≤X

eq(t(p2 + p3))

∣∣∣∣∣∣
=

1
q

max
t6≡0 (mod q)

∣∣∣∣∣∣
∑
p1≤X

eq(tp1)

∣∣∣∣∣∣ ·
q−1∑
t=1

∣∣∣∣∣∣
∑
p2≤X

eq(tp2)

∣∣∣∣∣∣
2

.
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By [4, Theorem 1.1] we have

(14) max
t6≡0 (mod q)

∣∣∣∣∣∣
∑
p1≤X

eq(tp1)

∣∣∣∣∣∣ ≤ q3/16+o(1)X25/32.

Also, by orthogonality we get

q−1∑
t=1

∣∣∣∣∣∣
∑
p2≤X

eq(tp2)

∣∣∣∣∣∣
2

= qπ(X)

which concludes the proof. ut

Clearly the asymptotic formula of Theorem 4 is nontrivial if X ≥ q38/39+δ for an
arbitrary δ > 0 and sufficiently large q.

We remark that the the proof of Theorem 4 extends immediately to yield the
following more general result.

Theorem 5. Let q be prime and (a, q) = 1. Let R be any set of positive integers r
with (r, q) = 1 and S any set of integers 1 ≤ s < q. Then we have∣∣∣∣∣ ∑∑∑

r∈R s1,s2∈S
r(s1+s2)≡a ( mod q)

1− 1
q
|R||S|2

∣∣∣∣∣ ≤ |S| max
h6≡0 ( mod q)

∣∣∣∑
r∈R

eq(hr)
∣∣∣ .

For example, in the case that R is the set of primes, then S can be replaced by an
arbitrary set of residue classes modulo q satisfying |S| ≥ q1−δ for some δ determined
by the results of [2] or [4].

We now recall the bound of A. A. Karatsuba [14] which asserts that if q is prime
and X ≥ q1/2+ε for some ε, then for any fixed integer b with gcd(b, q) = 1,

(15) max
χ∈X∗q

∣∣∣∣∣∣
∑
p≤X

χ(p+ b)

∣∣∣∣∣∣� X1−δ,

where, as before, X ∗q is the set of all nontrivial multiplicative characters modulo q
and δ > 0 depends only on ε.

Using this bound in the the same way as in [5], one easily gets the following result:

Theorem 6. Let q be a prime and let b be an integer with gcd(b, q) = 1. There
are two absolute constants η, κ > 0 such that for q > X ≥ q1−η, for any invertible
element a in ZZ/qZZ, there are (1 + O(q−κ))π(X)3/q primes p1, p2, p3 ≤ X < q such
that p1p2(p3 + b) ≡ a (mod q).

6. Remarks

We note that [2, Theorem A.9] and [4, Corollarie 1.6] give nontrivial estimates for
the exponential sums in (14) as long as X > q1/2+ε and X > q3/4+ε, respectively.
However these bounds are less explicit than (14) and thus only lead to a weaker
inexplicit statement.

In principle, Theorem 6 can be extended to composite moduli m and more general
products. In fact, Z. Kh. Rakhmonov [16] provides an analogue of the bound (15),
however only for X ≥ m1+ε.
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We have already remarked on the work of M. Z. Garaev [7] showing that, in the
case that R = S is the set of all integers, one can come within a small power of the
logarithm of the expected conjecture for most residue classes to most prime moduli.
In very recent work, M. Z. Garaev and A. A. Karatsuba [10] have proved that in
fact this holds for all prime moduli (see [9, 18] for various refinements of this result).
Our bound for Rπ(x,M) in Theorem 1 gives in particular an analogue of the original
result [7] in the apparently harder case when R = S is the set of primes. However,
obtaining an analogue to the result of [10] for the case of prime products remains an
open problem.
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