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AN S3-SYMMETRIC LITTLEWOOD-RICHARDSON RULE

Hugh Thomas and Alexander Yong

1. Introduction

Fix Young shapes λ, µ, ν ⊆ Λ := ` × k. Viewing the Littlewood-Richardson
coefficient Cλ,µ,ν as the intersection number of generic translates of the Schubert
varieties Xλ, Xµ, Xν in the Grassmannian of `-dimensional planes in C`+k, one has
the obvious S3-symmetries:

(1) Cλ,µ,ν = Cµ,ν,λ = Cν,λ,µ = Cµ,λ,ν = Cν,µ,λ = Cλ,ν,µ.

There is interest in the combinatorics of these symmetries. The Littlewood-
Richardson coefficients appear in a variety of contexts in addition to the Schubert
calculus context described above, such as the representation theory of the symmetric
group/complex general linear groups; see, e.g., [Fu97]. Combinatorially, Cλ,µ,ν arises
as follows: Let sλ := sλ(x1, x2, . . . x`) be the Schur polynomial indexed by λ; see, e.g.,
[St99, Chapter 7]. These form a Z-linear basis of the ring Λ(x1, . . . , x`) of symmetric
polynomials in the variables x1, . . . , x` (when λ ranges over all Young shapes with at
most ` rows), and the Littlewood-Richardson coefficients are the structure constants
with respect to this basis. Moreover, Cλ,µ,ν is the coefficient of s`×k in the expansion
of sλsµsν in this basis, and thus Cλ,µ,ν is clearly symmetric in the input data λ, µ, ν.
However, previously studied Littlewood-Richardson rules for Cλ,µ,ν manifest at most
three of the six symmetries, see, e.g., the original rule proposed by [LiRi34] as well as
work of [BeZe91, KnTaWo01, VaPa05, HeKa06], and the references therein.

We construct a carton rule for Cλ,µ,ν that transparently and uniformly explains
all of the symmetries (1).

Figure 1 depicts a carton, i.e., a three-dimensional box with a grid drawn rec-
tilinearly on the six faces of its surface. Along the “∅, Tλ, Tµ” face, the grid has
(|µ| + 1) × (|λ| + 1) vertices (including ones on the bounding edges of the face); the
remainder of the grid is similarly determined. Define a carton filling to be an as-
signment of a Young diagram to each vertex of the grid so the shapes increase one

box at a time while moving away from ∅, and so that, for any subgrid
α − β

| |

γ − δ

the

Fomin growth assumptions hold:

(F1) if α is the unique shape containing γ and contained in β, then δ = α;
(F2) otherwise there is a unique such shape other than α, and this shape is δ.

Notice that these conditions are symmetric in α and δ.

Received by the editors May 20, 2007.

1027



1028 HUGH THOMAS AND ALEXANDER YONG

Initially, assign the shapes ∅ and Λ to opposite corners, as in Figure 1. A standard
Young tableau T ∈ SYT(σ/π) of shape σ/π is equivalent to a shape chain in Young’s
lattice, e.g.,

T = 1 5

2 3

4↔ − − − − −

by starting with the unfilled inner shape, and adding one box at a time to indicate
the box containing 1, then 2, etc. Fix a choice of standard tableaux Tλ, Tµ and Tν of
respective shapes λ, µ and ν. Initialize the indicated edges with the shape chains for
these tableaux.

Let CARTONSλ,µ,ν be all carton fillings with the above initial data.

Main Theorem. The Littlewood-Richardson coefficient Cλ,µ,ν equals
#CARTONSλ,µ,ν.
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Figure 1. The carton rule counts Cλ,µ,ν by assigning Young dia-
grams to the vertices of the six faces

This rule manifests bijections between CARTONSλ,µ,ν and CARTONSδ,ε,ζ for permu-
tations (δ, ε, ζ) of (λ, µ, ν). We remark that it can be stated as counting lattice points
of a 0, 1-polytope, and readily extends to the setting of [ThYo06, ThYo07].

The Theorem is proved in Section 2, starting from the jeu de taquin formulation of
the Littlewood-Richardson rule, and using Fomin’s growth diagram ideas. In Figure 2
we give an example of the Main Theorem. An extended example is given in Section 3.

2. Tableau facts and proof of the Main Theorem

2.1. Tableau sliding. There is a partial order ≺ on the rectangle Λ where x ≺ y

if x is weakly northwest of y. Given T ∈ SYT(ν/λ) consider x ∈ λ, maximal in
≺ subject to being less than some box of ν/λ. Associate another standard tableau
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∅

1 2

3
= µ

1 2

= λ

ν = 1

= Λ

Figure 2. The “front” three faces of a carton filling for
C(2),(2,1),(1) = 1. The choices of tableaux Tλ, Tµ and Tν are as shown.

jdtx(T), called the jeu de taquin slide of T into x: Let y be the box of ν/λ with the
smallest label, among those covering x. Move the label of y to x, leaving y vacant.
Look for boxes of ν/λ covering y and repeat, moving into y the smallest label among
those boxes covering it. Then jdtx(T) results when no further slides are possible.
The rectification of T is the iteration of jeu de taquin slides until terminating at a
straight shape standard tableau rectification(T).

We can impose a specific “inner” U ∈ SYT(λ) that encodes the order in which the

jeu de taquin slides are done. For example, if U = 1 2 3

4
then

T = 1 5

2 3

4 6

→ 1 5

2 3

4 6

→ 1 5

2 3

4 6

→ 1 5

2 3

4 6

→ 1 3 5

2 6

4
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= rectification(T). Placing these chains one atop another (starting with T ’s and
ending with rectification(T)’s) gives a Fomin growth diagram, which in this
case is given in Table 1. Growth diagrams satisfy (F1) and (F2); see Fomin’s [St99,
Appendix 2] for more.

(3, 1) (4, 1) (4, 2) (4, 3) (4, 3, 1) (5, 3, 1) (5, 3, 2)

(3) (4) (4, 1) (4, 2) (4, 2, 1) (5, 2, 1) (5, 2, 2)

(2) (3) (3, 1) (3, 2) (3, 2, 1) (4, 2, 1) (4, 2, 2)

(1) (2) (2, 1) (2, 2) (2, 2, 1) (3, 2, 1) (3, 2, 2)

∅ (1) (1, 1) (2, 1) (2, 1, 1) (3, 1, 1) (3, 2, 1)

Table 1. A growth diagram

Given a top row U and left column T , define infusion1(U, T) to be the bottom
row of the growth diagram, and infusion2(U, T) to be the right column. We write
infusion(U, T) for the ordered pair (infusion1(U, T), infusion2(U, T)). Growth di-
agrams are transpose symmetric, because (F1) and (F2) are. So one has the infusion
involution:

infusion(infusion(U, T)) = (U, T).

If U is a straight shape, infusion1(U, T) = rectification(T), while
infusion2(U, T) encodes the order in which squares were vacated in the jeu de taquin
process.

Also, given T ∈ SYT(ν/λ), consider x ∈ Λ \ ν minimal subject to being larger
than some element of ν/λ. The reverse jeu de taquin slide revjdtx(T) of T into
x is defined similarly to a jeu de taquin slide, except we move into x the largest
of the labels among boxes in ν/λ covered by x. We define reverse rectification
revrectification(T) similarly. The first fundamental theorem of jeu de taquin
asserts (rev)rectification is well-defined.

Fix Tµ ∈ SYT(µ). The number of T ∈ SYT(ν/λ) such that rectification(T) =

Tµ equals Cλ,µ,ν∨ = Cν
λ,µ where ν∨ is the straight shape obtained as the 180-degree

rotation of Λ\ν. This is Schützenberger’s jeu de taquin formulation of the Littlewood-
Richardson rule, see [St99, Appendix 2].

By a slide we mean either kind of jeu de taquin slide. Consider two equivalence
relations on a pair of tableaux T and U. Tableaux are jeu de taquin equivalent if
one can be obtained from the other by a sequence of slides. They are dual equivalent
if any such sequence results in tableaux of the same shape [Ha92]. Facts: Tableaux of
the same straight shape are dual equivalent. A common application of slides to dual
equivalent tableaux produces dual equivalent tableaux. A pair of tableaux that are
both jeu de taquin and dual equivalent must be equal.

Recall Schützenberger’s evacuation map. For T ∈ SYT(λ), let T̂ be obtained by
erasing the entry 1 (in the northwest corner c) of T and subtracting 1 from the
remaining entries. Let ∆(T) = jdtc(T̂). The evacuation evac(T) ∈ SYT(λ) is
defined by the shape chain

∅ = shape(∆|λ|(T)) − shape(∆|λ|−1(T)) − . . . − shape(∆1(T)) − T.

This map is an involution: evac(evac(T)) = T .
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2.2. Proof of the rule. Given T ∈ SYT(α) for a straight shape α, define T̃ ∈
SYT(rotate(α)) where rotate(α) = Λ\α∨ by computing evac(T) ∈ SYT(α), replac-
ing entry i with |α| − i + 1 throughout and rotating the resulting tableau 180-degrees
and placing it at the bottom right corner of Λ.

We need the following well-known fact. The proof we give extends straightforwardly
to the setup of [ThYo06, ThYo07], allowing a “cominuscule” version of the Main
Theorem.

Lemma 2.1. Suppose α, β and γ are shapes where

Tβ ∈ SYT(β), Tγ∨/α ∈ SYT(γ∨/α) and rectification(Tγ∨/α) = Tβ.

Then revrectification(Tγ∨/α) = revrectification(Tβ) = T̃β.

Proof. It suffices to show that revrectification(Tβ) = T̃β. We induct on |β| = n.
Let U be the tableau obtained by removing the box labeled 1 from Tβ. So U

is of skew shape β/(1). Let V = rectification(U), a tableau of shape κ ⊂
β. By induction, revrectification(V) = Ṽ . Now revrectification(Tβ) and
revrectification(V) agree except that the former has a label 1 in a box that does
not appear in the latter. In [ThYo06, Proposition 4.6], we showed that the reverse
rectification of a tableau of shape β is necessarily of shape rotate(β). Thus, the
location of 1 in revrectification(Tβ) must be the box κ∨/β∨. This is the 180-
degree rotation of the box β/κ in Λ, the latter being the position of n in evac(Tβ).
Thus, 1 is located in the desired position in revrectification(Tβ). The rest of the
statement follows from the fact that the rest of revrectification(Tβ) agrees with
Ṽ, and the entries of evac(Tβ) other than n agree with evac(V). �

Corollary 2.2. Fix a carton filling. The uninitialized corners of the “∅, Tλ, Tµ”
and “∅, Tν, Tλ” faces are ν∨ and µ∨ respectively. The remaining “sixth” corner (the
unique one not visible in Figure 1) is λ∨. Thus, we can speak of the edges λ∨ − Λ,
µ∨ − Λ and ν∨ − Λ. These represent the shape chains of T̃λ, T̃µ and T̃ν respectively.

Proof. Think of the union of the faces “∅, Tµ, Tλ” with the adjacent face involv-
ing Λ and the “sixth corner” as a single growth diagram. This diagram computes
revrectification(Tλ) and records the result along the edge involving Λ and diago-
nally opposite to the Tλ edge. But the lemma asserts this result is T̃λ and hence the
“sixth corner vertex” is assigned λ∨. The other conclusions are proved similarly. �

Corollary 2.2 affords us the convenience of referring to a face by its corner vertices.
Note any carton filling gives a growth diagram on the face ∅ − µ − ν∨ − λ for which
the edge λ − ν∨ is a standard tableau of shape ν∨/λ rectifying to Tµ. By the jeu de
taquin Littlewood-Richardson rule, fillings of this face count Cλ,µ,ν. Hence it suffices
to show that any such growth diagram for this face extends uniquely to a filling of
the entire carton.

If such an extension exists, it is unique: λ − ν∨ and Λ − ν∨ determine, by (F1),
(F2) and the Corollary, the face λ−µ∨ −Λ−ν∨. Similarly, these two faces determine
the remaining faces (in order):

∅− ν − µ∨ − λ =⇒ ν − λ∨ − Λ − µ∨ =⇒ µ − λ∨ − Λ − ν∨ =⇒ ∅− ν − λ∨ − µ.
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We now show that with a filling of ∅ − µ − ν∨ − λ (together with the extra edges
given in the Corollary) one can extend it to fill the carton, using the conclusions of
Corollary 2.2.

∅− µ − ν∨ − λ: This is given by labeling λ − ν∨ with Tν∨/λ ∈ SYT(ν∨/λ) that
witnesses Cλ,µ,ν = Cν∨

λ,µ, i.e., it rectifies to Tµ. By the infusion involution, the edge

µ − ν∨ representing Tν∨/µ := infusion2(Tλ, Tν∨/λ) ∈ SYT(ν∨/µ) witnesses Cν∨

µ,λ.

λ − µ∨ − Λ − ν∨: Build the growth diagram using Tν∨/λ and T̃ν from the edges λ−ν∨

and ν∨ − Λ respectively. The only boundary condition we need to check is that
infusion2(Tν∨/λ, T̃ν) = T̃µ, which is true by the Lemma. The newly determined
edge λ − µ∨ is infusion1(Tν∨/λ, T̃ν). This is a tableau Tµ∨/λ ∈ SYT(µ∨/λ) which

rectifies to Tν, i.e., one that witnesses C
µ∨

λ,ν.

∅− ν − µ∨ − λ: Using the determined edges λ − µ∨ and ∅ − λ we obtain a growth
diagram with edge ∅ − ν representing infusion1(Tλ, Tµ∨/λ), which equals Tν, as
desired. By the infusion involution, ν−µ∨ represents a tableau Tµ∨/ν ∈ SYT(µ∨/ν)

that witnesses C
µ∨

ν,λ.

ν − λ∨ − Λ − µ∨: This time, we grow the face using the edges ν − µ∨ and µ∨ − Λ.
The edge λ∨−Λ is thus infusion2(Tµ∨/ν, T̃µ) which indeed equals T̃λ, by the Lemma.
The newly determined edge ν − λ∨ is Tλ∨/ν := infusion1(Tµ∨/ν, T̃µ) ∈ SYT(λ∨/ν)

that witnesses Cλ∨

ν,µ.

µ − λ∨ − Λ − ν∨: Growing the face using µ − ν∨ and ν∨ − Λ we find that the edge
λ∨ −Λ equals infusion2(Tν∨/µ, T̃ν), which is the already determined T̃λ. The newly
determined edge µ − λ∨ is Tλ∨/µ := infusion1(Tν∨/µ, T̃ν) ∈ SYT(λ∨/µ) that wit-
nesses Cλ∨

µ,ν.

∅− ν − λ∨ − µ: We grow this final face using ∅−ν and ν−λ∨, but need to make two
consistency checks. First the edge ∅− µ is infusion1(Tν, Tλ∨/ν) which clearly is Tµ.

It remains to check that

(2) infusion2(Tν, Tλ∨/ν) = Tλ∨/µ.

(Notice that infusion2(Tν, Tλ∨/ν) is a filling of λ∨/µ that rectifies to Tν, just as
Tλ∨/µ does. However it is not clear a priori that they are the same.)

To prove (2), we need a definition. For tableaux A and B of respective (skew)
shapes α and γ/α let A ? B be their concatenation as a (nonstandard) tableau. If C

is a tableau of shape Λ/γ and α is a straight shape, A ? B ? C is a layered tableau
of shape Λ.

Example 2.3. Let α = (2, 1) and γ = (4, 2, 1). We have

A = 1 2

3
, B = 2 3

1
4

, C =
2 3

1 4 5

, and A ? B ? C = 1 2 2 3
3 1 2 3

4 1 4 5

.

We have used boldface and underlining to distinguish the entries from A,B and C.
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Let I1 and I2 be operators on layered tableaux defined by

I1 : A ? B ? C 7→ infusion1(A, B) ? infusion2(A,B) ? C

and
I2 : A ? B ? C 7→ A ? infusion1(B, C) ? infusion2(B, C).

The infusion involution says I2
1 and I2

2 are the identity operator. In fact, the following
crucial “braid identity” holds, showing I1 and I2 generate a representation of S3:

Proposition 2.4. I1 ◦ I2 ◦ I1 = I2 ◦ I1 ◦ I2.

In view of the Proposition, (2) follows by setting α = λ, γ = ν∨, A = Tλ, B = Tλ∨/ν

and C = T̃ν, since the assertion merely says the “middle” tableau in

(3) I1 ◦ I2 ◦ I1 ◦ I2(Tλ ? Tν∨/λ ? T̃ν) and I2 ◦ I1(Tλ ? Tν∨/λ ? T̃ν)

are the same, whereas we even have equality of the two layered tableaux.
Proof of Proposition 2.4: By the Lemma it follows that

(4) C̃ ? B ? Ã := I1 ◦ I2 ◦ I1(A ? B ? C), and

(5) C̃ ? B̂ ? Ã := I2 ◦ I1 ◦ I2(A ? B ? C),

where the shapes of C̃, B and Ã are respectively the 180 degree rotations of the shapes
of A, B and C, and we know the fillings of C̃ and Ã in terms of evacuation. We thus
also know the shapes of B and B̂ are the same. It remains to show B equals B̂.

We first study (4). Let B ′ = infusion1(A,B), and A ′ = infusion2(A, B). Now

(6) I1 ◦ I2(B ′ ? A ′ ? C) = C̃ ? B ? Ã,

and the skew tableau B? Ã is obtained by treating B ′ ?A ′ as a single standard tableau
by valuing an entry i of A ′ as |B ′| + i, evacuating, rotating the result 180 degrees
and finally sending the entry i from A ′ (respectively B ′) to |A ′| − i + 1 (respectively
|B ′| − i + 1).

Example 2.5. Continuing the previous example,

B ′?A ′ = 1 2 3 2

4 3

1

and evac(B ′?A ′) = A ′′?B ′′ = 1 3 3 4
2 1
2

7→ B?Ã = 3
4 2

1 2 1 3

Let us focus on evac(B ′ ? A ′) = A ′′ ? B ′′ and momentarily ignore the subsequent
rotation and complementation of entries. Fomin has shown in [St99, Appendix 2]
that a fruitful way to think of evac(X) is with triangular growth diagrams obtained
by placing the shape chain of X, then ∆(X), ∆2(X), . . . on top of one another (slanted
left to right); see Figure 3.

We begin with the data B ′ ? A ′ along the left side of the diagram. This is given
as a concatenation of two shape chains, one from ∅ − µ and then one from µ − γ

where µ is the shape of B ′. Applying (F1) and (F2) from Section 1, we obtain
A ′′ ?B ′′ = evac(B ′ ?A ′), given along the righthand side as a pair of chains connected
at α. It follows from the construction of growth diagrams that the thick lines represent
evac(B ′) and A = evac(A ′′) (the latter being a consequence of the Lemma).
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∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

µ

γ

α

B ′ evac(B ′)
A ′′A

A ′

B ′′

Figure 3. A triangular growth diagram to compute evac(B ′ ? A ′)

These thick lines together with the vertex γ define a rectangular growth diagram,
so:

(7) infusion(A, B ′′) = (evac(B ′), A ′).

In particular, the shape of rectification(B ′′) = µ. On the other hand, by definition

(8) infusion(A,B) = (B ′, A ′),

and B rectifies to a tableau of shape µ also.
By (7) and (8) combined with the aforementioned results of [Ha92] we see B and B ′′

are dual equivalent, as they both are obtained by an application of the same sequence
of slides (encoded by A ′) to a pair of tableaux of the same straight shape. More-
over, by (7) B ′′ is jeu de taquin equivalent to evac(B ′) = evac(rectification(B)).
Carrying out the analogous “reverse” analysis on I2 ◦ I1 ◦ I2(A ? B ? C) we let C◦ =

infusion1(B, C) and B◦ = infusion2(B,C) and study I2◦I1(A?C◦?B◦) = C̃?B̂?Ã.
Parallel to (6) we consider the “reverse evacuation” B◦◦ ? C◦◦ of C◦ ? B◦ using re-
verse jeu de taquin slides. Then we similarly conclude B◦◦ is dual equivalent to B

(and thus B ′′). Also B◦◦ is jeu de taquin equivalent to the reverse evacuation of
revrectification(B). Thus by the lemma, B ′′ and B◦◦ are jeu de taquin equivalent.
Hence B ′′ = B◦◦ and so B = B̂, as required.

Example 2.6. Revisiting Example 2.3, C◦ ? B◦ = 2 3

4 5 3
1 1 2 4

with reverse evacuation

3 4
1 1 2

2 3 4 5

, and B◦◦ (boldface in the latter tableau) is also B ′′ from Example 2.5.

Rotation and complementation gives B̂, which is B from Example 2.5, as desired. �



AN S3-SYMMETRIC LITTLEWOOD-RICHARDSON RULE 1035

3. An extended example of the main theorem

Let Λ = 3× 4 = , λ = (2, 1) = , µ = (3, 1) = , ν = (3, 2) =

. Therefore λ∨ = (4, 3, 2), µ∨ = (4, 3, 1) and ν∨ = (4, 2, 1). Also

Tλ = 1 2

3
, Tµ = 1 2 3

4
, Tν = 1 2 3

4 5
,

T̃λ =
1

2 3

, T̃µ =
3

1 2 4

, and T̃ν =
2 3

1 4 5

.

Here Cλ,µ,ν = 1, and we now give the unique carton filling. We begin with Tν∨/λ =

2 3

4

1

. Then we have the following sides of the carton, described as growth

diagrams with the obvious identifications of boundaries (the partitions correspond to
shapes placed on the vertices of the carton and the diagrams have been oriented to
be consistent with Figure 1):

(2, 1) = λ (2, 1, 1) (3, 1, 1) (4, 1, 1) (4, 2, 1) = ν∨

(2) (2, 1) (3, 1) (4, 1) (4, 2)

(1) (1, 1) (2, 1) (3, 1) (3, 2)

∅ (1) (2) (3) (3, 1) = µ

Table 2. ∅− µ − ν∨ − λ

(4, 3, 1) = µ∨ (4, 3, 2) (4, 3, 3) (4, 4, 3) (4, 4, 4) = Λ

(4, 2, 1) (4, 2, 2) (4, 3, 2) (4, 4, 2) (4, 4, 3)

(4, 2) (4, 2, 1) (4, 3, 1) (4, 4, 1) (4, 4, 2)

(3, 2) (3, 2, 1) (3, 3, 1) (4, 3, 1) (4, 3, 2)

(2, 2) (2, 2, 1) (3, 2, 1) (4, 2, 1) (4, 2, 2)

(2, 1) = λ (2, 1, 1) (3, 1, 1) (4, 1, 1) (4, 2, 1) = ν∨

Table 3. λ − µ∨ − Λ − ν∨

(4, 3, 1) = µ∨ (4, 2, 1) (4, 2) (3, 2) (2, 2) (2, 1) = λ

(4, 2, 1) (4, 1, 1) (4, 1) (3, 1) (2, 1) (2)

(3, 2, 1) (3, 1, 1) (3, 1) (2, 1) (1, 1) (1)

(3, 2) = ν (3, 1) (3) (2) (1) ∅
Table 4. ∅− ν − µ∨ − λ
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(4, 3, 1) = µ∨ (4, 3, 2) (4, 3, 3) (4, 4, 3) (4, 4, 4) = Λ

(4, 2, 1) (4, 2, 2) (4, 3, 2) (4, 4, 2) (4, 4, 3)

(3, 2, 1) (3, 2, 2) (3, 3, 2) (4, 3, 2) (4, 4, 2)

(3, 2) = ν (3, 2, 1) (3, 3, 1) (4, 3, 1) (4, 3, 2) = λ∨

Table 5. ν − λ∨ − Λ − µ∨

(4, 4, 4) = Λ (4, 4, 3) (4, 4, 2) (4, 3, 2) (4, 2, 2) (4, 2, 1) = ν∨

(4, 4, 3) (4, 4, 2) (4, 4, 1) (4, 3, 1) (4, 2, 1) (4, 2)

(4, 3, 3) (4, 3, 2) (4, 3, 1) (3, 3, 1) (3, 2, 1) (3, 2)

(4, 3, 2) = λ∨ (4, 2, 2) (4, 2, 1) (3, 2, 1) (3, 1, 1) (3, 1) = µ

Table 6. λ∨ − Λ − ν∨ − µ

(3, 2) = ν (3, 2, 1) (3, 3, 1) (4, 3, 1) (4, 3, 2) = λ∨

(3, 1) (3, 1, 1) (3, 2, 1) (4, 2, 1) (4, 2, 2)

(3) (3, 1) (3, 2) (4, 2) (4, 2, 1)

(2) (2, 1) (2, 2) (3, 2) (3, 2, 1)

(1) (1, 1) (2, 1) (3, 1) (3, 1, 1)

∅ (1) (2) (3) (3, 1) = µ

Table 7. ∅− ν − λ∨ − µ
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