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CHARACTERIZATIONS OF METRIC TREES AND GROMOV
HYPERBOLIC SPACES

Stefan Wenger

Abstract. In this note we give new characterizations of metric trees and Gromov hy-

perbolic spaces and generalize recent results of Chatterji and Niblo. Our results have a
purely metric character, however, their proofs involve two classical tools from analysis:

Stokes’ formula in R2 and a Rademacher type differentiation theorem for Lipschitz maps.

1. Statement of the main results

A geodesic metric space is said to be a metric tree (or an R-tree) if it is 0-hyperbolic
in the sense of Gromov, or in other words, if all its geodesic triangles are isometric to
tripods. Metric trees are used in geometry, metric topology, geometric group theory
and also in the geometry of Banach spaces (see e.g. [8] for the latter). They have
the following property which can easily be verified (see Lemma 3.7): The intersection
B1 ∩ B2 of any two closed balls B1, B2 is a ball or the empty set. In this note we
prove that this property already characterizes metric trees and that, maybe somewhat
surprisingly, already a weaker property for a geodesic metric space implies that it is
a metric tree. Namely, we show:

Theorem 1.1. Let (X, d) be a geodesic metric space and λ ≥ 1. If for any two balls
B1, B2 ⊂ X with non-empty intersection there exist z, z′ ∈ X and ν ≥ 0 such that

B(z, ν) ⊂ B1 ∩B2 ⊂ B(z′, λν)

then X is a metric tree.

Here, B(z, ν) := {x ∈ X : d(x, z) ≤ ν}. As a special case we obtain the following
characterization of metric trees, initially conjectured by Chatterji-Niblo and, shortly
after a preliminary version of our paper had appeared, established independently in
[3] with metric methods:

Corollary 1.2. Let (X, d) be a geodesic metric space. Then X is a metric tree if and
only if the intersection of any two closed balls is a ball or the empty set.

As another application of Theorem 1.1 we obtain a generalization of the main result
of [3].

Corollary 1.3. Let (X, d) be a geodesic metric space and suppose there exist λ, δ > 0
with the following property: For any two balls B1, B2 ⊂ X with non-empty intersection
there exist z, z′ ∈ X and r ≥ 0 such that

(1) B(z, r) ⊂ B1 ∩B2 ⊂ B(z′, λr + δ).
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Then X is Gromov hyperbolic.

Conversely, if X is a geodesic Gromov hyperbolic space then it is not difficult to show
that (1) holds with λ = 1 and some δ only depending on the constant of Gromov
hyperbolicity. For a proof of this see Lemma 3.7 or [3]. For the definition of Gromov
hyperbolicity see Section 2.
We note that in general, Theorem 1.1 is false if X is not geodesic. Indeed, if X :=
(R, |x− y| 12 ) then the intersection of any two closed balls in X is either a ball or the
empty set. However, there does not exist a bilipschitz embedding of X into a metric
tree.
A remarkable feature of our note is the analytic flavor of our proof of the purely metric
statement of Theorem 1.1. A similar approach is used in [11] to give a characterization
of geodesic Gromov hyperbolic spaces in terms of a quadratic isoperimetric inequality
with the sharp isoperimetric constant.

1.1. Outline of the proof of Theorem 1.1. The starting point of the proof of
our main theorem is the following simple but useful observation which provides yet
another new characterization of metric trees.

Proposition. A geodesic metric space X is a metric tree if and only if for every
Lipschitz loop γ : S1 → X and all Lipschitz functions f, π : X → R

(2)
∫

S1
(f ◦ γ)(t) · (π ◦ γ)′(t) dt = 0.

This proposition will be proved in Section 3 and will be used as follows: Let X satisfy
the hypotheses of Theorem 1.1. In Lemma 3.3 and Corollary 3.5 we first show that
X is Lipschitz 1-connected, i.e., that for every Lipschitz loop γ : S1 → X there exists
a Lipschitz extension γ̃ : B2 → X to the unit disc B2 ⊂ R

2. Next, we prove in
Lemma 3.6 that

(3) det (Dz[(f, π) ◦ γ̃]) = 0 for almost every z ∈ B2,

for all Lipschitz functions f, π : X → R. Here, Dz[(f, π) ◦ γ̃] denotes the classical
derivative at z, which exists almost everywhere by Rademacher’s theorem. Roughly,
(3) holds because otherwise, X would contain almost-isometric copies of pieces of a
2-dimensional normed space by a generalized Rademacher theorem. This however is
easily seen to contradict the assumption on the intersection of balls. Finally, Stokes’
theorem together with (3) yields (2), implying that X is a metric tree. The generalized
Rademacher theorem alluded to above is due to Kirchheim and independently to
Korevaar-Schoen. In the appendix we will give a short and partially new proof of this
theorem.

2. Preliminaries

2.1. Geodesic metric spaces, metric trees and Gromov hyperbolicity. Let
(X, d) be a metric space and a > 0. A map c : [0, a] → X is called a (constant speed)
geodesic path from c(0) to c(a) if there exists λ > 0 such that d(c(s), c(t)) = λ|s−t| for
all s, t ∈ [0, a]. If λ = 1 then c is called a geodesic path parameterized by arc-length.
The metric space X is called geodesic if any two points can be joined by a geodesic
path.
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A geodesic triangle in X consists of three points (the vertices) in X and a choice of
three geodesics (the edges) joining these points. Let ∆ be a geodesic triangle and
δ ≥ 0. Denote by x1, x2, x3 ∈ X its vertices and by ck` its edges (joining xk to x`),
which we may assume to be parameterized by arc-length, 1 ≤ k < ` ≤ 3. There
exist unique numbers a1, a2, a3 ≥ 0 with the property that d(xk, x`) = ak + a`. If
1 ≤ k < ` ≤ 3 we define c`k : [0, ak + a`] → X by c`k(t) := ck`(ak + a` − t). Then ∆
is said to be δ-thin if for every permutation σ of {1, 2, 3}

d(cσ(1)σ(2)(t), cσ(1)σ(3)(t)) ≤ δ

for all t ∈ [0, aσ(1)].

Definition 2.1. A geodesic metric space (X, d) is called Gromov hyperbolic if there
exists δ ≥ 0 such that every geodesic triangle in X is δ-thin. If δ = 0 then X is called
a metric tree.

Gromov hyperbolic spaces were introduced and first studied by Gromov in [7] in the
context of geometric group theory. See for example [2] or [6] for a treatment of the
topic.

2.2. Lipschitz maps and metric derivatives. The following notion of differen-
tiability for metric space valued Lipschitz maps was introduced by Kirchheim in [9].
Let ϕ : U → X be a Lipschitz map, where U ⊂ R

k is open and (X, d) a metric space.
The metric directional derivative of ϕ at z ∈ U in direction v ∈ Rk is defined by

mdϕz(v) := lim
r↘0

d(ϕ(z + rv), ϕ(z))
r

if this limit exists. We will make use of the following trivial remark in the proof of
our main theorem.

Remark 2.2. Let ϕ : U ⊂ R
k → X and % : X → R

k be Lipschitz maps and z ∈ U . If
% ◦ ϕ is differentiable at z and mdϕz(v) exists for all v ∈ Rk and is degenerate (that
is mdϕz(v) = 0 for some v 6= 0), then

det (Dz[% ◦ ϕ]) = 0.

The following theorem was proved by Kirchheim in [9] and a similar statement by
Korevaar-Schoen in [10]. We will provide a partially new proof in the appendix.

Theorem 2.3. Let (X, d) be a metric space and ϕ : U → X a Lipschitz map, where
U ⊂ R

k is open. Then for almost every z ∈ U the metric directional derivative
mdϕz(v) exists for every v ∈ R

k. Furthermore, there are compact sets Ki ⊂ U ,
i ∈ N, such that Lk(U\ ∪ Ki) = 0 and such that the following property holds: For
every i and every ε > 0 there exists r(Ki, ε) > 0 such that

(4) |d(ϕ(z + v), ϕ(z + w))−mdϕz(v − w)| ≤ ε|v − w|
for all z ∈ Ki and all v, w ∈ Rk satisfying |v|, |w| ≤ r(Ki, ε) and z + w ∈ Ki.

Here | · | denotes the Euclidean norm and Lk the Lebesgue measure. If md ϕz(v) exists
for all v ∈ Rk and satisfies (4) then mdϕz is called metric derivative of ϕ at the point
z. As a direct consequence of Theorem 2.3 the metric derivative is a seminorm. It
is not difficult to prove that if U ⊂ R

k is merely Borel measurable then md ϕz can
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be defined at almost every Lebesgue density point z ∈ U by a simple approximation
argument.

3. Proof of Theorem 1.1

The following characterization of metric trees will be used in the proof of Theorem 1.1.

Proposition 3.1. Let X be a geodesic metric space. If for every Lipschitz curve
γ : [0, 1] → X with γ(0) = γ(1) and all Lipschitz functions f, π : X → R

(5)
∫ 1

0

(f ◦ γ)(t) · (π ◦ γ)′(t) dt = 0

then X is a metric tree.

Note that the function π ◦ γ is a Lipschitz function on [0, 1] and therefore, by
Rademacher’s theorem, its classical derivative (π ◦ γ)′(t) exists for almost every
t ∈ [0, 1] and defines a bounded Borel function. In particular, the integral in (5)
is well-defined.

Proof. We first show that X is uniquely geodesic. For this let γ1, γ2 : [0, 1] → X be
two geodesics with the same endpoints. Set a := d(γ1(0), γ1(1)) and define a Lipschitz
map by π(x) := d(x, γ1(0)) and let γ : [0, 1] → X be the constant speed loop given by
the concatenation of γ1 and γ−2 (t) := γ2(1−t). Then (π◦γ)′(t) = 2a for every t ∈ [0, 1

2 ]
and (π◦γ)′(t) = −2a for every t ∈ [ 12 , 1]. Setting f(x) := max{0, 1−dist(γ1([0, 1]), x)}
it follows immediately from (5) that γ2([0, 1]) ⊂ γ1([0, 1]) and therefore that γ2(t) =
γ1(t) for all t ∈ [0, 1].
We now prove that every geodesic triangle in X is a tripod. For this let γi : [0, ai] → X,
i = 1, 2, 3, be three geodesics parameterized by arc-length forming a geodesic triangle,
i.e., such that γ1(a1) = γ2(0), γ2(a2) = γ3(0), and γ3(a3) = γ1(0). Set

t1 := max{t ∈ [0, a1] : γ1(t) ∈ γ3([0, a3])}
t2 := min{t ∈ [0, a1] : γ1(t) ∈ γ2([0, a2])}.

By defining γ : [0, 1] → X to be the constant speed loop given by the concatenation
of γ1, γ2 and γ3 and by setting π(x) := d(x, γ1(0)) and

fε(x) := max{0, 1− ε−1 dist(x, γ1([0, 1]))}
we easily find using the uniqueness of geodesics and the fact that∫ 1

0

(fε ◦ γ)(t) · (π ◦ γ)′(t) dt = 0

for every ε > 0 that t1 = t2 and hence γ1(t1) ∈ Im(γ2) ∩ Im(γ3). By the uniqueness
of geodesics the triangle consisting of γ1, γ2, γ3 is thus a tripod. This completes the
proof. �

The proof of Theorem 1.1 involves several other auxiliary results which we state now.
In order to simplify the language in what follows it is convenient to introduce a new
terminology. We say a metric space X has property (♦) if it satisfies the hypotheses
of Theorem 1.1, that is, if there exists λ ≥ 1 such that for any two closed balls
B1, B2 ⊂ X with non-empty intersection there exist z, z′ ∈ X and ν ≥ 0 such that

(6) B(z, ν) ⊂ B1 ∩B2 ⊂ B(z′, λν).
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To prove Theorem 1.1 it will in fact be enough to require (6) only for those balls
B1 = B(x, r) and B2 = B(x′, r′) for which max{r, r′} < d(x, x′). It is then readily
verified that (6) can be replaced by the hypothesis

diam(B(x, r) ∩B(x′, r′)) ≤ 2λ(r + r′ − d(x, x′)).

We begin with the following observation.

Remark 3.2. Let X be a geodesic metric space with property (♦). Then for any two
distinct points x, y ∈ X and for all t ∈ (0, 1) and 0 ≤ h < max{t, 1− t}d(x, y) the set

A := B(x, tr + h) ∩B(y, (1− t)r + h),

where r := d(x, y), satisfies diam A ≤ 4λh.

Choosing h = 0 in the remark we obtain that such a space X is uniquely geodesic.

Proof of Remark 3.2. By symmetry we may assume that t ≤ 1
2 . Note that A is non-

empty since X is geodesic; moreover x, y 6∈ A. By assumption there exist z, z′ ∈ X
and s ≥ 0 such that B(z, s) ⊂ A ⊂ B(z′, λs). It is clear that s < d(x, z). Let α be a
geodesic from z to x parameterized by arc-length. Then α(s) ∈ A and hence

r ≤ d(x, α(s)) + d(α(s), y) ≤ tr + h− s + (1− t)r + h

from which it follows that s ≤ 2h and hence diam A ≤ 2λs ≤ 4λh. �

Lemma 3.3. If X is a geodesic metric space with property (♦) then for any points
x, y, y′ ∈ X the geodesics c, c′ : [0, 1] → X, parameterized proportional to arc-length,
with c(0) = x = c′(0) and c(1) = y and c′(1) = y′ satisfy

d(c(t), c′(t)) ≤ 4λd(y, y′)

for all t ∈ [0, 1].

Proof. Let x, y, y′ ∈ X be arbitrary points and set r := d(x, y) and r′ := d(x, y′). If
y = x or y′ = x then the statement is trivially true and we may therefore assume that
0 < r′ ≤ r. Set h := d(y, y′) and fix t ∈ (0, 1). If h ≥ tr then

d(c(t), c′(t)) ≤ d(c(t), x) + d(x, c′(t)) = tr + tr′ ≤ 2h.

If, on the other hand, h < tr then we define

A := B(x, tr + h) ∩B(y, (1− t)r + h)

and obtain that

c′(t) ∈ B(x, tr′) ∩B(y′, (1− t)r′) ⊂ B(x, tr) ∩B(y, (1− t)r + h) ⊂ A

as well as c(t) ∈ A. Since by Remark 3.2 we have diamA ≤ 4λh it follows that

d(c(t), c′(t)) ≤ 4λd(y, y′).

This concludes the proof. �

Remark 3.4. It should be noted that the assertions of Remark 3.2 and Lemma 3.3
remain true if (♦) is replaced by the following condition: For any two balls
B(x, r), B(y, s) ⊂ X with non-empty intersection and every ε > 0 there exist z, z′ ∈ X
and t ≥ 0 with

B(z, t− ε) ⊂ B(x, r + ε) ∩B(y, s + ε)
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and
B(x, r) ∩B(y, s) ⊂ B(z′, λ(t + ε)).

This property will be called (♦′) and will be used in the proof of Corollary 1.3.

As a consequence of the lemma above we obtain the following extension property.

Corollary 3.5. If X is a geodesic metric space with property (♦′) then every Lipschitz
map ϕ : Sm → X has a Lipschitz extension ϕ : Bm+1 → X with Lip(ϕ) ≤ (8λ +
12) Lip(ϕ). In other words, X is Lipschitz m-connected for every m ≥ 0.

Here, Sm and Bm+1 denote the unit sphere and unit ball of Rm+1 with the Euclidean
metric, respectively.

Proof. For a given Lipschitz map ϕ : Sm → X fix x0 ∈ ϕ(Sm) and define ϕ : Bm+1 →
X by

ϕ(rz) :=
{

x0 : 0 ≤ r ≤ 1
2

cz(2(r − 1
2 )) : 1

2 < r ≤ 1,

where cz : [0, 1] → X denotes the constant-speed geodesic from x0 to ϕ(z). This
clearly defines a Lipschitz map which extends ϕ. A simple calculation using
Lemma 3.3 shows furthermore that Lip(ϕ) ≤ (8λ + 12) Lip(ϕ). �

In the proof of the following lemma we will use the obvious but useful fact that the
properties (♦) and (♦′) persist under rescaling of the metric.

Lemma 3.6. Let X be a geodesic metric space with property (♦′) and let K ⊂ R
2

be Borel measurable. If ϕ : K → X is a Lipschitz map then md ϕz is degenerate for
almost all z ∈ K.

Proof. We argue by contradiction and assume that md ϕz is non-degenerate, and thus
a norm, for all z in some set of positive Lebesgue measure. By Theorem 2.3 there
exists a compact set K ′ ⊂ K of positive Lebesgue measure and a Lebesgue density
point z0 ∈ K ′ such that the norm ‖ · ‖ := mdϕz0 has the following property. For
every ε > 0 there exists r0 > 0 such that the map ϕ̃ : (K ′ − z0, ‖ · ‖) → X given by
ϕ̃(v) := ϕ(z0 + v) is (1 + ε)-bilipschitz on B(0, r0)∩ (K ′− z0). Here, B(0, r0) denotes
the ball of radius r0 with respect to the Euclidean metric whereas we will denote by
B̂(0, r) the ball of radius r with respect to ‖ · ‖. Note that B̂(0, 1) is convex, centrally
symmetric and closed with respect to the Euclidean metric. Let B(0, r1) ⊂ B̂(0, 1) be
the Euclidean ball of maximal radius and let v0 ∈ ∂B(0, r1) ∩ ∂B̂(0, 1). Set y := 2v0.
It is then easy to see that

(7)
1
h

diam‖·‖

[
B̂(0, 1 + h) ∩ B̂(y, 1 + h)

]
→∞ as h → 0.

Indeed, this follows from the fact that

B̂(0, 1 + h) ∩ B̂(y, 1 + h) ⊃ B(0, r1(1 + h)) ∩B(y, r1(1 + h))

and
diameucl. [B(0, r1(1 + h)) ∩B(y, r1(1 + h))] = 2

√
2h + h2r1.
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Since z0 is a Lebesgue density point of K ′ there exist sequences rn ↘ 0 and yn ∈ R2

such that yn ∈ Kn := 1
rn

(K ′ − z0) and sn := ‖yn − y‖ → 0 and such that for every
h > 0

(8)
[
B̂(0, 1 + h) ∩ B̂(yn, 1 + h) ∩Kn

]
−→

[
B̂(0, 1 + h) ∩ B̂(y, 1 + h)

]
with respect to Hausdorff convergence. Denote by Xn the metric space (X, r−1

n d)
and note that Xn has property (♦′). Then the maps ϕ̃n : (Kn, ‖ · ‖) → Xn given by
ϕ̃n(u) := ϕ̃(rnu) are (1 + εn)-bilipschitz with εn ↘ 0, see Theorem 2.3. Remark 3.2
then implies that for h > 0 small enough

(9) diamXn
[BXn

(ϕ̃n(0), tn + h) ∩BXn
(ϕ̃n(yn), tn + h)] ≤ 4λh

for every n ∈ N, where tn := 1
2dXn

(ϕ̃n(0), ϕ̃n(yn)). On the other hand, it follows
from (8) that for n large enough

diamXn
[BXn

(ϕ̃n(0), tn + h) ∩BXn
(ϕ̃n(yn), tn + h)]

≥ 1
1 + εn

diam‖·‖

[
B̂

(
0, (1 + εn)−1(tn + h)

)
∩ B̂

(
yn, (1 + εn)−1(tn + h)

)
∩Kn

]
≥ 1

2(1 + εn)
diam‖·‖

[
B̂ (0, 1 + h′n) ∩ B̂ (yn, 1 + h′n)

]
where

h′n =
h− sn

2 − 2εn − ε2
n

(1 + εn)2
.

Using the fact that εn, sn → 0+ together with (7) we readily arrive at a contradiction
with (9). This completes the proof. �

We are finally ready to prove Theorem 1.1.

Proof of Theorem 1.1. We first show that if X has property (♦′) then X is a metric
tree. We do this by verifying the hypothesis (5) of Proposition 3.1. For this let
γ : S1 → X be a Lipschitz loop and let γ̃ : B2 → X be a Lipschitz extension, which
exists by Corollary 3.5. Let f, π : X → R be arbitrary Lipschitz functions. By Stokes’
Theorem and an obvious smoothing argument we obtain∫

S1
(f ◦ γ)(t) · (π ◦ γ)′(t)dt =

∫
B2

det(Dz[(f, π) ◦ γ̃])dz = 0,

where the second equality follows from Lemma 3.6 and Remark 2.2. It now follows
from Proposition 3.1 that X is a metric tree. The proof of the converse statement is
a consequence of the lemma below with δ = 0. �

Lemma 3.7. Let δ ≥ 0 and suppose (X, d) is a geodesic metric space all of whose
geodesic triangles are δ-thin. Then for any two closed balls B1, B2 in X with non-
empty intersection there exist z ∈ X and ν ≥ 0 such that

B(z, ν) ⊂ B1 ∩B2 ⊂ B(z, ν + δ).

The proof of the lemma is straight-forward and is implicitly contained in [3]. For
completeness we give our own short proof here.
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Proof. Let B(x, r) and B(y, s) be two closed balls in X and suppose K := B(x, r) ∩
B(y, s) is non-empty. We may assume without loss of generality that r ≥ s. Set
d := d(x, y). If r − s > d then it follows that K = B(y, s) and there is nothing to
prove. If r − s ≤ d then choose a geodesic c between x and y and let z ∈ Im(c) be
such that

d(x, z) =
r − s + d

2
and d(y, z) =

s− r + d

2
.

Set furthermore ν := 1
2 (r + s− d). Since K 6= ∅ we clearly have ν ≥ 0. We claim that

(10) B(z, ν) ⊂ K ⊂ B(z, ν + δ).

To prove the first inclusion it is enough to note that for w ∈ B(z, ν)

d(w, x) ≤ d(w, z) + d(z, x) ≤ ν +
r − s + d

2
= r

and analogously

d(w, y) ≤ d(w, z) + d(z, y) ≤ ν +
s− r + d

2
= s.

As for the proof of the second inclusion we let w ∈ K and consider a geodesic triangle
with vertices x1 := x, x2 = y, x3 = w and edges ck`, where c12 := c. Let a1, a2, a3 be
as in the definition of the δ-thinness. If d(x, z) ≤ a1 then

d(w, z) ≤ d(w, c13(d(x, z))) + δ = d(w, x)− d(x, z) + δ ≤ r − r − s + d

2 + δ
= ν + δ,

whereas if d(x, z) > a1 we compute

d(w, z) ≤ d(w, c23(d(y, z))) + δ = d(w, y)− d(y, z) + δ ≤ s− s− r + d

2
+ δ = ν + δ.

This establishes the second inclusion in (10) and completes the proof. �

4. Proof of Corollary 1.3

The following proof uses asymptotic cones. For definitions and basic properties we
refer to [2]. We will need the following crucial fact: A geodesic metric space X is
Gromov hyperbolic if and only if every asymptotic cone of X is a metric tree, see
e.g. [4].

Proof of Corollary 1.3. By Proposition 3.A.1 in [4] it suffices to show that every as-
ymptotic cone of X is a metric tree. Let therefore ω be a non-principal ultrafilter on
N, (xn) ⊂ X and rn ↗ ∞ and denote by Xω the asymptotic cone associated to the
sequence (X, 1

rn
d, xn) and ω. Clearly, Xω is geodesic; thus we only need to show that

Xω has property (♦′). For this let y = (yn) and z = (zn) be arbitrary points in Xω

and let r, s > 0 be such that r + s ≥ dω(y, z). Fix ε > 0. By assumption there exist
for ω-almost every n ∈ N two points un, u′n ∈ X and tn ≥ 0 such that

(11) B(un, tn) ⊂ B(yn, (r + ε)rn) ∩B(zn, (s + ε)rn) ⊂ B(u′n, λtn + δ).

We have tn ≤ (r + ε)rn from which we conclude that t̄ := limω
tn

rn
exists. By the

triangle inequality we furthermore have that u := (un) and u′ := (u′n) are elements
of Xω. We first claim that

B̂(u, t̄− ε) ⊂ B̂(y, r + ε) ∩ B̂(z, s + ε)
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for every ε > 0 small enough. Here, B̂ denotes a ball in Xω. Let v = (vn) ∈ B̂(u, t̄−ε)
and note that for ω-almost all n ∈ N we have d(vn, un) ≤ tn and therefore, by (11)

1
rn

d(vn, yn) ≤ r + ε and
1
rn

d(vn, zn) ≤ s + ε

for ω-almost all n ∈ N. This clearly implies that v ∈ B̂(y, r + ε) ∩ B̂(z, s + ε). Next,
we show that

(12) B̂(y, r) ∩ B̂(z, s) ⊂ B̂(u′, λt̄).

Indeed, if v ∈ B(y, r) ∩ B(z, s) then vn ∈ B(yn, (r + ε)rn) ∩ B(zn, (s + ε)rn) for
ω-almost all n ∈ N and therefore

dω(v, u′) = lim
ω

1
rn

d(vn, u′n) ≤ lim
ω

λtn + δ

rn
= λt̄,

which proves (12). By Theorem 1.1, which, as we proved, holds when (♦) is replaced
by (♦′), this is enough to conclude that Xω is a metric tree. �

5. Appendix: A proof of Theorem 2.3

A simple proof of the following fact can be found e.g. in [1, Theorem 4.1.6].

Proposition 5.1. Let X be a metric space and γ : (a, b) → X a Lipschitz curve.
Then mdϕt(1) exists for almost every t ∈ (a, b).

Proof of Theorem 2.3. Observe first that if z ∈ U and r > 0 and if v, v′ ∈ Rk are such
that z + rv, z + rv′ ∈ U then

(13)
1
r
d(ϕ(z + rv′), ϕ(z))− % ≤ 1

r
d(ϕ(z + rv), ϕ(z)) ≤ 1

r
d(ϕ(z + rv′), ϕ(z)) + %

where % := Lip(ϕ)|v′ − v|. Moreover, if z ∈ U and v, v′ ∈ Rk are such that mdϕz(v)
and mdϕz(v′) exist then

(14) |mdϕz(v)−mdϕz(v′)| ≤ Lip(ϕ)|v − v′|.
We can now easily show that for Lk-almost every z ∈ U the limit mdϕz(v) exists for
all v ∈ Rk. Indeed, let (vi)i∈N ⊂ Sk−1 be a countable dense subset. By Proposition 5.1
and Fubini’s theorem there exists an Lk-negligible set N ⊂ U such that mdϕz(vi)
exists for all i ∈ N and all z ∈ U\N . Given v ∈ Sk−1 arbitrary choose a subsequence
vij

of (vi) which converges to v. The existence of mdϕz(v) now follows immediately
from (13) and (14). Moreover, mdϕz(sv) exists for all s ≥ 0 and mdϕz(sv) =
smdϕz(v). Hence, mdϕz(v) exists for all v ∈ Rk and all z ∈ U\N .
We turn to the proof of (4). Denote by Sk−1 the unit sphere in Rk and by C(Sk−1)
the space of continuous real-valued functions on Sk−1, endowed with the supremum
norm. Denote by D the set of points z ∈ U where md ϕz(v) exists for all v ∈ R

k.
If z ∈ D then, by (14), the function fz : Sk−1 → [0,∞) given by fz(v) := mdϕz(v)
is Lip(ϕ)-Lipschitz. Furthermore, the map F : D → C(Sk−1) given by F (z) := fz

is Lk-measurable. Since C(Sk−1) is separable, Lusin’s Theorem [5, 2.3.5] asserts
the existence of compact subsets K ′

i ⊂ D with Lk(D\ ∪ K ′
i) = 0 and such that F

is continuous on each K ′
i. In particular, the function gr(z) := sup|v|=1 | 1r d(ϕ(z +

rv), ϕ(z)) − mdϕz(v)| is continuous on each K ′
i, and converges pointwise to 0 as

r ↘ 0. By Egoroff’s Theorem [5, 2.3.7] there exist compact subsets Kj
i ⊂ K ′

i with
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Lk(D\ ∪i,j Kj
i ) = 0 and such that gr converges to 0 uniformly on each Kj

i as r ↘ 0.
In particular, for every ε > 0 there exists r(Kj

i , ε) > 0 such that gr(z) ≤ ε/2 and
‖md ϕz −mdϕz′‖∞ ≤ ε/2 whenever 0 < r ≤ 2r(Kj

i , ε) and z, z′ ∈ Kj
i with |z− z′| ≤

r(Kj
i , ε). If z ∈ Kj

i and if v, w ∈ Rk satisfy |v|, |w| ≤ r(Kj
i , ε), v 6= w, and z +w ∈ Kj

i

then, setting r := |v − w|, z′ := z + w, and v′ := 1
r (v − w), we obtain

|d(ϕ(z + v),ϕ(z + w))−md ϕz(v − w)|

≤ r

∣∣∣∣1r d(ϕ(z′ + rv′), ϕ(z′))−md ϕz′(v′)
∣∣∣∣ +

ε

2
|v − w|

≤ rgr(z′) +
ε

2
|v − w|

≤ ε|v − w|.
This proves (4) and hence the theorem. �
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