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ON THE HYPOTHESIS K∗ OF HARDY, LITTLEWOOD AND
HOOLEY AND ITS RELATION WITH DISCRETE FRACTIONAL

OPERATORS

Maŕıa J. Carro

Abstract. In this paper, we revisited the relation between the Hypothesis K∗ of Hardy,

Littlewood and Hooley and the boundedness of the discrete fractional operator

Iλ,kf(n) =
∞X

m=1

f(n−mk)

mλ
,

with k ∈ N, k ≥ 2, in order to obtain that, for every ε > 0, and every 2 ≤ r < 1/(1−λ),Z 1

0
|mλ,k(θ)|r|θ − a|(

1−λ
k

+ε)r−1dθ < ∞,

uniformly in a, where

mλ,k(θ) =
∞X

m=1

e2πimkθ

mλ
.

We recall that the Hypothesis K∗ is equivalent to the fact that m ∈ L2k, for every
λ > 1/2.

1. Introduction

In the last years, considerable interest has been shown in discrete harmonic analysis,
although is not as developed as the continuous case, probably because exponential
sums are usually more difficult to estimate than oscillatory integrals. See for example
[3], [4], [2] and [5] where, in particular, the operator

(1.1) Iλ,2f(n) =
∞∑

m=1

f(n−m2)
mλ

has been deeply studied, and it is known that, if 0 < λ < 1, Iλ : `p → lq, whenever
1 ≤ p < q ≤ ∞, 1/q = 1/p− (1− λ)/2, p < 1/(1− λ) and q > 1/λ.

If instead of (1.1), we consider the operator

Iλ,kf(n) =
∞∑

m=1

f(n−mk)
mλ

with k ∈ N, k > 2, the boundedness properties (`p, `q) is an open question although
in the above papers is naturally conjectured that Iλ,k : `p → lq is bounded, whenever
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1 ≤ p < q ≤ ∞, p < 1/(1− λ), q > 1/λ and
1
q

=
1
p
− 1− λ

k
·

However, this problem seems to be a difficult one since the techniques used in [4],
[2] and [5], adapted to this new situation would imply the Hypothesis K* of Hardy,
Littlewood and Hooley to be true ([1]). This Hypothesis states that if rk(l) denotes
the number of ways one can represent the integer l as the sum of kth-powers, l =
nk

1 + nk
2 + ... + nk

k, with k summands, then, for every ε,
N∑

l=1

rk(l)2 = O(N1+ε),

as N tends to infinity. This Hypothesis is solved in the case k = 2 and open for
k > 3. In [4], it is proved that this hypothesis is equivalent to the fact that, for every
λ > 1/2,

(1.2) mλ,k(θ) =
∞∑

m=1

e2πimkθ

mλ

belongs to L2k(T). Observe, and this is the conection between the two problems, that
the Fourier transform of Iλ,kf satisfies:

(1.3) (Iλ,kf )̂ (θ) = mλ,k(θ)f̂(θ).

In fact, in [4], the boundedness of Iλ,2 : `p → `q with p and q as before and λ > 1/2,
is done by proving that the corresponding function mλ,2 ∈ L2/(1−λ),∞(⊂ L4(T)) and
applying trivial computations of classical Fourier Analysis.

In any case it is clear, using (1.3), that the boundedness property of Iλ,k is related
to the size of mλ,k and hence related to the Hypothesis K∗. This makes the problem
itself very interesting.

The purpose of this paper is to give some new estimates on the function mλ,k which
may give some new hints on the solution of the Hypothesis K∗. In fact, our result
can be applied to a more general exponential sum than (1.2); namely, to the function

mλ,µ(θ) =
∞∑

m=1

e2πiµmθ

mλ

where µ = (µm)m is a sequence of positive integers such that, for some positive
constants A and B

(1.4) Amk−1 ≤ µm − µm−1 ≤ Bmk−1.

To give some estimate of this function we start by giving a boundedness result for
the operator

Iλ,µf(n) =
∞∑

m=1

f(n− µm)
mλ

·

Through out the paper, C will represent an universal constant independent of all
the parameters involved, E . F means that there exists an universal constant C such
that E ≤ CF and E ≈ F means that E . F and F . CE.
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2. Boundedness result for Iλ,µ

Let (µm)m be a sequence of positive integers satisfying (1.4). Clearly, (µm)m is an
increasing sequence and

(2.1) µm ≈ mk.

Given ε > 0 and q ≥ 1, set

α =
1
q

+
1− λ

k
+ ε

and let us consider the space

`∞((1 + |n|α)) =
{

(an)n; ||a||`∞((1+|n|α)) = sup
n
|an|(1 + |n|α) < ∞

}
·

Theorem 2.1. a) Let µ and α as before and q > λ. Then

Iλ,µ : `∞((1 + |n|α)) −→ `q(Z)

is bounded.
b) If q > λ and

(2.2)
1
p

=
1
q

+
1− λ

k

then
Iλ,µ : `∞((1 + |n|1/p)) −→ `q,∞(Z)

is bounded.

Proof. a) First of all, we observe that if n ∈ Z−, then

|(Iλa)(n)| ≤ ||a||`∞((1+|n|α))

∞∑
m=1

m−λ

1 + |µm + |n||α

≤ ||a||`∞((1+|n|α))
1

1 + |n|
1
q + ε

2

∞∑
m=1

m−λ

µ
1−λ

k + ε
2

m

,

and by (2.1) the above sum in finite and hence Iλa ∈ `q(Z−).

Now, given n ∈ N, n ≥ 1, let m0 = m0(n) ∈ N be such that

µm0 = sup
m
{µm; µm ≤ n},

where we assume by simplicity that µ1 = 1. Then, using (2.1) we have that µm0(n) ≈
n.
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Then, given a = (an)n ∈ `∞((1 + |n|α)), with ||a||`∞((1+|n|α)) = 1,

|(Iλa)(n)| ≤
∞∑

m=1

m−λ

1 + |µm − n|α

=
∑

m<m0(n)

m−λ

1 + |µm − n|α
+

(
m0(n)−λ

1 + (n− µm0(n))α
+

(m0(n) + 1)−λ

1 + (µm0(n)+1 − n)α

)

+
∑

m>m0(n)+1

m−λ

1 + |µm − n|α
= I + II + III·

Estimate of I:

∑
m<m0(n)

m−λ

1 + (n− µm)α
.

m0(n)−1∑
j=1

(m0(n)− j)−λ

(n− µm0(n)−j)α
.

m0(n)−1∑
j=1

(m0(n)− j)−λ

(µm0(n) − µm0(n)−j)α

Now,

µm0 − µm0−j =
j−1∑
i=0

(µm0−i − µm0−i−1) ≥ A

j−1∑
i=0

(m0 − i)k−1

≥ Aj(m0 − j)k−1·
Thus,∑

m<m0(n)

m−λ

1 + (n− µm)α
.

m0(n)−1∑
j=1

1
jα(m0(n)− j)(k−1)α+λ

≈ m0(n)−λ−αk+1

≈ n
1−λ

k −α = n−
1
q−ε ∈ `q(N).

Estimate of III:

III =
∑

m>m0(n)+1

m−λ

1 + (µm − n)α
.

∞∑
j=2

(m0 + j)−λ

(µm0+j − n)α
.

∞∑
j=2

(m0 + j)−λ

(µm0+j − µm0+1)α
·

Then, since

µm0+j − µm0+1 ≥ A

j∑
l=2

(m0 + l)k−1 ≥ CAjk−1 max(j, m0)

we obtain

III .
∞∑

j=2

(m0 + j)−λ

(jk−1 max(j, m0))α
≈ m1−αk−λ

0 ≈ n−
1
q−ε ∈ `q(N)·

Estimates of II: We have to prove that

∑
n≥2

(
m0(n)−λ

1 + (n− µm0(n))α

)q

≈
∑
n≥2

n
−λq

k

1 + (n− µm0(n))αq
< ∞,
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and similarly ∑
n≥2

n
−λq

k

1 + (µm0(n)+1 − n)αq
< ∞.

We shall prove the first one since the second follows the same pattern. To do this, let
us define, for each m,

Im = {n ≥ 1;m0(n) = m}·
Then, ∑

n≥2

n
−λq

k

1 + (n− µm0(n))αq
=

∞∑
m=1

∑
n∈Im

n
−λq

k

1 + (n− µm0(n))αq

≈
∞∑

m=1

m−λq
∑

n∈Im

1
1 + (n− µm)αq

.
∞∑

m=1

m−λq
∑
j≥1

1
jαq

< ∞

since α > 1/q and qλ > 1.

b) The proof of b) follows from the same computations.
�

Remarks 2.2.
i) Observe that, if p is as in (2.2), then `∞(1 + |n|α) ⊂ `p, and hence, in the original
case µm = m2, our result is consequence of the boundedness of Iλ,2 proved in ([4]).
In the case k > 2, the above result is weaker that the open Stein and Wainger’s
conjecture mentioned before on the boundedness of Iλ,k : `p −→ `q. However, it will
have some interesting consequences concerning estimates for the function mλ,k.

ii) The result is false if we only assume the condition µm ≈ mk on the sequence
(µm)m. To see this let us take

µn = 22(j+1) if n ∈ [2j , 2j+1).

Then,
Iλ,µf(n) ≈

∑
j≥0

2j(1−λ)f(n− 22(j+1)),

and taking the sequence f(n) = 1 if n = 0 and f(n) = 0 if n 6= 0, we have Iλ,µf(n) = 0
if n 6= 22(j+1) for some j, and if n = 22(j+1), Iλ,µf(n) = 2j(1−λ). Consequently,
(Iλ,µf(n))n /∈ `q.

3. Estimates for the mλ,µ function

Given ε > 0 and h̄ = (hn)n with |hn| ≤ 1, let us define

Wh(θ) =
∑
n>0

hn

n
1
q + 1−λ

k +ε
e2πinθ.

Then, as a first consequence of Theorem 2.1 we get the following.

Theorem 3.1. For every ε > 0 and every 1
λ < q ≤ 2, mλ,µWh ∈ Lq′,q.
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Proof. The result follows inmediately using Theorem 2.1 and Hausdorf-Young Theo-
rem, since

mλ,µ(θ)Wh(θ) =
∑
n∈Z

(Iλwh)(n)e2πinθ,

where
wh(n) = Ŵh(n) ∈ `∞((1 + |n|α))

with α = 1
q + 1−λ

k + ε.
�

Similarly, if we take ε = 0 in the definition of Wh, we get:

Theorem 3.2. For every 1
λ < q ≤ 2, mλ,µWh ∈ Lq′∞.

Now, it is known (see [6], page 70) that, for every 0 < α < 1 there exists Cα and
C ′

α such that for every 0 < x ≤ 1,
∞∑

n=1

e2πinx

nα
= Cαxα−1 + C ′

α(1− x)α−1 + O(1)

Hence, if we take a ∈ (0, 1) and h = (e−2πina)n, one can easily see that the
function Wh(θ) is bounded in any interval out of a and blows up like |θ − a|α−1 near
a. Therefore, as a consequence of Theorems 3.1 and 3.2, we obtain our main estimate:

Theorem 3.3. a) For every ε > 0, every a ∈ (0, 1), and every 2 ≤ r < 1
1−λ ,

(3.1)
∫ 1

0

|mλ,µ(θ)|r|θ − a|(
1−λ

k +ε)r−1dθ < ∞,

uniformly in a.
b) For every 2 ≤ r < 1

1−λ and every a ∈ (0, 1),

|mλ,µ(θ)||θ − a|
1−λ

k − 1
r ∈ Lr,∞.

By taking ε such that 1−λ
k + ε = 1

2k , we get that

Theorem 3.4. For 2 ≤ r < 1
1−λ and every a ∈ (0, 1),

(3.2)
∫ 1

0

|mλ,k(θ)|r|θ − a| r
2k−1dθ < ∞.

uniformly in a.

Remarks 3.5.
1.- The above result is not true for r = 1

1−λ , since in this case, taking λ = 1/2 and
r = 2, we get that mλ,k ∈ L2(T) which is trivially not true, by Parseval’s formula.

2.- Observe that in the original case µm = m2 it was proved in Proposition 1 of [4]
that mλ,2 ∈ L2/(1−λ) and hence (mλ,2)∗(t) . t

1−λ
2 . Therefore, it follows that∫ 1

0

|mλ,2(θ)|r|θ − a|(
1−λ

2 +ε)r−1dθ ≤
∫ 1

0

(mλ,2)∗(t)r 1

t1−( 1−λ
2 +ε)r

dt .
∫ 1

0

dt

t1−εr
< ∞
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and hence (3.1) can be deduced from Proposition 1 of [4], in this particular case.
Moreover, in Proposition 3 of [4], it was also proved that for λ < 1 but big enough
mλ,k ∈ Lk/(1−λ) and hence (3.1) is also consequence of this fact for such λ′s.

3.- Observe that, for every 0 < t ≤ 1,

1
t

∫ t

0

|mλ,k(θ)|rdθ ≤ t1−r
(

1−λ
k +ε

) 1
t

∫ t

0

|mλ,k(θ)|rθr
(

1−λ
k +ε

)
−1dθ ≤ Ct−r

(
1−λ

k +ε
)
,

and hence, since λ > 1/2, we can choose ε appropriately to get that, for every 1 ≤
r < 1

1−λ , (
1
t

∫ t

0

|mλ,µ(θ)|rdθ

) 1
r

∈ L2k.

In fact, we have that, for every 0 < a < 1,(
1

t− a

∫ t

a

|mλ,µ(θ)|rdθ

) 1
r

∈ L2k(a, a + 1).

Final Observation: Let rµ(l) be the number of ways that the integer l can be
represented in the form

l = µn1 + µn2 + · · ·+ µnk
.

Let us formulate a natural Hipótesis µ∗ stating that, for every ε > 0,

(3.3)
N∑

l=1

rµ(l)2 = O(N1+ε), N →∞.

Then, by a complete similar argument that the one in [4], we have that

(3.3) holds if and only if mλ,µ ∈ L2k ∀λ > 1/2.

To see this, let us assume that (3.3) holds and let us define

Sy(θ) =
∞∑

n=1

hne−πµn(y−2iθ)

with y ∈ (0, 1] and (hn)n some positive numbers satisfying hn ≈ 1 to be choosen later
on. Then,∫ 1

0

Sy(θ)
dy

y1−λ/k
=

∞∑
n=1

hne2πiµnθ

∫ 1

0

e−π µn
nk nky dy

y1−λ/k

=
∞∑

n=1

hne2πiµnθ k

nλ

∫ n

0

e−π µn
nk zk dz

z1−λ

=
∞∑

n=1

e2πiµnθhn

(
Cn

nλ
− k

∫∞
n

e−π µn
nk zk

dz
z1−λ

nλ

)
,

where

Cn =
∫ ∞

0

e−π µn
nk zk dz

z1−λ
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and, since µn

nk ≈ 1, we have that Cn ≈ 1 and hence taking hn = 1
Cn

, we obtain

mλ,µ(θ) =
∫ 1

0

Sy(θ)
dy

y1−λ/k
+ O(1).

Therefore,

||mλ,µ||L2k . 1 +
∫ 1

0

||Sy||L2k

dy

y1−λ/k
.

Now,

Sy(θ)k =
∑

n1,n2,··· ,nk

( k∏
j=1

hnj

)
e−π(y−2iθ)(µn1+µn2+···+µnk

) =
∞∑

l=1

cµ(l)e−π(y−2iθ)l,

with cµ(l) =
∑

µn1+µn2+···+µnk
=l

∏k
j=1 hnj

≈ rµ(l).
Hence,

||Sy||L2k = ||Sk
y ||

1/k
L2 ≈

( ∞∑
l=1

rµ(l)2e−2πyl

)1/2k

.

Since
∞∑

l=1

rµ(l)2e−2πyl = (1− e−2πy)
∞∑

l=1

rµ(l)2
∞∑
j=l

e−2πyj

= (1− e−2πy)
∞∑

j=1

e−2πyj

j∑
l=1

rµ(l)2

. (1− e−2πy)
∞∑

j=1

e−2πyjj1+ε .
1− e−2πy

y

1
y1+ε

.
1

y1+ε
,

we obtain,

||Sy||L2k .
1

y
1+ε
2k

,

and for λ > 1/2, we can conclude

||mλ,µ||L2k . 1 +
∫ 1

0

1

y
1+ε
2k +1−λ

k

dy < ∞.

Conversely, if mλ,µ ∈ L2k for every λ > 1/2, then

mλ,µ(θ)k =
∑

n1,n2,··· ,nk

e2πi(µn1+µn2+···+µnk
)θ

nλ
1nλ

2 · · ·nλ
k

=
∞∑

l=1

Cle
2πilθ ∈ L2,

with
Cl =

∑
µn1+µn2+···+µnk

=l

1
nλ

1nλ
2 · · ·nλ

k

.

Since nk
j ≈ µnj ≤ l we have that nλ

1nλ
2 · · ·nλ

k ≤ lλ and hence Cl ≥ rµ(l)
lλ

. Since
(Cl)l ∈ `2, we finally obtain that, for every λ > 1/2,

1
N2λ

N∑
l=1

rµ(l)2 ≤
∞∑

l=1

rµ(l)2

l2λ
< ∞,
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as we wanted to see.
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Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, 08071 Bar-
celona, Spain

E-mail address: carro@ub.edu


