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A BIAS PHENOMENON ON THE BEHAVIOR OF DEDEKIND
SUMS

Emre Alkan, Maosheng Xiong, and Alexandru Zaharescu

Abstract. In this paper we present a bias phenomenon on the behavior of Dedekind

sums at visible points in a dilated region. Our results indicate that in more than three
quarters of the time the Dedekind sum increases as one moves from one visible point to

the next.

1. Introduction

Various bias phenomena in number theory have been studied for a long time, see
for example the work of Dirichlet [13] (page 9), Knapowski and Turán [30], [31], [35],
Rubinstein and Sarnak [34], Bombieri [10], Kaczorowski [29], Feuerverger and Martin
[15], Ford and Hudson [16], Ford and Konyagin [17], [18], [19], Granville and Martin
[24], Granville, Shiu and Shiu [25], Granville, Shparlinski and one of the authors [26].

In the present paper we provide another interesting example of bias, which appears
in the behavior of Dedekind sums. Dedekind sums occur naturally in the functional
equation of the η-function. The reciprocity laws of Dedekind sums and their general-
izations have been studied by a number of authors, including Rademacher and Gross-
wald ([33]) and Berndt ([7], [8], [9]). Various distribution properties of Dedekind sums
were studied by Hickerson [28], Bruggeman [11], Conrey, Fransen, Klein and Scott
[12], Girstmair [20], [21], [22], Girstmair and Schoissengeier [23], Vardi [36]. Here
we are concerned with the following problem. For each large positive real number
X consider the set A(X) of integer points (a, b) with relatively prime coordinates in
the first quadrant whose distance to the origin is ≤ X, and order them increasingly
with respect to the angles through origin measured in the counterclockwise direction.
Next, we compute the Dedekind sum s(a, b) at each such point and ask the following
question: what is the proportion of points (a, b) for which s(a, b) < s(a′, b′)? Here
(a, b) and (a′, b′) are consecutive in A(X). We will see that the limit

lim
X→∞

# {(a, b) ∈ A(X) : s(a, b) < s(a′, b′)}
# (A(X))

exists, and it is strictly larger than 1/2.
More generally, let us choose a simple, closed, continuous curve C in the plane.

Then R2 \C has two connected components, and we denote the bounded component
by Ω. We will also assume that the origin (0, 0) lies in Ω

⋃
C, and that Ω

⋃
C is
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star-shaped with respect to the origin, in the sense that for any point (x, y) ∈ Ω
⋃

C,
the line segment joining (0, 0) to (x, y) is contained in Ω

⋃
C. We denote the set of

all plane regions Ω that arise in this way by M . For each such region Ω ∈ M and
any large X > 0, let us denote by AΩ(X) the finite sequence of visible points in XΩ
ordered counterclockwise as above. Our aim is to estimate the proportion of points
(a, b) ∈ AΩ(X) for which s(a, b) < s(a′, b′), where (a, b) and (a′, b′) are consecutive in
AΩ(X). We will show that for each fixed Ω ∈ M , this proportion has a limit as X
tends to infinity. Surprisingly, for regions Ω ∈ M contained in the upper half plane,
this limit is independent of Ω, and equals 4√

5
− 1 ≈ 0.788854.... This shows that in

the upper half plane, in more than 3/4 of the time the Dedekind sum increases as we
move from one visible point to the next one.

Next, for each fixed h we ask a similar question for all possible orders among values
of the Dedekind sum at h-tuples of consecutive visible points. Let Ω ∈ M , X > 0,
and order AΩ(X) as

AΩ(X) = {Pi = (ai, bi) : 1 ≤ i ≤ N = N(X, Ω)}.

Then define a function vh : AΩ(X) −→ {0, 1}h as vh(Pi) = vh(ai, bi) = (v1, . . . , vh),
where

vj =
{

0 : s(ai+j−1, bi+j−1) < s(ai+j , bi+j),
1 : s(ai+j−1, bi+j−1) ≥ s(ai+j , bi+j),

1 ≤ j ≤ h.

Here vh(Pi) is not defined for i satisfying i + h > N , but the number of such i is at
most h and they are negligible as N → ∞. We are concerned with the problem of
the existence of the limit

lim
X→∞

#{P ∈ AΩ(X) : vh(P ) = v}
#(AΩ(X))

.

In order to state our main result in full generality, we introduce more notation. For
any region Ω ⊂ R2, denote by A(Ω) its area and let

Ωy≥0 := {(x, y) ∈ Ω : y ≥ 0}, Ωy≤0 := {(x, y) ∈ Ω : y ≤ 0}.

Denote

T = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1, x + y > 1},

and consider for each (x, y) ∈ T , the sequence (Lj(x, y))j≥0 defined by L0(x, y) =
x, L1(x, y) = y and recursively, for j ≥ 0,

Lj+2(x, y) =
[
1 + Lj(x, y)
Lj+1(x, y)

]
Lj+1(x, y)− Lj(x, y),

where [ . ] denotes the integer part function. Let

λ1 =
3−

√
5

2
, λ2 =

3 +
√

5
2

,

and for j ≥ 1, define

T j(0) =
{

(x, y) ∈ T : λ1 <
Lj−1(x, y)
Lj(x, y)

< λ2

}
, T j(1) = T \T j(0).



A BIAS PHENOMENON ON THE BEHAVIOR OF DEDEKIND SUMS 1041

For any v = (v1, . . . , vh) ∈ {0, 1}h, denote

Tv =
h⋂

j=1

T j(vj).(1)

Theorem 1. For any Ω ∈ M , any positive integer h and any vector v ∈ {0, 1}h,

lim
X→∞

#{P ∈ AΩ(X) : vh(P ) = v}
#(AΩ(X))

= 2 ·
A(Ωy≥0)A(Tv) + A(Ωy≤0)A(Tv+1)

A(Ω)
,

where 1 = (1, . . . , 1) ∈ {0, 1}h, and the addition v + 1 is taken modulo 2.

Corollary 1. For any Ω ∈ M such that Ω ⊂ R2
y≥0 = {(x, y) : y ≥ 0}, any positive

integer h and any vector v ∈ {0, 1}h,

lim
X→∞

#{P ∈ AΩ(X) : vh(P ) = v}
#(AΩ(X))

= 2A(Tv).

We remark that for h = 1 one has 2A(T0) = 4√
5
− 1, as mentioned above. For

h = 2, we find that 2A(T(0,0)) = − 1291
399 + 166

19
√

5
≈ 0.671646.... This means that

when one chooses randomly three consecutive visible points (a, b), (a′, b′), (a′′, b′′) in
XΩ, the probability that one has s(a, b) < s(a′, b′) < s(a′′, b′′) is 0.671646... in the
limit as X → ∞. Note that this is larger than the product between the probability
that s(a, b) < s(a′, b′) and the probability that s(a′, b′) < s(a′′, b′′), which equals(

4√
5
− 1
)2

≈ 0.622291....
The key ingredients in the proof of Theorem 1 are the reciprocity law of Dedekind

sums, in the form of Lemma 1, the technique of counting visible points in various
regions by employing Kloosterman sums, in the form of Lemma 2, and the properties
of the area preserving map T , which provides us with an explicit way of producing
chains of consecutive Farey fractions. All these are reviewed briefly in Section 2 below.
Then in Section 3 we combine them to obtain certain asymptotic formulas, which are
further used in Section 4 in order to complete the proof of Theorem 1.

2. Dedekind sums and visible points

For any real number x, let ((x)) be the sawtooth function defined as

((x)) =
{

x− [x]− 1
2 , x is not an integer,

0, otherwise.

For positive integers h, k the classical Dedekind sum s(h, k) is defined by

s(h, k) =
∑

s (mod k)

(( s

k

))((hs

k

))
,

where the notation s (mod k) means that s runs over a complete residue system
modulo k. Since the sawtooth function has period one, s(h, k) is a periodic function
of h with period k. The following lemma follows from formula (38) on page 29 of [33],
which is in term a consequence of the reciprocity law of Dedekind sums.
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Lemma 1. For any positive integers a, b, c, d satisfying ad− bc = 1, one has

s(a, c)− s(b, d) = −1
4

+
1
12

(
d

c
+

c

d
+

1
cd

)
.

Next we recall some results on Farey fractions. For an exposition of their basic
properties, the reader is referred to [27]. Let F

Q
= {γ1, . . . , γN(Q)} denote the Farey

sequence of order Q with 1/Q = γ1 < γ2 < · · · < γN(Q) = 1. It is well-known that

N(Q) =
Q∑

j=1

φ(j) =
3Q2

π2
+ O(Q log Q).

Write γi = ai/qi in reduced form, i.e., ai, qi ∈ Z, 1 ≤ ai ≤ qi ≤ Q, gcd(ai, qi) = 1. For
any two consecutive Farey fractions ai/qi < ai+1/qi+1, one has ai+1qi − aiqi+1 = 1
and qi + qi+1 > Q. Conversely, if q and q′ are two coprime integers in {1, . . . , Q}
with q + q′ > Q, then there are unique a ∈ {1, . . . , q} and a′ ∈ {1, . . . , q′} for which
a′q − aq′ = 1, and a/q < a′/q′ are consecutive Farey fractions of order Q. Therefore,
the pairs of coprime integers (q, q′) with q + q′ > Q are in one-to-one correspondence
with the pairs of consecutive Farey fractions of order Q. Moreover, the denominator
qi+2 of γi+2 can be expressed (cf. [1]) by means of the denominators of γi and γi+1

as

qi+2 =
[
Q + qi

qi+1

]
qi+1 − qi,

where [ . ] denotes the greatest integer part function. By induction, for any j ≥ 2, the
denominator qi+j of γi+j can be expressed in terms of the denominators of γi, γi+1.
More precisely, let T denote the Farey triangle

T = {(x, y) ∈ [0, 1]2 : x + y > 1},

and consider, for each (x, y) ∈ T , the sequence (Li(x, y))i≥0 defined by L0(x, y) =
x, L1(x, y) = y and recursively, for i ≥ 2,

Li(x, y) =
[
1 + Li−2(x, y)

Li−1(x, y)

]
Li−1(x, y)− Li−2(x, y).

Then for all i, j ≥ 0 with i + j ≤ N(Q), we have

qi+j

Q
= Lj

(
qi

Q
,
qi+1

Q

)
.

Such formulas prove to be very useful in the study of various questions on the distri-
bution of Farey fractions (see, for example [1],[2],[3]). The bijective, piecewise smooth
and area preserving map T : T −→ T defined by ([2])

T (x, y) =
(

y,

[
1 + x

y

]
y − x

)
also plays an important role in recent developments of the subject.

Let us consider the set of visible lattice points in the plane,

Z2
vis = {(a, b) ∈ Z2 : gcd(a, b) = 1},
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and for each region Ω in R2 and each C1 function f : Ω −→ C, let us denote

||f ||∞,Ω = sup
(x,y)∈Ω

|f(x, y)|,

and

||Df ||∞,Ω = sup
(x,y)∈Ω

(∣∣∣∣∂f

∂x
(x, y)

∣∣∣∣+ ∣∣∣∣∂f

∂y
(x, y)

∣∣∣∣) .

We need the following variation of a result from [2]. For any subinterval I = [α, β] of
[0, 1], let Ia = [(1− β)a, (1− α)a].

Lemma 2. Let Ω ⊂ [1, R] × [1, R] be a convex region and let f be a C1 function on
Ω. For any subinterval I ⊂ [0, 1] one has∑

(a,b)∈Ω
T

Z2
vis,

b̄∈Ia

f(a, b) =
6|I|
π2

∫∫
Ω

f(x, y) dxdy + FR,Ω,f,I,

where

FR,Ω,f,I �δ mf ||f ||∞,ΩR3/2+δ + ||f ||∞,ΩR log R

+||Df ||∞,ΩArea(Ω) log R,

for any δ > 0, here b̄ denotes the multiplicative inverse of b (mod a), i.e., 1 ≤ b̄ ≤ a−
1, bb̄ ≡ 1 (mod a), mf is an upper bound for the number of intervals of monotonicity
of each of the functions y 7→ f(x, y).

This is Lemma 8 in [2], where Weil type estimates ([37], [14]) for certain weighted
incomplete Kloosterman sums play a crucial role in the proof.

3. Preliminary results

A concept that plays an important role in questions on the local distribution of
Farey points is that of the index of a Farey fraction. In the language of visible points,
the index is intrinsically related with the position of consecutive visible points in terms
of their distance to the origin and the angle between the corresponding rays from the
origin to these points, and in this way it naturally appears in some applications to
questions originating in mathematical physics such as billiards and periodic Lorentz
gas ([4], [5], [6]). Recall that for 1 < i < N(Q), the index of the fraction γi in F

Q
is

defined by

v
Q
(γi) =

[
Q + qi−1

qi

]
=

qi−1 + qi+1

qi
.

The index also plays an important role in the proof of Theorem 1. In what follows it is
essential to have good control over the index of each element in a chain of consecutive
visible points, and this is our main strategic step in the process of proving the following
two lemmas.

Lemma 3. Fix a positive integer h and a subinterval I = [α, β] ⊂ [0, 1]. Let

SQ,h = #
{

ai

qi
∈ F

Q

⋂
I : s(ai, qi) ≥ s(ai+1, qi+1) ≥ · · · ≥ s(ai+h, qi+h)

}
.
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Then for any ε > 0,

SQ,h =
6|I|Q2

π2
A(T0) + Oε

(
Q2− 1

h+1+ε
)

,

where the vector 0 = (0, . . . , 0) ∈ {0, 1}h and T0 is defined as in (1).

Proof. Let a
q < a′

q′ be consecutive Farey fractions. We know that a′q − aq′ = 1. By
Lemma 1 one has

s(a′, q′)− s(a, q) = −1
4

+
1
12

(
q

q′
+

q′

q
+

1
qq′

)
.

Hence s(a, q) ≥ s(a′, q′), if and only if

−1
4

+
1
12

(
q

q′
+

q′

q
+

1
qq′

)
≤ 0,

since a, q, a′, q′ ∈ N, this is equivalent to q2 + q′2 − 3qq′ < 0, and therefore

λ1 =
3−

√
5

2
<

q

q′
< λ2 =

3 +
√

5
2

.

We have

SQ,h = #

ai

qi
∈ F

Q

⋂
I :

λ1 < qi

qi+1
< λ2

...
λ1 < qi+h−1

qi+h
< λ2

 .

For a large positive number L < Q which will be chosen later, denote

SQ,h,L = #


ai

qi
∈ F

Q

⋂
I :

λ1 < qi

qi+1
< λ2,

λ1 < qi+1
qi+2

< λ2, qi+1 > Q
L ,

...
...

λ1 < qi+h−1
qi+h

< λ2, qi+h−1 > Q
L ,

 ,

we have the inequalities

SQ,h,L ≤ SQ,h ≤ SQ,h,L + #

h−1⋃
j=1

{
ai

qi
∈ F

Q

⋂
I : qi+j ≤

Q

L

}
≤ SQ,h,L + (h− 1) ·

∑
q≤Q

L

q

≤ SQ,h,L + (h− 1)
Q2

L2
,

hence

SQ,h = SQ,h,L + O

(
Q2

L2

)
.(2)
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For ai

qi
∈ F

Q

⋂
I with qi+1 > Q/L, . . . , qi+h−1 > Q/L, the index satisfies

v
Q

(
ai+1
qi+1

)
= qi+qi+2

qi+1
< 2Q

Q/L = 2L,

...
v

Q

(
ai+h−1
qi+h−1

)
= qi+h−2+qi+h

qi+h−1
< 2Q

Q/L = 2L,

so that we may write SQ,h,L as

SQ,h,L =
∑

1≤k1,...,kh−1<2L

∑
ai
qi
∈F

Q

T
I,

qi+1> Q
L , v

Q

“
ai+1
qi+1

”
=k1,

...
qi+h−1> Q

L , v
Q

“
ai+h−1
qi+h−1

”
=kh−1,

∑
λ1<

qi
qi+1

<λ2,

...
λ1<

qi+h−1
qi+h

<λ2.

1.

First of all for consecutive Farey fractions ai

qi
< ai+1

qi+1
one has ai+1qi − aiqi+1 = 1,

hence ai ≡ −q̄i+1 (mod qi), where the integer x̄(1 ≤ x̄ ≤ q) denotes the multiplicative
inverse of x (mod q) for any integer x with gcd(x, q) = 1. Since 1 < ai < qi, one has
ai = qi − q̄i+1 and

ai

qi
= 1− q̄i+1

qi
∈ F

Q

⋂
I⇐⇒ q̄i+1 ∈ Iqi

= [(1− β)qi, (1− α)qi],

where I = [α, β] ⊂ [0, 1]. Next for any positive integers h, k1, k2, . . . , kh−1, let

Tk1,...,kh−1 =
h−1⋂
j=1

T−j+1Tkj
.

(When h = 1, this is just T .) Then for any (x, y) ∈ Tk1,...,kh−1 , we have

L0(x, y) = x, L1(x, y) = y,

and recursively,

Li+1(x, y) = kiLi(x, y)− Li−1(x, y), 1 ≤ i ≤ h− 1.

Therefore there exist real numbers ωi, υi depending only on k1, . . . , kh−1 such that

Li(x, y) = ωix + υiy, 0 ≤ i ≤ h.

The set Tk1,...,kh−1 ⊂ T is obtained by intersecting finitely many half planes, and so
it is a finite union of convex polygons. Denote for any t ≥ 0,

Hk1,k2,...,kh−1(t) =

(x, y) ∈ Tk1,k2,...,kh−1 :
λ1 <

Lj(x,y)
Lj+1(x,y) < λ2, 0 ≤ j ≤ h− 1,

Lj(x, y) > t, 1 ≤ j ≤ h− 1,


Here Hk1,...,kh−1(t) is also a finite union of convex polygons. We now return to the

formula of SQ,h,L. Since for any j ≥ 0, qi+j = QLj

(
qi

Q , qi+1
Q

)
, we see that

v
Q

(
ai+1
qi+1

)
= k1, vQ

(
ai+2
qi+2

)
= k2, . . . , vQ

(
ai+h−1
qi+h−1

)
= ki+h−1,

λ1 < L0(qi/Q,qi+1/Q)
L1(qi/Q,qi+1/Q) < λ2, . . . , λ1 < Lh−1(qi/Q, qi+1/Q)

Lh(qi/Q,qi+1/Q) < λ2,

qi+1 > Q
L , qi+2 > Q

L , . . . , qi+h−1 > Q
L ,
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if and only if (
qi

Q
,
qi+1

Q

)
∈ Hk1,...,kh−1

(
1
L

)
.

Therefore

SQ,h,L =
∑

1≤k1,...,kh−1<2L

∑
(qi, qi+1)∈QHk1,...,kh−1( 1

L ) T
Z2

pr

q̄i+1∈[(1−β)qi,(1−α)qi]

1.

Applying Lemma 2 we obtain that

SQ,h,L =
∑

1≤k1,...,kh−1<2L

(
6|I|Q2

π2

∫∫
Hk1,...,kh−1( 1

L )
1 dxdy + Oε

(
Q

3
2+ε
))

=
6|I|Q2

π2

∫∫
H ( 1

L )
1 dxdy + Oε

(
Lh−1Q

3
2+ε
)

,

where for any t ≥ 0,

H (t) =
⋃

k1,...,kh−1

Hk1,...,kh−1 (t)

=

(x, y) ∈ T :
λ1 <

Lj(x,y)
Lj+1(x,y) < λ2, 0 ≤ j ≤ h− 1

Lj(x, y) > t, 1 ≤ j ≤ h− 1

 .

Since T : T → T is a bijective, continuous and area-preserving map and for any
integer r ≥ 0, T r(x, y) = (Lr(x, y), Lr+1(x, y)) for (x, y) ∈ T , we see that∫∫

{(x,y)∈T :Lr(x,y)≤ 1
L}

1 dxdy =
∫∫
{(u,v)∈T :u≤ 1

L}
1 dudv =

1
2L2

,

hence ∫∫
H ( 1

L )
1 dxdy =

∫∫
T0

1 dxdy + O

(
1
L2

)
,

where

T0 =
{

(x, y) ∈ T : λ1 <
Lj(x, y)

Lj+1(x, y)
< λ2, 0 ≤ j ≤ h− 1

}
.

Therefore

SQ,h,L =
6|I|Q2

π2
A(T0) + O

(
Q2

L2

)
+ Oε

(
Lh−1Q

3
2+ε
)

.

Letting Q2

L2 = Lh−1Q
3
2 , we may choose L = Q

1
2(h+1) , and using (2) we obtain that for

any ε > 0,

SQ,h = SQ,h,L + O

(
Q2

L2

)
=

6|I|Q2

π2
A(T0) + Oε

(
Q2− 1

h+1+ε
)

.

This completes the proof of Lemma 3. �
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Lemma 4. Fix a positive integer h and a subinterval I = [α, β] ⊂ [0, 1]. Let

S′Q,h = #
{

ai

qi
∈ F

Q

⋂
I : s(qi, ai) ≤ s(qi+1, ai+1) ≤ · · · ≤ s(qi+h, ai+h)

}
.

Then for any ε > 0,

S′Q,h =
6|I|Q2

π2
A(T0) + Oε

(
Q2− 1

h+1+ε
)

.

Proof. For consecutive Farey fractions a
q < a′

q′ , a′q−aq′ = 1. Using Lemma 1 we have

s(q, a)− s(q′, a′) = −1
4

+
1
12

(
a

a′
+

a′

a
+

1
aa′

)
.

Therefore
s(q, a) ≤ s(q′, a′) ⇐⇒ λ1 <

a

a′
< λ2.

Since a
a′ = q

q′ −
1

a′q′ , we have λ1 − 1
a′q′ < q

q′ < λ2 − 1
a′q′ . We may write S′Q,h as

S′Q,h = #

ai

qi
∈ F

Q

⋂
I :

λ1 − 1
ai+1qi+1

< qi

qi+1
< λ2 − 1

ai+1qi+1
,

...
λ1 − 1

ai+hqi+h
< qi+h−1

qi+h
< λ2 − 1

ai+hqi+h
.

 .

For a large positive number L < Q which will be chosen later, denote

S′Q,h,L,1 = #


ai

qi
∈ F

Q

⋂
I :

λ1 − L
Q < qi

qi+1
< λ2, qi+1 > Q

L

...
...

λ1 − L
Q < qi+h−1

qi+h
< λ2, qi+h > Q

L ,

 ,

and

S′Q,h,L,2 = #


ai

qi
∈ F

Q

⋂
I :

λ1 < qi

qi+1
< λ2 − L

Q , qi+1 > Q
L

...
...

λ1 < qi+h−1
qi+h

< λ2 − L
Q , qi+h > Q

L ,

 ,

we have the inequalities

S′Q,h,L,2 ≤ S′Q,h ≤ S′Q,h,L,1.(3)

For S′Q,h,L,1, similar computation shows that for any ε > 0,

S′Q,h,L,1 =
6|I|Q2

π2
A
(
H1, L

Q

)
+ O

(
Q2

L2

)
+ Oε

(
Lh−1Q

3
2+ε
)

,

where where for any t ≥ 0,

H1,t =
{

(x, y) ∈ T : λ1 − t <
Lj(x, y)

Lj+1(x, y)
< λ2, 0 ≤ j ≤ h− 1

}
.

Since

T0 −H1, L
Q

=
{

(x, y) ∈ T : λ1 −
L

Q
<

Lj(x, y)
Lj+1(x, y)

≤ λ1, 0 ≤ j ≤ h− 1
}

⊂
{

(x, y) ∈ T : λ1 −
L

Q
<

x

y
≤ λ1

}
,
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we see that

A
(
H1, L

Q

)
= A

(
T0

)
+ O

(
L

Q

)
.

Therefore

S′Q,h,L,1 =
6|I|Q2

π2
A
(
T0

)
+ O(QL) + O

(
Q2

L2

)
+ Oε

(
Lh−1Q

3
2+ε
)

.

Choosing L = Q
1

2(h+1) , we get that for any ε > 0,

S′Q,h,L,1 =
6|I|Q2

π2
A(T0) + Oε

(
Q2− 1

h+1+ε
)

.

Similarly the same asymptotic formula holds true for S′Q,h,L,2. Hence the inequalities
(3) give the asymptotic formula for S′Q,h. This completes the proof of Lemma 4. �

4. Proof of theorem 1

Proof. We now have all the necessary ingredients to prove Theorem 1. Let us fix a
region Ω ∈ M . It is known that (see [3])

# (AΩ(X)) � 6A(Ω)
π2

X2.

Without loss of generality, take v = 0 and let us study the asymptotic behavior of
SΩ,0(X) = # {P ∈ AΩ(X) : vh(P ) = 0} as X →∞. Denote

Ωi = Ω
⋂{

(r, θ) :
(i− 1)π

4
≤ θ <

iπ

4
, 1 ≤ i ≤ 8

}
,

and
SΩi,0(X) = # {P ∈ AΩi

(X) : v(P ) = 0} .

Then

SΩ,0(X) =
8∑

i=1

SΩi,0(X) + O(1).(4)

We consider SΩ2,0(X) first. Assume that in polar coordinates (r, θ),

Ω2 = {(r, θ) : r ≤ f(θ), θ1 ≤ θ ≤ θ2},

where f is a bounded non-negative continuously differentiable function and π
4 ≤ θ1 <

θ2 ≤ π
2 . Fix a large integer L > 0, denote

α =
θ2 − θ1

L
, αi = θ1 + i · α, 0 ≤ i ≤ L.

Suppose the rays {(r, θ) : θ = αi}, 0 ≤ i ≤ L intercept the boundary of Ω2 at points
A0, A1, . . . , AL counter-clockwise. At each point Ai, 0 ≤ i ≤ L−1, draw a horizontal
line which intercepts the ray {(r, θ) : θ = αi+1} at the point A′i. We see that

Ai = (f(αi) cos(αi), f(αi) sin(αi)) , 0 ≤ i ≤ L− 1,

A′i =
(

f(αi) cos(αi) ·
tan(αi)

tan(αi+1)
, f(αi) sin(αi)

)
, 0 ≤ i ≤ L− 1.
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Let Ω2,i be the i-th region of Ω2 inside the rays
−−→
OAi,

−−−−→
OAi+1 and 4i be the triangle

OAiA
′
i, one has

A (Ω2,i)−A (4i) �f

1
L2

,

and thus

#
({

P ∈ AΩ2,i(X)
})

� 6A(Ω2,i)X2

π2

=
6A(4i)X2

π2
+ Of

(
X2

L2

)
.

Therefore

SΩ2,i,0(X) � S4i,0(X) + Of

(
X2

L2

)
.(5)

Fix i and for the triangle 4i, let A′i = (x′i, yi), Ai = (xi, yi), Xi = Xyi and Ii =[
x′i
yi

, xi

yi

]
⊂ [0, 1]. Suppose the visible points of X4i are Pj = (aj , bj), 1 ≤ j ≤ N =

N(4i, X), where the rays
−−−→
OPN ,

−−−−→
OPN−1, . . . ,

−−→
OP1 are distributed counterclockwise

around the origin. We see that a1
b1

< a2
b2

< · · · < aN

bN
are consecutive Farey fractions

of order Xi inside the interval Ii. By Lemma 3, for any ε > 0 and X →∞,

S4i,0(Xi) = # {P ∈ A4i(X) : v(P ) = 0}
= # {(aj , bj) ∈ A4i(X) : s(aj+h, bj+h) ≤ · · · ≤ s(aj , bj)}

= #
{

aj

bj
∈ F

X i

⋂
Ii : s(aj , bj) ≥ · · · ≥ s(aj+h, bj+h)

}
=

6|Ii|X2
i

π2
A(T0) + Oε

(
X

2− 1
h+1+ε

i

)
=

6|Ii|X2

π2
A(T0)y2

i + Of,ε

(
X2− 1

h+1+ε
)

.

By (5) and the above we have

SΩ2,0(X) =
L∑

i=0

SΩ2,i,0(X) + O(L)

�
L∑

i=0

(
S4i,0(X) + Of

(
X2

L2

))
+ O(L)

=
6A(T0)X2

π2

L∑
i=0

|Ii|y2
i + Of,ε

(
LX2− 1

h+1+ε
)

+ Of

(
X2

L

)
+ O(L).
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One sees that
L∑

i=0

|Ii|y2
i =

L∑
i=0

(cot(αi)− cot(αi+1)) f(αi)2 sin(αi)2

=
L∑

i=0

1
sin(ξi)2

f(αi)2 sin(αi)2 (∃ ξi ∈ [αi, αi+1])

=
∫ θ2

θ1

f2(θ) dθ + Of

(
1
L

)
= 2A(Ω2) + Of

(
1
L

)
.

Therefore

SΩ2,0(X) �
12A(T0)A(Ω2)X2

π2
+ Oε

(
X2− 1

h+1+ε
)

+ Of

(
X2

L

)
+ O(L).

Choosing 0 < ε < 1
h+1 , we may let X →∞ and then L →∞ to obtain that

lim
X→∞

SΩ2,0(X)
# (AΩ(X))

= 2 ·
A(T0)A(Ω2)

A(Ω)
.(6)

Since continuous functions can be approximated by C∞ functions uniformly inside
a closed interval, by a standard approximation procedure we see that (6) also holds
true if f is only continuous.

We treat Ω1 similarly with a slight difference. We will sketch the proof. Fix a large
integer L > 0 and let αi = π

4L , the rays {(r, θ) : θ = αi} intercept Ω1 at points Ai’s.
At each point Ai+1, draw a vertical line which intercept the ray {(r, θ) : θ = αi} at
the point A′i. We use the triangle 4OAiA′

i
to estimate the region of Ω1 inside the rays

{(r, θ) : θ = αi} and {(r, θ) : θ = αi+1}. Following exactly the same argument and
applying Lemma 4, we can obtain that

lim
X→∞

SΩ1,0(X)
# (AΩ(X))

= 2 ·
A(T0)A(Ω1)

A(Ω)
.

Next for Ωi, 3 ≤ i ≤ 8, notice that

s(−a, b) = −s(a, b), s(a,−b) = s(a, b),

the computation of asymptotic formulas in these regions can be reduced to that in
regions Ω1 and Ω2, and we have

lim
X→∞

SΩi,0(X)
# (AΩ(X))

= 2 ·
A(T0)A(Ωi)

A(Ω)
, 1 ≤ i ≤ 4,

lim
X→∞

SΩi,0(X)
# (AΩ(X))

= 2 ·
A(T1)A(Ωi)

A(Ω)
, 5 ≤ i ≤ 8.

Then finally (4) gives one that

lim
X→∞

SΩ,0(X)
# (AΩ(X))

= 2 ·
A(T0)A(Ωy≥0) + A(T1)A(Ωy≤0)

A(Ω)
.

This completes the proof of Theorem 1 for the special case v = 0. The other cases
can be treated in a similar fashion. �
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