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HODGE-STICKELBERGER POLYGONS FOR L-FUNCTIONS OF
EXPONENTIAL SUMS OF P (xs)

Régis Blache, Éric Férard and Hui June Zhu

Abstract. Let Fq be a finite field of cardinality q and characteristic p. Let P (x) be any
one-variable Laurent polynomial over Fq of degree (d1, d2) respectively and p - d1d2.

For any fixed s ≥ 1 coprime to p, we prove that the q-adic Newton polygon of the
L-functions of exponential sums of P (xs) has a tight lower bound which we call Hodge-

Stickelberger polygon, depending only on the d1, d2, s and the residue class of (p mod s).

This Hodge-Stickelberger polygon is a certain weighted convolution of the Hodge polygon
for L-function of exponential sums of P (x) and the Newton polygon for the L-function

of exponential sums of xs (which is precisely given by the classical Stickelberger the-

ory). We have an analogous Hodge-Stickelberger lower bound for multivariable Laurent
polynomials as well.

For any ν ∈ (Z/sZ)×, we show that there exists a Zariski dense open subset Uν

defined over Q such that for every Laurent polynomial P in Uν(Q) the q-adic Newton

polygon of L(P (xs)/Fq ; T ) converges to the Hodge-Stickelberger polygon as p approaches
infinity and p ≡ ν mod s.

As a corollary, we obtain a tight lower bound for the q-adic Newton polygon of

the numerator of the zeta function of an Artin-Schreier curve given by affine equation
yp−y = P (xs). This estimates the q-adic valuations of reciprocal roots of the numerator

of the zeta function of the Artin-Schreier curve.

1. Introduction

Let Ad1,d2 be the space of all Laurent polynomials in one variable x of degree
(d1, d2) (in x and x−1 respectively) where d1, d2 ≥ 1. They are just rational functions
with poles at ∞ and 0. The one-pole polynomial case (i.e., d2 = 0) will also be con-
sidered along the line. For our purpose, we may assume that each Laurent polynomial
is monic at xd1 , and hence the coefficient space Ad1,d2 = Ad1+d2−1 ×Gm is an affine
variety of dimension d1 + d2. In this paper p is a prime coprime to d1d2. Let E(x)
be the Artin-Hasse exponential function, namely, E(x) = exp(

∑∞
i=0 x

pi

/pi). Let γ
be a p-adic root of log(E(x)) in the algebraic closure of Qp with ordpγ = 1/(p − 1).
Then E(γ) is a primitive p-th root of unity, which we fix for the rest of the paper and
denote it by ζp.

Let a be a positive integer and q = pa. Let P (x) be a rational function on the
projective line with two poles of order d1 and d2 respectively. Up to an isomorphism
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over Fp we may assume the poles are at ∞ and 0 and write

P (x) =
d1∑

i=−d2

aix
i

where ai lies in Fq and P ∈ Ad1,d2(Fq). For any positive integer k, let ψqk : Fqk →

Q(ζp)× be a nontrivial additive character of Fqk and we fix ψqk(·) = ζ
TrF

qk /Fp (·)
p .

The k-th exponential sum of P (x) ∈ Fq[x, x−1] is Sk(P ) =
∑

x∈F×
qk
ψqk(P (x)). The

L-function of the exponential sum of P is defined by

L(P (x);T ) = exp(
∞∑

k=1

Sk(P )
T k

k
).

It is known that L(P (x)/Fq;T ) = 1 + b1T + · · ·+ bd1+d2T
d1+d2 ∈ Z[ζp][T ]. The most

important information about the L-function is its reciprocal roots. They are Weil q-
numbers, i.e., algebraic integers all Galois conjugates are of absolute value

√
q. This

paper concerns their q -adic absolute value. This can be effectively studied in terms of
q-adic Newton polygon of the L-function. The q-adic Newton polygon NPq(P (x); Fq)
of this L-function is defined as the lower convex hull of the points (i, ordq(bi))i≥0 on
the (x, y)-plane. Results about this Newton polygon can be found in [16, 20, 21]. This
polygon is independent of the choice of base field Fq in Fp (even though the reciprocal
roots of the L-function do depend on Fq). The relation between q-adic valuation of
roots of a polynomial and its q-adic Newton polygon is explained in details in [11,
Chapter IV].

We fix once and for all a positive integer s ≥ 1. All primes p we consider will
be assumed prime to s. The main subject of study of this paper is L(P (xs)/Fq;T )
and its reciprocal roots. Let σ be the permutation on the set {0, . . . , s − 1} induced
by multiplication of p modulo s. We write its cycle decomposition σ =

∏u
i=1 σi for

`i-cycles σi (including 1-cycles). Let

λi :=

∑
j∈σi

j

s`i
.

So 0 ≤ λi < 1. Note that `i and λi are invariants depending only on s, ν (defined
as the least residue of p modulo s ) and the cycle σi, but independent of p. See
Section 3.1 for more details. Note that for s|(q− 1) one recovers the classical formula
λi = sp((q−1)r/s)

a(p−1) , where sp(n) denotes the sum of p-adic expansions of the integer n.

We now define HS(Ad1,d2 , ν, s), the Hodge-Stickelberger polygon of L(P (xs)/Fq;T ),
as the polygon with line segments of slopes and lengths

(
m+ 1− λi

d1
, `i)1≤i≤u,0≤m≤d1−1; (

m+ λi

d2
, `i)1≤i≤u,0≤m≤d2−1.(1)

Note that this polygon contains segments (0, 1) and (1, 1), it is symmetric in the sense
that for every slope α there is a slope 1−α of equal length (if σi is the cycle containing
r > 0, σj the one containing s− r, then λi + λj = 1). This polygon depends only on
d1, d2, ν, s and is of total horizontal length s(d1 + d2).

If d2 = 0 then the Hodge-Stickelberger polygon is given by the first half of the line
segments in (1) minus the segment (1, 1) hence of horizontal length sd1 − 1.
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Remark 1.1. Consider the Gauss sum over Fq defined by

GFq
(ψq, χ

r
s) := −

∑
x∈F×q

ψq(x)χ−r
s (x)

(where χs is a multiplicative character of order s on F×q ). The Stickelberger’s theorem
(see [3, Theorem 11.2.1] or [18]) says that ordq(GFq

(ψq, χ
i
s)) = λi. In fact, one can

show that L(xs; Fp) =
∏

i(1 − T `iGF
p`i

(ψp`i , χ
i
s)) where i ranges over all distinct

cycles in σ (see [10] or [17]). Thus the exact shape of the p-adic Newton polygon of
L(xs; Fp) consists of line segments (λi, `i)2≤i≤u (by omitting the 1-cycle σ1 = (0)).

By the remark above, our Hodge-Stickelberger polygon can be considered as a
weighted convolution of the Hodge polygon HP(Ad1,d2) of the L-function L(P/Fq;T )
(see [12] for details) and the Newton polygon of L(xs/Fq;T ). The following theorem
states that it gives a lower bound of the q-adic Newton polygon of L-function. We
use � to denote one polygon lies over the next one and their endpoints meet.

Theorem 1.2. For any Laurent polynomial P ∈ Ad1,d2(Fq), we have

NPq(P (xs); Fq) � HS(Ad1,d2 , ν, s).

These two polygons coincide if and only if p ≡ 1 mod lcm(sd1, sd2).

In fact, we have an analogous result for multivariable Laurent polynomials which
is stated in Section 6.

Remark 1.3. From [22] we know that NPq(P (xs); Fq) � HP(Asd1,sd2), the latter is
the concatenation of the following slopes

0, 1,
1
sd1

, . . . ,
sd1 − 1
sd1

,
1
sd2

, . . . ,
sd2 − 1
sd2

in nondecreasing order each of horizontal length 1. Hence it is of total horizontal
length s(d1 + d2). We easily see the following relation

NPq(P (xs); Fq) � HS(Ad1,d2 , ν, s) � HP(Asd1,sd2).

Note that HS(Ad1,d2 , ν, s) = HP(Asd1,sd2) if and only if ν = 1, that is, p ≡ 1 mod s;
while NPq(P (xs); Fq) = HP(Asd1,sd2) if and only if p ≡ 1 mod lcm(sd1, sd2).

Then we examine, as p varies, the asymptotic behavior of the polygons
NP(P (xs) mod P) where P is a prime over p. Note that this polygon is indepen-
dent of the choice of P and so for ease of notation we may consider Fq the residue
field of P. It is known (see [12], [21]) that when p approaches infinity, there is a Zariski
dense open subset U defined over Q of the space of rational functions with prescribed
poles and polar degrees such that for any rational function lying in U(Q), the Newton
polygon NP(P (x) mod P) tends to the associated Hodge polygon HP(Ad1,d2). For
s > 2 such limit does not exist since there is one distinct Hodge-Stickleberger poly-
gon for each residue class of prime p in (Z/sZ)× and for p ≡ 1 mod lcm(sd1, sd2) the
Newton polygon coincides with the Hodge-Stickelberger polygon. See more discussion
on this topic in Section 6. In our main result we show that in each fixed residue class
of primes, the situation is similar to the case s = 1.
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Theorem 1.4. For every integer 1 ≤ ν ≤ s − 1 coprime to s, there exists a Zariki
dense open subset Uν in Ad1,d2 defined over Q where d1 ≥ 1 and d2 ≥ 0, such that
for any P (x) lying in Uν(Q), we have

lim
p→∞,p≡ν mod s

NP(P (xs) mod P) = HS(Ad1,d2 , ν, s)

for all primes P over p.

These theorems about exponential sums have applications to the Zeta function
of Artin-Schreier curves over Fq, namely the projective curves C defined by affine
equation yp − y = P (x) over Fq . It is well known that all reciprocal roots of the
numerator of the Zeta function of C are eigenvalues of Frobenius endomorphism, and
they are Weil q-numbers. The following corollary estimates the q-adic absolute values
of these reciprocal roots. We explore it via the q-adic Newton polygon NPq(C/Fq),
defined as the q-adic Newton polygon of the numerator of the Zeta function of C. In
this paper a constant c multiple of a polygon means the image of the polygon under
the homothety with center at origin and ratio c.

Corollary 1.5. (i) Let NP(Cs/Fq) be the q-adic Newton polygon of the Artin-Schreier
curve Cs : yp − y = P (xs) over Fq. Then 1

p−1NP(Cs/Fq) � HS(Ad1,d2 , ν, s). These
two polygons coincide if and only if p ≡ 1 mod lcm(sd1, sd2). If P has only one pole of
degree d1 ≥ 1 (and d2 = 0) then the two polygons coincide if and only if p ≡ 1 mod sd1

or d1 = 1.
(ii) For every integer 1 ≤ ν ≤ s− 1 coprime to s, there exists a Zariski dense open

subset Uν in Ad1,d2 , defined over Q, such that for any P (x) lying in Uν(Q), we have

lim
p→∞,p≡ν mod s

1
p− 1

NP(Cs mod P) = HS(Ad1,d2 , ν, s)

for any prime P over p.

Proof. Results in Theorems 1.2 and 1.4 can be translated directly to this corollary by
using the same argument as that in [22, Corollary 1.3]. �

Remark 1.6. We remark that in the above corollary, one may replace the affine
coefficient variety Ad1,d2 by the moduli space ASg of Artin-Schreier curves of genus
g := (p−1)(d1+d2)

2 as defined in [14].

We conclude this introduction by providing general notation and organization of
this paper. Throughout the entire paper, we fix integers d1, d2, s ≥ 1. We consider
prime numbers p that are always coprime to sd1d2. We always assume the residue field
of the prime ideal P is Fq, where q is a p-power and we write q = pa. The permutation
σ is induced on the set {0, . . . , s − 1} by multiplication of p modulo s. We always
write its cycle decomposition as σ =

∏u
i=1 σi including 1-cycles. Finally, we denote

by E(x) be the p-adic Artin-Hasse exponential function. Our main theorems 1.2 and
1.4 are proved at the end of Section 5. Similar result on twisted exponential sums is
given in Propositions 3.7 and 4.2 of Sections 3 and 4 respectively. At the end of the
paper in section 6 we discuss some open questions and give statement of multivariable
cases analog of Theorem 1.2.
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2. Two lemmas about nuclear matrices

To make the proofs of our results as smooth as possible, we summarize some fringe
results here. These results will be employed in Sections 3 and 4. The reader may
wish to skip this section at first reading.

Let K be any complete non-Archimedean field with p-adic valuation | · |p. We
refer the readers to [15] for basic facts about Serre’s theory of completely continuous
maps and Fredholm determinants. For any K-Banach spaces V and V ′ that admit
orthonormal basis, denote by C(V, V ′) the set of completely continuous K-linear maps
from V to V ′. We say that a matrix M over K is nuclear if there exists a K Banach
space V and a u in C(V, V ) such that M is the matrix of u with respect to some
orthonormal basis of V . If M = (mij)i,j≥1 is a matrix over K, then M is nuclear if
and only if limi→∞ infj≥1 ordpmij = +∞.

Lemma 2.1. Let ~M = (M0, M1, · · · ,Ma−1) be an a− tuple of nuclear matrices over
Cp. Set the block matrix

~M[a] :=



0 · · · 0 Ma−1

M0 0 0

0 M1 0
...

...
. . . 0

0 · · · 0 Ma−2 0

 .

Then det(1− (Ma−1 · · ·M1M0)T a) = det(1− ~M[a]T ).

Proof. See [12, Section 5]. �

Lemma 2.2. Let {Mt}t=0,...,a−1 be any nuclear matrices over K. Let At be the set
of all k×k submatrices in Mt . Fix an integer k ≥ 1 and let ck be the coefficient of T k

in det(1−Ma−1Ma−2 · · ·M0T ). Then we have ordpck ≥
∑a−1

t=0 infWt∈At
ordp(detWt).

Proof. By Lemma 2.1, ck is the coefficient of T ak in the T -adic expansion of det(1−
~M[a]T ), which is the infinite sum of (−1)akdetN where N runs over all principal
ak × ak submatrices in ~M[a]. Let N be such a matrix, and let Nt be the intersection
of N and Mt as submatrices of ~M[a] for all 0 ≤ t ≤ a − 1. It is easy to see that
detN = (−1)(ak−1)k

∏a−1
t=0 detNt or 0 depending on whether every Nt is a k × k

submatrix of Mt or not. So for p-adic evaluation purpose, we may assume every Nt

is a k × k matrix. Think of Nt as a submatrix of Mt from now on and Nt ∈ At. Our
assertion follows immediately. �

3. L-functions of twisted exponential sums

In this section we assume s|(q−1). Let k ≥ 1. Let χs be a multiplicative character
of order s defined on F×

qk . We fix it as χs = χ ◦NF
qk /Fq

(·) where χ is a multiplicative
character of order s on F×q .

Fix an integer 0 ≤ r ≤ s− 1, let σi be the cycle of σ containing r, and λ := λi =∑
j∈σi

j/(s`i). For any Laurent polynomial P (x) in Ad1,d2(Fq), define the L-function
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L(P (x)/Fq, χ
r
s;T ) := exp(

∞∑
k=1

Sk(P , χr
s)
T k

k
).(2)

where Sk(P , χr
s) =

∑
x∈F×

qk
ψqk(P (x))χr

s(x).

From Weil’s theorem, this L-function is a polynomial of degree d1 + d2 and its
reciprocal roots in C are algebraic integers with Archimedean absolute value q1/2

and `-adic absolute value 1 for any prime ` 6= p. We shall study the q-adic absolute
value of these reciprocal roots. We denote by NPq(P , χr

s; Fq) the Newton polygon of
L(P/Fq, χ

r
s;T ) defined analogously as that for NPq(P ; Fq).

3.1. Twisted Hodge-Stickelberger polygons. Denote by HS(Ad1,d2 , ν, χ
r
s) the

twisted Hodge-Stickelberger polygon of multiplicative character χr
s with slopes and

lengths

{(m+ 1− λ

d1
, 1)0≤m≤d1−1; (

m+ λ

d2
, 1)0≤m≤d2−1}.

It is of total horizontal length d1 + d2. This polygon can be found in the literature,
for example, see [1, Theorem 3.20] and [2, Corollary 3.18]. In the polynomial case,
i.e., d2 = 0, the twisted Hodge-Stickelberger polygon consists of the first half of the
above line segments and is of horizontal length d1 if r 6= 0 (and d1− 1 if r = 0, in this
case we also remove the segment (1, 1)).

Remark 3.1. The twisted Hodge-Stickelberger polygon HS(Ad1,d2 , ν, χ
r
s) we give

above coincides with the Hodge polygon defined in [2, Corollary 3.18] in one-variable
case. We shall verify this explicitly below. Set d := −(q − 1)r/s in notation of [2].
Then d(v) = −(q − 1)σv(r)/s, and for any −d2 + 1 ≤ j ≤ d1, we have

ud(v)(j) = x
d(v)
q−1 +j , and w(ud(v)(j)) =


1
d1

(
d(v)

q−1 + j
)

= j
d1
− σv(r)

sd1
if j > 0,

1
d2

(
d(v)

q−1 + j
)

= − j
d2

+ σv(r)
sd2

if j ≤ 0.

These are due to the fact that the weight of xr is r/d1 when r ≥ 0 and −r/d2 when
r ≤ 0 in our case. The Hodge polygon slopes bj defined in [2, above Theorem 3.17]
can be expressed as

bj =


1
a

∑a−1
v=0

(
j
d1
− σv−a(r)

sd1

)
= j−λ

d1
if j > 0,

1
a

∑a−1
v=0

(
−j
d2

+ σv−a(r)
sd2

)
= −j+λ

d2
if j ≤ 0

These yield exactly the slopes of the twisted Hodge-Stickelberger polygon defined
above HS(Ad1,d2 , ν, χ

r
s).

We use � to denote the concatenation of line segments which are given via pairs of
slopes and horizontal length so that the slopes are in non-decreasing order. Now we
have the splitting of the Hodge-Stickelberger polygon into twisted Hodge-Stickelberger
polygons below in the lemma.

Lemma 3.2. (i) We have

HS(Ad1,d2 , ν, s) = �i`i HS(Ad1,d2 , ν, χ
ri
s )

where the box-sum ranges in the distinct cycles σi of σ, and for each i, we have that
ri is a representative in σi.
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(ii) If ν = 1 then HS(Ad1,d2 , 1, s) = HP(Asd1,sd2).

Proof. The first statement is clear by the definition of HS(Ad1,d2 , ν, s) in (1). For
the second statement, one only needs to recognize that for p ≡ 1 mod s we have
`i = `′i = 1 for every i and λi = r/s for every 0 ≤ r ≤ s− 1 in σi. The rest is explicit
and elementary calculation. �

3.2. Trace formula for twisted exponential sums. Let Qq denote the unique
unramified extension of Qp of degree a and Zq its ring of integers. Let Ω1 := Qp(ζp)
and let Ωa the unique unramified extension of Ω1 of degree a in Cp. Recall that
γ ∈ Ω1 such that Zp[γ] = Zp[ζp]. Fix roots γ1/d1 and γ1/d2 in Cp, we denote by
Ω′1 = Ω1(γ1/d1 , γ1/d2) and Ω′a = Ω′1Ωa. Below we denote by K (K ′ respectively) a
complete non-Archimedean field containing Ωa (Ω′a respectively).

By taking Teichmüller lifts of coefficients of P ∈ Fq[x, x−1], we get P̂ (x) =∑d1
i=−d2

âix
i ∈ Zq[x, x−1]. Note that âi

q = âi and âi ≡ ai mod P where P is the
prime ideal in Ωa lying over p. For any 0 < ρ < 1 in |K|p let Hρ(K) be the ring of
rigid analytic functions over K on the annulus with ρ ≤ |x|p ≤ 1/ρ. It is a p-adic
Banach space with the natural p-adic supremum norm.

Let the operator Uq on Hρ be defined by (Uqξ)(X) := 1
q

∑
Zq=X ξ(Z) for any

ξ ∈ Hρ. If ξ(X) =
∑∞

i=−∞ ciX
i then Uq(ξ) =

∑∞
i=−∞ ciqX

i. Let τ be a lifting of the
Frobenius of Fp to K such that τ(γ) = γ. Define three elements in Hρ(K) below

F (X) =
d1∏

i=−d2

E(γâiX
i),(3)

F[a](X) =
a−1∏
t=0

F τt

(Xpt

),(4)

H(X) = X
(q−1)r

s F[a](X).(5)

These above are all power series in Zp[γ][ ~̂ai][[X]] and hence in Zq[ζp][[X]]. Let α :=
Uq ◦H(X) by which we mean the composition map of Uq with the multiplication map
by H(X). Then α is a completely continuous K-linear endomorphism of Hρ(K) for
some suitable 0 < ρ < 1.

Lemma 3.3. We have

L(P/Fq, χ
r
s;T ) =

det(1− Tα)
det(1− Tqα)

(6)

and it is a polynomial in Z[ζp, ζs][T ] of degree d1 + d2.

Proof. The rationality is a routine consequence of the Dwork-Monsky-Reich trace
formula so we omit its proof here. The assertion of its degree follows from [5] (or
[2]). �

3.3. p-adic estimate of twisted exponential sums. Let 0 ≤ r ≤ s − 1. Write
the p-adic expansion

(q − 1)r/s =
a−1∑
t=0

Kr,tp
t(7)
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for 0 ≤ Kr,t ≤ p− 1. Then we have

λ =
Pa−1

t=0 Kr,t

a(p−1) =
sp((q − 1)r/s)

a(p− 1)
(8)

where sp(·) denotes the sum of p-adic expansions.
Let Ft(X) = XKr,tF τt

(X) and

αt := Up ◦ Ft(X).

Lemma 3.4. The maps αt are completely continuous K -linear endomorphisms of
Hρ(K) for some suitable 0 < ρ < 1. We have

α = αa−1 ◦ · · · ◦ α1 ◦ α0.(9)

Proof. The first statement is Dwork theory. Using f(x) ◦ Up = Up ◦ f(xp), we have
by (7)

αa−1 ◦ · · · ◦ α0 = (Up ◦ · · · ◦ Up) ◦ (X
Pa−1

t=0 Kr,tp
t

F[a](X)) = Uq ◦H(X) = α.

This finishes the proof. �

For any i ∈ Z, consider the p-adic Mittag-Leffler decomposition
F (X)Xi =

∑∞
m=−∞Hm,iXm. Write αt(Xi) =

∑∞
m=−∞Bm,i

t Xm, we have Bm,i
t =

τ tHmp−Kr,t,i. We know Hm,i, Bm,i
t lie in Zp[γ][ ~̂ai]. Then from the p-adic valuation

of the coefficients of exponential function E(x) (see [7]) we have

ordpB
m,i
t ≥ 1

p− 1
max

(
pm−Kr,t − i

d1
,−pm−Kr,t − i

d2

)
By p-adic Mittag-Leffler decomposition, every element in theK-linear spaceHρ(K)

can be uniquely represented as
∑∞

i=−∞ ciX
i for ci ∈ K, and so Hρ(K) has a natural

monomial basis ~bunw = {1, X,X2, . . . ;X−1, X−2, . . .}. Let Z1 = γ1/d1X and Z2 =
γ1/d2X−1, then ~b = {Z1, Z

2
1 , . . . ; 1, Z2, Z

2
2 , . . .} forms a basis for Hρ(K ′). Let Mt be

the matrix of αt with respect to the basis ~b. Its entries lie in Zq[γ1/d1 , γ1/d2 ]. From
now on, we shall consider the coefficients liftings âi of P (x) as variables throughout
this section, and set ~̂a = (âi), then the entries of Mt lie in Zp[γ1/d1 , γ1/d2 ][~̂a]. Note
that ordp(·) and ordq(·) also denote the natural p-adic valuations on the multi-variable
polynomial ring Zp[γ1/d1 , γ1/d2 ][~̂a] induced from that on Zp.

We are ready to give estimates for the p-adic valuations of the coefficients of Mt.
Note that we omit the subscript t in the coefficients since no confusion can occur.

Lemma 3.5. For all i ≥ 0 we have αtZ
i
J =

∑∞
m=1 C

m,i
1,J Z

m
1 +

∑∞
m=0 C

m,i
2,J Z

m
2 where

Cm,i
F are the entries of Mt. The lower bounds of ordpC

m,i
F are

ordp(·) ≥ Zi
1 (i > 0) Zi

2 (i ≥ 0)

Zm
1 (m > 0) m

d1
− Kr,t

d1(p−1)
m
d1
− Kr,t

d1(p−1) + i
p−1 ( 1

d1
+ 1

d2
)

Zm
2 (m ≥ 0) m

d2
+ Kr,t

d2(p−1) + i
p−1 ( 1

d1
+ 1

d2
) m

d2
+ Kr,t

d2(p−1)

Proof. See [22] page 1542–1543 for details. �
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For any 0 ≤ t ≤ a−1, let Lt be the set of rational numbers Lt := {m
d1
− Kr,t

d1(p−1) |m ≥
1} ∪ {m

d2
+ Kr,t

d2(p−1) |m ≥ 0}. For every k ≥ 1 let δ(k)
t the sum of k least numbers in Lt.

Split these k numbers in terms of j = 1 or 2 we have k1 + k2 = k such that

δ
(k)
t =

k1∑
m=1

(
m

d1
− Kr,t

d1(p− 1)
) +

k2−1∑
m=0

(
m

d2
+

Kr,t

d2(p− 1)
).

By (8) we have (note that k1 and k2 do not depend on t)

1
a

a−1∑
t=0

δ
(k)
t =

k1(k1 + 1)
2d1

− k1λ

d1
+
k2(k2 − 1)

2d2
+
k2λ

d2

=
k1(k1 − 1)

2d1
+
k1(1− λ)

d1
+
k2(k2 − 1)

2d2
+
k2λ

d2
.(10)

Lemma 3.6. For any k × k principal submatrix Wt of Mt we have

ordp(detWt) ≥ δ
(k)
t .

Proof. The statement follows from Lemma 3.5. �

Proposition 3.7. Write det(1− αT ) = 1 +
∑∞

k=1 CkT
k, then

(i) ordqCk ≥ 1
a

∑a−1
t=0 δ

(k)
t ;

(ii) NPq(P , χr
s; Fq) � HS(Ad1,d2 , ν, χ

r
s) for all P ∈ Ad1,d2(Fq).

(iii) Write (q − 1)r/s =
∑
Kr,tp

t for 0 ≤ Kr,t ≤ p− 1 and write d = lcm(d1, d2).
Then the following statements are equivalent:
(a) the Newton and Hodge-Stickelberger polygons in (ii) coincide.
(b) d| gcd(p− 1,Kr,t) for every 0 ≤ t ≤ a− 1.

Proof. (i) From the decomposition of α in Lemma 3.4 we can apply the results in
Lemma 2.2 to det(1− αT ), and we have

ordq(Ck) =
1
a
ordp(Ck) ≥ 1

a

a−1∑
t=0

inf
Wt∈At

(ordpdetWt).

The result follows from Lemma 3.6.
(ii) By the trace formula (6), we know that NPq(P , χr

s; Fq) is identical to the slope
< 1 part of NPq(1 + C1T + C2T

2 + · · · ) (see [12]). The latter can be identified
as the condition that k1 ≤ d1, k2 ≤ d2 − 1. Thus by part (i) the lower bound of
NPq(P , χr

s; Fq) is precisely HS(Ad1,d2 , ν, χ
r
s) defined in Section 3.1 and by (10).

(iii) We first prove (b)⇒ (a) by assuming p ≡ 1 mod dJ and Kr,t ≡ 0 mod dJ for
J = 1, 2 and for all 0 ≤ t ≤ a− 1.

Without loss of generality, from now on we focus mostly on the part of the matrix
Mt regarding the pole at ∞, namely, the case J = 1 and omit the analogous argument
for the case J = 2. By a routine computation via classical Dwork estimation, we have
(see Lemma 3.2 in [22])

ordpC
m,i
1,1 ≥

⌈
mp−i−Kr,t

d1

⌉
p− 1

and the equality holds if mp − i −Kr,t ≡ 0 mod d1 and mp − i −Kr,t ≤ d1(p − 1).
Using our hypothesis, we get m ≡ i mod d1. Hence the k× k principal submatrix Wt
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of Mt has its unique minimal row p-adic valuation m
d1

on m-th row on its diagonal.
Using a similar argument as that in the proof of [22, Theorem 1.2] and Lemma 2.1,
we conclude that the Newton polygon coincides with the Hodge polygon.

Secondly we shall show (a)⇒(b) and suppose these two polygons coincide. By the
Dwork estimation in the previous paragraph, we then have for every 1 ≤ k ≤ d1 − 1
that

ordpdet(Wt) ≥ min
ρk∈Sk

k∑
m=1

⌈
mp−ρk(m)−Kr,t

d1

⌉
p− 1

.

By our hypothesis, we have the equality ordpdet(Wt) = k(k+1)
2d1

− kKr,t

d1(p−1) holds, namely,
the minimum p-adic valuation above is achieved. This implies that ρk(m) ≡ mp −
Kr,t mod d1 for every 1 ≤ m ≤ k. One can show by induction on k ≥ 1 that
ρk ∈ Sk can only be the identity permutation, and Kr,t ≡ 0 mod d1 for every t. Set
m = 1 in the above congruence, we find that p ≡ 1 mod d1. In summary, we obtain
d| gcd(p− 1,Kr,t) for every t. This proves (b). �

Remark 3.8. The main result in Proposition 3.7(ii) is known to [2, Corollary 3.18]
as we noted in Remark 3.1. We gave a different proof here in line for the proof of our
Proposition 4.2.

4. Asymptotic behavior of L(P/Fq, χ
r
s;T )

Here again, we assume s|(q − 1). Recall that NPq(P , χr
s; Fq) denotes the q-adic

Newton polygon of the L-function L(P/Fq, χ
r
s;T ) of twisted exponential sums. In this

section we shall show that for p large enough in a congruence class mod s, this New-
ton polygon generically converges to the corresponding twisted Hodge-Stickelberger
polygon. (See Proposition 4.2 for precise statement.) Below we briefly outline our
approach, which is very similar to that in [12, Sections 4,5] and hence we do not
elaborate.

We fix some integer k with 1 ≤ k ≤ d1+d2 in the following, and we write k = k1+k2

as in Section 3.3. Let M [k1]
t,1 (resp. M [k2]

t,2 ) denote the k1×k1 (resp. k2×k2) submatrix
of Mt defined by

M
[k1]
t,1 =

(
(Cm,i

1,1 )1≤m,i≤k1

)
(resp. M [k2]

t,2 =
(
(Cm,i

2,2 )0≤m,i≤k2−1

)
).

In this paper we should sometimes consider the coefficients ai of P (x) as variables
and denote them by the vector ~a. The weight of a monomial

∏d1
i=−d2

ani
i in K[~a] is

equal to
∑d1

i=−d2
|i|ni. A relevant example in this section is that the minimal weight

monomials in Hm,i (defined under Lemma 3.4) are of weight |m − i|; and hence the
minimal weight monomials in Bm,i

t are of weight |mp−Kr,t − i|. All minimal weight
monomials in (the formal expansion of) detMt(~a) lie in γQQ[~a]. As shown in [12,
Proposition 3.8], one can find a monomial in detM [k1]

t,1 (resp. detM [k2]
t,2 ) of minimal

weight that does not cancel out with others terms. Moreover, the p-adic order s1,t

(resp. s2,t) of the coefficient of this monomial is minimal among the p-adic orders
of all monomials in detM [k1]

t,1 (resp. detM [k2]
t,2 ). This monomial corresponds to a

permutation ρ1,t ( resp. ρ2,t) in the permutation group Sk1 ( resp. Sk2). For J = 1, 2,
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let rJ,i,j be the least nonnegative residue of −(pi− j) mod dJ . Then we have

s1,t =
k1(k1 + 1)

2d1
− k1Kr,t

d1(p− 1)
+

1
d1(p− 1)

k1∑
i=1

r1,i,ρ1,t(i)+Kr,t
;

s2,t =
k2(k2 − 1)

2d2
+

k2Kr,t

d2(p− 1)
+

1
d2(p− 1)

k2−1∑
i=0

r2,i,ρ2,t(i)−Kr,t
.

For each fixed k let

sk :=
1
a

a−1∑
t=0

(s1,t + s2,t)(11)

=
k1(k1 − 1)

2d1
+
k1(1− λ)

d1
+
k2(k2 − 1)

2d2
+
k2λ

d2
+ εk,p

where

εk,p :=
1

a(p− 1)d1

a−1∑
t=0

k1∑
i=1

r1,i,ρ1,t(i)+Kr,t
+

1
a(p− 1)d2

a−1∑
t=0

k2−1∑
i=0

r2,i,ρ2,t(i)−Kr,t
.

Let M [k]
t be the k × k submatrix of Mt defined by the block matrix

M
[k]
t =


(Cm,i

1,1 )1≤m,i≤k1 (Cm,i
1,2 )1≤m≤k1, 0≤i≤k2−1

(Cm,i
2,1 )0≤m≤k2−1, 1≤i≤k1 (Cm,i

2,2 )0≤m,i≤k2−1

 .

Then the terms of minimal valuation in the expansion of detM [k]
t come from the

product detM [k1]
t,1 · detM [k2]

t,2 ; they have p-adic order equal to s1,t + s2,t. The product

of the terms of minimal p-adic order in each of the detM [k]
t gives precisely the lowest

γ-power term in
∏a−1

t=0 detM [k]
t . This term can be written as a product γa(p−1)skUGν,r

for some p -adic unit U and some Gν,r ∈ Q[~a] which becomes independent of p when
p is large enough. Note that Gν,r is nonconstant since it contains a unique monomial
corresponding to the permutation ρt in Sk obtained by composing ρ1,t ∈ Sk1 and
ρ2,t ∈ Sk2 in the obvious way. Let Uν,r be the subspace of Ad1,d2 defined by Gν,r 6= 0.
Hence Uν,r over Q is open dense in Ad1,d2 .

Lemma 4.1. Write det(1 − αT ) =
∑∞

j=0 CjT
j. Fix 1 ≤ k ≤ d1 + d2. For p large

enough, we have

Ck ≡
a−1∏
t=0

detM [k]
t mod γ>a(p−1)sk ;(12)

furthermore (with p still large enough), we have

ordq(Ck) =
1
a

a−1∑
t=0

ordpdetM [k]
t = sk(13)

if and only if P (x) ∈ Uν,r(Fq).
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Proof. It is clear that the k× k submatrix of Mt whose determinant has the smallest
p-adic valuation shares the rows of M [k]

t . Let N be any ak×ak principal submatrix in
~M[a]. Let Nt be the intersection of N andMt as submatrix of ~M[a] for all 0 ≤ t ≤ a−1.
We may well assume thatNt is k×k matrix as in the proof of Lemma 2.2. Now suppose
for some t we have Nt 6= M

[k]
t share the rows of M [k]

t . Observe that row indices of
Nt are equal to the column indices or Nt+1 because N is principal. Note that in fact
we consider the subindices modulo a. Since Nt has at least one column outside of
the columns of M [k]

t , we have that Nt−1 has at least one row outside of the rows of
M

[k]
t−1. Recall that the difference between minimal row valuations in Mt is ≥ 1/d1

(resp. ≥ 1/d2) as p is large enough, depending on the location of the row in the
matrix blocks. In comparison, the difference between minimal column valuations in
Mt is convergent to 0 as p approaches ∞. As p→∞, we have by the same argument
as that in [12, Sections 4,5], ordp(detN) > ask. As Ck is the infinite sum of ±detN
as N ranges over all such ak× ak principal submatrices in ~M[a], the above inequality
yields our first congruence relation in (12).

Note that ordpdetM [k]
t ≥ ask, where equality holds if and only if P ∈ Uν,r(Fq) by

the paragraph above this lemma. Combined with the congruence relation in (12), our
second assertion in (13) follows. �

Let GNP(Ad1,d2 , χ
r
s; Fp) be the generic Newton polygon of twisted exponential

sums over Fp, namely,

GNP(Ad1,d2 , χ
r
s; Fp) = sup

P

NPq(P (x), χr
s; Fq)(14)

where P ranges over all Laurent polynomials in Ad1,d2(Fq) for all Fq in Fp. This
maximum exists by Grothendieck specialization theorem (see [9] or [17]).

To simplify notations, we abbreviate limp→∞,p≡ν mod s(·) by limν(·).

Proposition 4.2. Let notations be as above. Fix s ≥ 1 and 1 ≤ ν ≤ s − 1 coprime
to s. Let 0 ≤ r ≤ s− 1.
(a) For p ≡ ν mod s large enough (depending only on d1, d2, ν, χ

r
s) we have

(i) GNP(Ad1,d2 , χ
r
s; Fp) exists and it is given by the vertex points

(k, sk)0≤k≤d1+d2 .
(ii) we have

NP(P (x) mod P, χr
s) � GNP(Ad1,d2 , χ

r
s; Fp)

for any prime P over p in Q; these two polygons coincide if and only if
P ∈ Uν,r(Q).

(b) For every P (x) ∈ Uν,r(Q) we have that

lim
ν

NP(P mod P, χr
s) = HS(Ad1,d2 , ν, χ

r
s)

for any prime P over p in Q.

Proof. (a) Consider the previous lemma 4.1 and suppose p large enough as given
there. We have ordqCk(~a) ≥ sk and the equality holds if and only if P ∈ Uν,r(Q). On
the other hand, for p large enough, NPq(P , χr

s; Fq) coincides with the q-adic Newton
polygon of

∑d1+d2−1
j=0 CjT

j = det(1 − αT ) mod T d1+d2 . Thus GNP(Ad1,d2 , χ
r
s; Fp) is
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indeed given by vertices with coordinates (k, sk) for 0 ≤ k ≤ d1 + d2. This proves
(i). Moreover NP(P mod P, χr

s) = NPq(P , χr
s; Fq) � GNP(Ad1,d2 , χ

r
s; Fp) and they

coincide if and only if P ∈ Uν,r(Q). This proves (ii).
(b) Notice that εk,p → 0+ as p→∞, so for p→∞, we have

sk −→ k1(k1 − 1)
2d1

+
k1(1− λ)

d1
+
k2(k2 − 1)

2d2
+
k2λ

d2

from the right. From part (a) we know that for P ∈ Uν,r(Q) the Newton polygon
coincides with the generic Newton polygon, but the latter converges to the Hodge-
Stickelberger polygon as p approaches infinity by looking at the limit of sk. This
proves (b). �

5. Newton polygons for Laurent polynomials P (xs).

We shall prove the main theorems in this section. We do not suppose any more
that q ≡ 1 mod s. Let χs be a multiplicative character of order s on F×q . Let k ≥ 1

be an integer, and n := gcd(s, qk − 1). Let χn := χ
s/n
s be a multiplicative character

of F×
qk of order n. (We remark here that another approach to the main theorems is

to extend the base field Fq to make it large enough so that s|(q − 1). One can do
so since our Hodge-Stickelberger polygon does not depend on the choice of base field
even though it does depend on p mod s).

Lemma 5.1. With the above notations, we have

Sk(P (xs)) =
n−1∑
r=0

Sk(P , χr
n) =

∑
r′∈{0,...,s−1}, s

n |r′
Sk(P , χr′

s ).

Proof. By hypothesis, we may factor s as a product of two integers s = mn. Since
gcd(m, qk − 1) = 1, the map x 7→ xm is bijective on F×

qk . On the other hand, since
n|qk − 1, the kernel of the map x 7→ xn is the set of n-th roots of unity, and its image
is the set (F×

qk)n of n-th powers in F×
qk . Thus we get

Sk(P (xs)) =
∑

x∈F×
qk

ψqk(P (xs)) =
∑

x∈(F×
qk )n

nψqk(P (x)).

From the orthogonality relations on multiplicative characters, we have that∑n−1
r=0 χn(xr) = n if x ∈ (F×

qk)n and = 0 otherwise. Then the above equation
becomes

Sk(P (xs)) =
∑

x∈F×
qk

∑n−1
r=0 χn(xr)ψqk(P (x))

=
∑n−1

r=0

∑
x∈F×

qk
χn(xr)ψqk(P (x))

=
∑n−1

r=0 Sk(P , χr
n).

The last equation is straightforward. �

Observe that if s|(qk − 1), then we have Sk(P (xs)) =
∑s−1

r=0 Sk(P , χr
s).

Consider the permutation σa on {0, . . . , s − 1}, namely the permutation induced
by multiplication of q = pa modulo s. Its cycle decomposition (including 1-cycles)
is further splitting of that of σ as σa =

∏u
i=1 σ

a
i =

∏u
i=1

∏`i/`′i
j=1 σij for `′i -cycles σij ,
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where `′i|`i. Namely each permutation σa
i splits into `i/`′i many cycles of equal length

`′i.
Consider P ∈ Ad1,d2(Fq) as P/F

q`′
i

for i = 1, . . . , u. It is clear that s|(q`′i − 1).
For any cycle σi in the decomposition of σ (including 1-cycles), define

Li(T ) :=
`i/`′i∏
j=1

L(P/F
q`′

i
, χrij

s ;T `′i)(15)

where rij is an element in σij . This is a polynomial in Z[ζp, ζs][T ] of degree `i(d1+d2).

Lemma 5.2. We have

L(P (xs);T ) =
u∏

i=1

Li(T ).(16)

Proof. Since x 7→ xq is an automorphism of F×qn for any n and P (xq) = P (x)q, we
have

Sk(P (x), χr
n) = Sk(P (xq), χr

n)

=
∑

x∈F×
qk

χr
n(xq)ψqk(P (xq))

=
∑

x∈F×
qk

χr
n(xq)ψqk(P (x)).

This shows that Sk(P , χr
n) = Sk(P , χqr

n ). Consequently the sum in Lemma 5.1 may
be broken down into orbits of σa. Recall σa =

∏u
i=1

∏`i/`′i
j=1 σij . Let rij be an element

in σij . Since `′i|k is the same as saying σak(rij) = rij , that is qkrij ≡ rij mod s. But
s|(qk− 1)rij (combined with our hypothesis n = gcd(s, qk− 1)) is equivalent to s

n |rij .
Thus the sum in Lemma 5.1 can be phrased as

Sk(P (xs)) =
∑

rij , s
n |rij

`′i Sk(P , χrij
s ) =

∑
rij ,`′i|k

`′i Sk(P , χrij
s )

where rij runs in all distinct cycles σij in σa. Substitute this identity to twisted
L-function defined in Section 3.1, we get after some elementary computation

L(P (xs);T ) =
∏
rij

L(P/F
q`′

i
, χrij

s ;T `′i)

where the product ranges over all distinct cycles in σa. Group this product in terms
of cycle decomposition of σ, we finish our proof. �

Proof of Theorem 1.2. By Proposition 3.7 (ii) we have

NPq(L(P/F
q`′

i
, χrij

s ;T `′i)) = `′i NP
q`′

i
(L(P/F

q`′
i
, χrij

s ;T ))

� `′i HS(Ad1,d2 , ν, χ
rij
s )

= `′i HS(Ad1,d2 , ν, χ
ri
s )

for all 1 ≤ j ≤ `i/`
′
i. Thus

NPq(Li(T )) � `i
`′i

(`′i HS(Ad1,d2 , ν, χ
ri
s )) = `i HS(Ad1,d2 , ν, χ

ri
s ).
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By the split of the L-function in Lemma 5.2 and by Lemma 3.2, we have

NPq(P (xs); Fq) = �u
i=1NPq(Li(T ))

� �u
i=1`i HS(Ad1,d2 , ν, χ

ri
s ) = HS(Ad1,d2 , ν, s),

where the box-sum ranges over all cycle in the decomposition of σ =
∏u

i=1 σi. This
proves the first statement of Theorem 1.2.

For the last statement we need the following lemma:

Lemma 5.3. Write (q − 1)r/s =
∑
Kr,tp

t for 0 ≤ Kr,t ≤ p − 1 and write d =
lcm(d1, d2). Assume d ≥ 2. Then the following statements are equivalent:

(i) d| gcd(p− 1,Kr,t) for every 0 ≤ t ≤ a− 1 and 1 ≤ r ≤ s− 1.
(ii) p ≡ 1 mod sd.

Proof. We shall show (i)⇒ (ii). Write q = pa such that s|q − 1. We claim that
s|p − 1. Write ur := ( (q−1)r

s mod p) so that 0 ≤ ur ≤ p − 1. It is easy to see
that ur ≡ ru1 mod p for all r. By induction on r ≥ 1 we have ur = ru1 for all
1 ≤ r ≤ s− 1. Thus we have u1 = us−1/(s− 1) ≤ p−1

s−1 . On the other hand, we have
us = p− 1 ≡ su1 mod p. By the above bound on u1, we are forced to have u1 = p−1

s

and therefore s|p − 1. By examining the p-adic expansion (q − 1)/s =
∑a−1

i=0 (p−1
s )pi

we have d|p−1
s by hypothesis in (i). That is p ≡ 1 mod sd. This proves (ii). The other

direction (ii) ⇒ (i) is very easy and we hence omit its proof here. �

By the description of HS(Ad1,d2 , ν, s) in Lemma 3.2 and Lemma 5.2 above, the New-
ton polygon coincides with the Hodge-Stickleberger polygon exactly when the New-
ton polygons of twisted exponential sums coincide with their corresponding twisted
Hodge-Stickleberger polygon. Hence the last statement in the theorem follows imme-
diately from Proposition 3.7(iii) and Lemma 5.3. �

Let GNP(Ad1,d2 , s; Fp) be the generic Newton polygon for exponential sums of
P (xs)/Fp. That is,

GNP(Ad1,d2 , s; Fp) := sup
P

NPq(P (xs); Fq) = sup
P

NP(P (xs) mod P)

where P ranges in Ad1,d2(Fq) for any q, and where P ranges in Ad1,d2(Zp ∩Q) and P
is any prime over p in Q.

Recall σ is the permutation on {0, 1, . . . , s − 1} induced by multiplication by p
modulo s. For every cycle σi in σ we have a nonconstant polynomial Gν,r (see
Proposition 4.2) where r is an element in σi (it is independent of the choice of r in
σi.) Let Gν =

∏
Gν,r where r runs in distinct cycles σ1, . . . , σu of σ, then Gν is

polynomial in Q[~a] as well. Let Uν be the complement of Gν = 0 in Ad1,d2 . Then Uν

is a Zariski dense open subset of Ad1,d2 defined over Q. Our Theorems 1.2 and 1.4
are proved in the following stronger version. Its proof is similar to that of Theorem
1.2.

Theorem 5.4. Let notations be as in Theorem 1.4. Then
(a) For p ≡ ν mod s large enough (depending only on d1, d2, ν, s), we have

(i) GNP(Ad1,d2 , s; Fp) exists and NP(P (xs) mod P) � GNP(Ad1,d2 , s; Fp) for all
P ∈ Ad1,d2(Q);
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(ii) these two polygons coincide if and only if P ∈ Uν(Q).

(b) For P ∈ Uν(Q) we have

lim
ν

NPq(P (xs) mod P; Fq) = HS(Ad1,d2 , ν, s).

Proof. Our theorem follows immediately by applying Proposition 4.2 and the key
Lemma 5.2 in the same fashion as that in the proof of Theorem 1.2. We hence omit
details here. �

Finally we remark in the polynomial case, i.e., d2 = 0, similar argument can be
carried out which yields similar results. In fact, one can carry out calculations in the
spirit of [4] to get explicitly the generic Newton polygons, and Hasse polynomials that
describe exactly which polynomials attain this polygon.

6. Further questions and multivariable cases

6.1. Global permutation polynomials. Wan’s [17, Conjecture 1.12] was proved
in 1-variable case by [20, 21] and was generalized to Laurent polynomials in [12] that
there is a Zariski dense open subset U in Ad1,d2 defined over Q such that for every
f ∈ U(Q) we have its limit of Newton polygon approaching the Hodge polygon as
p → ∞. It has been fascinating researchers to know what (Laurent) polynomials f
over Q that would fail the asymptotic property limp→∞ NP(f mod P) = HP(Ad1,d2).
We will discuss below some known such (Laurent) polynomials. For simplicity we
restrict ourselves over Q instead of extension of Q in Q, one can extend our argument
to extensions of Q by the references we shall provide in the context.

For any positive integer n, let Dn(x, y) be the unique polynomial in Z[x, y] such
thatDn(u+v, uv) = un+vn. For any c ∈ Q the monic degree-n polynomialDn(x, c) in
Q[x] is called a degree-n Dickson polynomial over Q. If p divides c, then Dn(x, c) = xn

is a monomial which is a permutation on Fp if and only if gcd(n, p− 1) = 1. If p does
not divide c, it is a permutation on Fp if and only if gcd(n, p2 − 1) = 1 (due to [6],
see [13, Chapter 7] for quick reference).

For any l ≥ 1, let global permutation polynomial over Q of level l be a polynomial
h(x) in Q[x] such that x 7→ h(x) is a permutation on Fp, . . . ,Fpl for infinitely many
primes p. It is easy to see that Dn(x, c) in Q[x] is a global permutation polynomial
of level l if and only if every prime factor Q of n satisfies Q > l+ 1 (when c = 0) and
Q > 2l + 1 (when c 6= 0). Thus for level l = 1 it is equivalent to 2 - n (when c = 0)
and gcd(n, 6) = 1 (when c 6= 0).

It is known that every global permutation polynomial over Q is a composition of
Dickson polynomials Dn(x, c) over Q and linear polynomials over certain extensions
of Q. (This is proved for all number fields by Fried in [8].)

Our result in Theorem 1.4 implies that for any polynomial or Laurent polynomial
f(x) over Q containing xs = Ds(x, 0) as a right composition factor for any s > 2,
that is, f(x) = P (xs), the limit of p-adic Newton polygon does not exist as p → ∞.
Following Wan’s argument on polynomials which is communicated to the authors,
we demonstrate here that if f(x) is any Laurent polynomial in Ad1,d2(Q) containing
a global permutation polynomial of degree s > 1 of level 3 as a right composition
factor, that is f(x) = P (Ds(x, c)), then the limit limp→∞ NP(f(x) mod p) does not
exist. Without loss of generality, we assume d1 ≥ d2 for the rest of this paragraph.
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Since s must be odd, our Dickson polynomial fixes 0 and ∞, and finally we assume
the global permutation polynomial composition factor is Ds(x, c) for some s > 1
where s’s prime factors are all ≥ 7 (when c = 0) and ≥ 11 (when c 6= 0). Write
L(f(x); Fp) = 1+C1T +C2T

2 + · · · and L(P (x); Fp) = 1+c1T + · · · . For any prime p
such that Ds(x, c) permutes Fp,Fp2 ,Fp3 , we have Sk(f ; Fp) = Sk(P ; Fp) for 1 ≤ k ≤ 3.
By the lower bound for Newton polygon of L(P (x); Fp) (see [21]) we have ordpC2 =
ordpc2 ≥ 1/(d1/s) = s/d1 ≥ 7/d1. This implies the Newton polygon of L(f(x); Fp)
does not have a breakpoint at (2, 1/d1); similarly, since ordpc3 ≥ 2s/d1 ≥ 14/d1 a
breakpoint at (3, 3/d1) is impossible. On the other hand, we know that for infinitely
many prime p (precisely those p ≡ 1 mod lcm(sd1, sd2)) NP(f mod p) coincides with
its lower bound and has break point at (2, 1/d1) if d1 > d2 and at (3, 3/d1) if d1 = d2.
Thus limp→∞ NP(f mod p) does not exist.

We say two (Laurent) polynomials f(x) and h(x) over Q of degree d are Artin-
Schreier isomorphic if f(x) = h(wx+ v) for some d-th root of unity w and v ∈ Q (so
that the two Artin-Schreier curves defined by yp − y = f(x) and yp − y = h(x) are
isomorphic over Fp). For reader’s convenience, we quote a corrected version of Wan’s
conjecture below from [19, Chapter 5].

Conjecture 6.1 (Wan). If f(x) is a polynomial in Q[x] which does not contain a
global permutation polynomial of degree > 1 as right composition factor over Q (upto
Artin-Schreier isomorphism), then limp→∞ NPp(f mod p) exists and is equal to its
lower bound Hodge polygon.

6.2. A variant of Schur’s theorem. Let ψ : Fp → Q(ζp)× be the nontrivial
additive character defined by ψ(a) = ζa

p .

Conjecture 6.2. Let f(x) ∈ Q[x] be of degree d ≥ 2 and let S(f(x) mod p) =∑
x∈Fp

ψ(f(x)) be the first exponential sum mod p. Let ε > 0. If ordpS(f(x) mod p) >
1/d + ε for infinitely many primes p, then f(x) = P (Ds(x, c)) (up to Artin-Schreier
isomorphism) for some P ∈ Q[x] and a global permutation Dickson polynomial Ds of
degree s > 1.

The conjecture above can be considered as a generalization of the Schur’s conjecture
on global permutation polynomials since it can be phrased in the following term: “For
any f ∈ Q[x], if S(f(x) mod p) = 0 (i.e. ordp(S(f(x) mod p)) = +∞) for infinitely
many prime p then f(x) is a Dickson polynomial up to Artin-Schreier isomorphism”
(see [13, Chapter 7]).

Proposition 6.3. Let notation be as above and suppose Conjecture 6.2 holds. Then
the limit limp→∞ NP1(f(x) mod p) of first slope exists if and only if
f(x) 6= P (Ds(x, c)) (up to any Artin-Schreier isomorphism) for some P ∈ Q[x] and
a global permutation Dickson polynomial Ds(x) of degree s > 1.

Proof. It was already proved above that if f(x) contains a right Dickson composition
factor (of degree prime to 2 or 6 depending on whether c = 0 or not) then the limit
does not exist. Conversely, suppose the first slope limit does not exist. Since for
p ≡ 1 mod d we always have NP1(f mod p) = 1/d (and NP2(f mod p) = 2/d), this is
equivalent to the hypothesis of Conjecture 6.2 since NP1(f mod p) = ordpS1(f mod
p). �
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6.3. Multivariable cases. Our main result in Theorem 1.2 generalizes to multivari-
able cases. Let A∆ be the space of polynomials in n variables x1, . . . , xn with Newton
polyhedron ∆ ⊂ Rn, non degenerate with respect to ∆, parametrized by their coef-
ficients of monomials. Let P be a polynomial in A∆(Fq). Fix ~s = (s1, . . . , sn) for
integers sι ≥ 1. All primes p in this subsection will be coprime to s1 · · · sn. Let
~ν = p mod ~s, the least nonnegative residue. For each 1 ≤ ι ≤ n, let σι be the permu-
tation on the set {0, 1, . . . , sι − 1} induced by multiplication of p. We write its cycle
decomposition as

σι =
uι∏

iι=1

σι,i

for `ι,i-cycles σι,i (including 1-cycles!). For each 1 ≤ ι ≤ n and 1 ≤ iι ≤ uι, let

λι,iι
:=

∑
j∈σι,iι

j

sι`ι,iι

.

So 0 ≤ λι,iι
< 1. Write ~λ~i := (λ1,i1 , . . . , λn,in

). Let w∆ : Zn → Z be the weight
function with respect to a given ∆ as in [1] and [17]. It is easy to see that it extends
to Qn.

We define the Hodge-Stickelberger polygon HS(A∆, ~ν, ~s) in multivariable setting as
concatenation of line segments given by

(w∆(~m− ~λ~i), `1,i1 · · · `n,in
)

where ~m ranges over the n!V (∆) elements in C(∆)∩Zn as defined in [1], 1 ≤ ι ≤ n and
1 ≤ iι ≤ uι. One observes that this polygon has horizontal length s1 · · · snn!V (∆).

Theorem 6.4. Suppose P (x1, . . . , xn) over Fq is nondegenerate with respect to ∆ and
the dimension of the polyhedron ∆ is equal to n, then L(P (xs1

1 , . . . , x
sn
n )/Fq, T )(−1)n−1

is a polynomial. Moreover its Newton polygon lies over HS(A∆, ~ν, ~s) and their end-
points meet.

The proof of this theorem is parallel to the proof of Theorem 1.2 and will introduce
lots more notations and we hence omit it here. We want to emphasize here that
Theorem 6.4 does not include Theorem 1.2 as a corollary. It is slightly weaker in the
one-variable special case.

Finally we remark that the asymptotic result in Theorem 1.4 seems harder to
generalize. Nevertheless, from Theorem 6.4 one observes already that for each residue
class ~ν = (p mod ~s) there is a distinct lower bound HS(A∆, ~ν, ~s). So one can not
expect there is a limit on the generic Newton polygon as p→∞.
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[15] J-P Serre, Endomorphismes complètements continus des espaces de Banach p-adique, Inst.

Hautes. Études Sci. Publ. Math. 12 (1962), 69–85 (French).

[16] D. Wan, Newton polygons of zeta functions and L functions, Ann. of Math. 137 (1993), 249–293.
[17] , Variation of p-adic Newton polygons for L-functions of exponential sums, Asian J.

Math. 8 (2004), no. 3, 427–472.

[18] L. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Second
edition. Springer-Verlag.

[19] R. Yang, Newton polygons of L-functions of polynomials of the form xd + λx, Finite Fields

Appl. 9 (2003), no. 1, 59–88.
[20] H. J. Zhu, p-adic variation of L functions of one variable exponential sums, I. Amer. J. Math.

125 (2003).

[21] , Asymptotic variation of L functions of one-variable exponential sums, J. Reine Angew.
Math. 572 (2004), 219–233.

[22] , L-functions of exponential sums over one-dimensional affinoids: Newton over Hodge,
Inter. Math. Research Notices, (2004), no. 30, 1529–1550.

Laboratoire AOC, IUFM de la Guadeloupe, 97139 Les Abymes

E-mail address: rblache@iufm.univ-ag.fr
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