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CONVEXITY PROPERTIES OF SOLUTIONS TO THE FREE
SCHRÖDINGER EQUATION WITH GAUSSIAN DECAY

L. Escauriaza, C.E. Kenig, G. Ponce, and L. Vega

Abstract. We study convexity properties of solutions to the free Schrödinger equation
with Gaussian decay.

1. Introduction

The main purpose of this note is to study convexity properties of two classes of
functions. The first one is the class of functions which, together with their Fourier
transform, have Gaussian decay. The second class is the class of functions for which
the free Schrödinger evolution has Gaussian decay at two different times. We will
see later that the two classes coincide (see Theorem 1 below). Moreover, (vii) in
Theorem1 show that this is a large class of functions. As motivation for the study
of these issues, we recall the well known “uncertainty principle” due to G. H. Hardy
(see [10]) :

(A) Assume n = 1, f(x) = O(e−Ax2
) and f̂(ξ) = O(e−Bξ2

). If AB > 1/4, then
f ≡ 0. Moreover, if AB = 1/4, then f(x) = ce−Ax2

, for some constant c. In [9] this
result was extended to higher dimensions, with x2 and ξ2 replaced by |x|2 and |ξ|2.

Here

f̂(ξ) = (2π)−
n
2

∫
Rn

e−ix·ξf(x) dx.

As pointed out in [4], this result has an equivalent formulation for the free
Schrödinger equation. Thus, consider the IVP for the free Schrödinger equation

(1.1)
{
∂tu = i∆u, x ∈ Rn, t ∈ R,
u(x, 0) = u0(x),

whose solution u(x, t) = eit∆u0(x) can be written as

u(x, t) = (e−i|ξ|2tû0)∨(x) =
∫

Rn

ei|x−y|2/4t

(4πit)n/2
u0(y) dy

=
ei|x|2/4t

(4πit)n/2

∫
Rn

e−2ix·y/4tei|y|2/4tu0(y) dy =
ei|x|2/4t

(2it)n/2
̂(ei|·|2/4tu0)

( x
2t

)
,

i.e. if ct = (2it)n/2, then

(1.2) cte
−i|x|2/4t u(x, t) = (ei|·|2/4tu0)∧

( x
2t

)
.
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Formula (1.2) tells us that e−i|x|2/4t u(x, t) is a multiple of a rescaled Fourier trans-
form of ei|y|2/4tu0(y), thus Hardy’s result can be restated in terms of the Schrödinger
equation as:

(A′) If u0(x) = O(e−|x|
2/β2

), u(x, t) = eit∆u0(x) = O(e−|x|
2/α2

), t > 0 and αβ <
4t, then u ≡ 0 in Rn × [0, t]. Moreover, if αβ = 4t, then u is the solution with initial

data, ωe−
“

1
β2 + i

4t

”
|x|2 , for some complex number ω.

We also recall the following extension of (A) established in [9]:

(B) If eA1| · |2f ∈ Lp(R) and eA2| · |2 f̂ ∈ Lq(R), p, q ∈ [1,∞], with at least one of
them finite and with A1A2 ≥ 1/4, then f ≡ 0,

and the Beurling-Hörmander result in [6]:

(C) If f ∈ L1(R) and
∫

R
∫

R |f(x)||f̂(ξ)|e|x ξ| dx dξ <∞, then f ≡ 0 (for extensions
of this result to higher dimensions see [1]).

Because of (1.2), (B) and (C) can be rephrased as:

(B′) If u0 ∈ Lp(ep x2/β2
dx) and eit∂2

xu0 ∈ Lq(eq x2/α2
dx), p, q ∈ [1,∞], with at

least one of them finite and 4t ≥ αβ, then u0 ≡ 0,

and

(C′) If u0 ∈ L1(R) and
∫

R
∫

R |u0(x)||eit∂2
xu0(y)|e|xy|/2t dx dy <∞, then u0 ≡ 0.

In [4], we obtained the following results which can be seen as variants of Hardy’s
uncertainty principle, in the context of Schrödinger equations with potential and for
non-linear Schrödinger equations.

(I) Let u ∈ C([0, 1] : H2(Rn)) be a strong solution of

(1.3) i∂tu+ ∆u = V u,

with

V : Rn × [0, 1] → C, V ∈ L∞(Rn
x × [0, 1]), ∇xV ∈ L1

t ([0, 1] : L∞(Rn)),

and

lim
r↑∞

‖V ‖L1
t L∞x {|x|>r} = lim

r↑∞

∫ 1

0

sup
|x|>r

|V (x, t)| dt = 0.

There exists c0 = c0(n; ‖u‖L∞t H2
x
; ‖V ‖L∞t,x

; ‖∇xV ‖L1
t L∞x

) > 0 such that if

(1.4) u0 = u(0), u1 = u(1) ∈ H1(ea|x|2dx),

with a ≥ c0, then u ≡ 0.

(II) Let u1, u2 ∈ C([0, 1] : Hk(Rn)), k > n/2 + 1 be solutions of

(1.5) i∂tu+ ∆u+ F (u, u) = 0,

with
F : C2 → C, F ∈ Ck, F (0) = ∂uF (0) = ∂ūF (0) = 0.

There exists c0 = c0(n; ‖u1‖L∞t H2
x
; ‖u2‖L∞t H2

x
; ‖F‖Ck) > 0 such that if

(1.6) u1(0)− u2(0), u1(1)− u2(1) ∈ H1(ea|x|2dx),

with a ≥ c0, then u1 ≡ u2.
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In (1.4)-(1.6) we used the notation f ∈ H1(ea|x|2dx) if f, ∂xjf ∈ L2(ea|x|2dx) for
j = 1, . . . , n, i.e.∫

Rn

|f(x)|2 ea|x|2dx+
n∑

j=1

∫
Rn

|∂xjf(x)|2 ea|x|2dx <∞.

By fixing u2 ≡ 0 the above question relates to the persistence properties of solutions
of (1.3) and (1.5), i.e. if u(x, 0) = u0(x) ∈ X (function space), then the solution
u = u(x, t) of (1.3) (resp. (1.5)) satisfies that

u ∈ C([0, T ] : X).

These persistence properties, as part of the standard notion of well-posedness,
have been studied in function spaces X describing the regularity and decay of their
elements. For example, they have been established in classical Sobolev spaces X =
Hs(Rn), s ≥ s0, with s0 the optimal Sobolev exponent, which depends on V (resp. F ),
n, and T , with T < ∞, corresponding to local solutions and T = ∞ corresponding
to global ones, and in their weighted versions, X = Hs(Rn) ∩ L2(|x|mdx), with
V ∈ C [s+1] (resp. F ∈ C [s+1]), where persistence holds if s ≥ s0 and s ≥ m, due
to the fact that Γj = xj − 2it∂xj , j = 1, .., n, commutes with ∂t − i∆, (for details
see [5] and references therein). In the case, X = Hs(Rn) ∩ L2(|x|mdx), when m > s,
persistence fails even in the free case, i.e. V ≡ 0 in (1.3), and the extra-decay “m−s”
is transformed into “local regularity”.

Combining the above remarks and the formula (1.2) one has that

if u0 ∈ C∞
0 (Rn), then for any t 6= 0, ε > 0 eit∆u0 ∈ S(Rn)− L1(eε|x|dx).

In this case u0 ∈ C∞
0 (Rn), for t 6= 0 u(x, t) has an analytic extension to Cn, so roughly

speaking, one can say that the decay, which does not persist with the solution, is
transformed into “local regularity”.

One of the key results in [4] established that solutions of Schrödinger equations
with potential having L2-Gaussian decay at two different times t1, t2, with t1 < t2,
preserve this property in the time interval [t1, t2] with a fixed Gaussian weight (see
Corollary 2.2 in [4] and comments after it). In this paper, we examine in detail the
case of the free particle. We shall try to understand the possible persistence properties
of the solutions of the free Schrödinger equation in function spaces with exponential
decay at infinity.

We can summarize part of the results in this work in the following qualitative terms:

Theorem 1. For u0 ∈ S′(Rn) the following seven statements are equivalent:
(i) There are two different real numbers t1 and t2, such that eitj∆u0 ∈

L2(eaj |x|2dx), for some aj > 0, j = 1, 2.
(ii) u0 ∈ L2(eb1|x|2dx) and û0 ∈ L2(eb2|x|2dx), for some bj > 0, j = 1, 2.

(iii) There is ν : [0,+∞) −→ (0,+∞), such that eit∆u0 ∈ L2(eν(t)|x|2dx), for all
t ≥ 0.

(iv) g(x) ≡ eiτ |x|2u0(x), τ ∈ R, verifies (ii) with possibly different constants
b1, b2 > 0.

(v) u0(x + iy) is an entire function such that |u0(x + iy)| ≤ Ne−a|x|2+b|y|2 for
some constants N, a, b > 0.

(vi) û0(ξ + iη) verifies (v) with possibly different constants N, a, b > 0.
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(vii) there exist δ, ε > 0 and h ∈ L2(eε|x|2dx) such that u0(x) = eδ∆h.

Notice that Theorem 1 characterizes the functions with Gaussian decay whose
Fourier transform also has Gaussian decay and part (vii) affirms that this is a large
class of functions. Our proof of (ii) implies (iii) in Theorem 1 will be a consequence
of the new quantitative results in this work: some logarithmically convex inequalities
for exponentially weighted L2-norms of solutions of the free Schrödinger equation. In
particular, it will be a consequence of the following Theorem:

Theorem 2. Let α and β be two positive numbers and u be the solution of the initial
value problem {

∂tu = i∆u, t > 0, x ∈ Rn,

u(x, 0) = u0(x).
Let T > 0. If either the right hand side of (1.9) or (1.10) are finite, then the following
inequalities hold

(1.7) ‖e
λ·x

αt+β u(t)‖2 ≤ ‖e
λ·x
β u(0)‖θ(t)

2 ‖e
λ·x

αT+β u(T )‖1−θ(t)
2 , 0 ≤ t ≤ T,

(1.8) ‖e
λ·x

αt+β u(t)‖2 ≤ ‖e
λ·x
β u(0)‖µ(t)

2 ‖e
2λ·ξ

α û(0)‖1−µ(t)
2 ,

for any λ ∈ Rn, and

(1.9) ‖e
|x|2

(αt+β)2 u(t)‖2 ≤ ‖e
|x|2
β2 u(0)‖θ(t)

2 ‖e
|x|2

(αT+β)2 u(T )‖1−θ(t)
2 , 0 ≤ t ≤ T,

(1.10) ‖e
|x|2

(αt+β)2 u(t)‖2 ≤ ‖e
|x|2
β2 u(0)‖µ(t)

2 ‖e
4|ξ|2

α2 û(0)‖1−µ(t)
2 ,

where
θ(t) = β(T−t)

T (αt+β) , and µ(t) = β
αt+β .

As a convexity statement, the conclusions in Theorem 2 are empty when the ex-
tremal values (right hand side) are not finite.

From (A′), (B′) and (C′), one has that the terms in (1.10) vanish if αβ is small
enough. The same applies to (1.9) for small values of α and β depending on T . In
particular, from (B′) in the 1−d case, one has that if 4T ≥ β(αT +β), then the terms
in (1.9) are zero, and if 4 ≥ αβ, then the terms in (1.10) are zero.

In Lemma 2 we study the class of functions with Gaussian decay whose Fourier
transform also has Gaussian decay. We show that this class is an algebra with re-
spect to the pointwise product of functions and that it is closed under the action of
the Schrödinger group. Therefore, it is also closed with respect to convolutions and
multiplication by functions of the form eia|x|2 , a ∈ R. As a consequence, in Corollary
1, we show that if a free Schrödinger solution has Gaussian decay at two different
times, then the data belongs to this class, i.e. (i) implies (ii) in Theorem 1.

Section 2 contains the proofs of Theorems 1 and Theorem 2. The proof of Theorem
2 will be based on a general abstract result given in Theorem 3.

Once Theorem 2 has been proved we obtain some generalizations and consequences
of it. Corollaries 2-4 are extensions of the estimates (1.9)-(1.10). In Corollaries 5 and 6
we apply (1.9)-(1.10) to any pair (or any finite set) of solutions of the free Schrödinger
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equation. These estimates, which describe the interaction of two solutions, are some-
how similar in spirit to those found in [2, Sections 10 and 11]. Corollary 7 is an
application of the results in Theorem 1.2 and of the Galilean invariance property of
the free Schrödinger equation. These extensions and applications are in section 3.

Finally, we explain and outline some extensions of the results in sections 2 and 3
to the case of a non-zero potential. These results will be studied in more detail in a
forthcoming publication.

Acknowledgment: The authors would like to thank the anonymous referee for
comments which improved the presentation of this work.

2. Proof of Theorems 1 and 2

We begin with a general abstract result. It can be used to derive properties of
logarithmic convexity of certain L2-norms of solutions of different evolutions.

Theorem 3. Let S be a symmetric operator, A be an anti-symmetric one, both
allowed to depend on the time variable, and f(x, t) be a suitable function. If

H(t) = 〈f, f〉 = ‖f(t)‖22, D(t) = 〈Sf, f〉, ∂tS = St, and N(t) =
D(t)
H(t)

,

then

(2.1)

Ṅ(t) = 〈Stf + [S,A]f, f〉/H

+
1
2

[
‖∂tf −Af + Sf‖22‖f‖22 − (<〈∂tf −Af + Sf, f〉)2

]
/H2

+
1
2

[
(<〈∂tf −Af − Sf, f〉)2 − ‖∂tf −Af − Sf‖22‖f‖22

]
/H2,

and

Ṅ(t) ≥ 〈Stf + [S;A]f, f〉/H − 1
2
‖∂tf −Af − Sf‖22‖f‖22/H2.

Proof. We have the following identities

(2.2) Ḣ(t) = 2<〈∂tf, f〉 = <〈∂tf + Sf, f〉+ <〈∂tf − Sf, f〉,

(2.3) D(t) = <〈Sf, f〉 =
1
2
<〈∂tf + Sf, f〉 − 1

2
<〈∂tf − Sf, f〉.

Thus, multiplying (2.2) and (2.3) it follows that

(2.4) Ḣ(t)D(t) =
1
2
(<〈∂tf + Sf, f〉)2 − 1

2
(<〈∂tf − Sf, f〉)2.

Adding an antisymmetric operator does not change the real part, and so

Ḣ(t)D(t) =
1
2
(<〈∂tf −Af + Sf, f〉)2 − 1

2
(<〈∂tf −Af − Sf, f〉)2.

Differentiating D(t)

Ḋ(t) = 〈Stf, f〉+ 〈S∂tf, f〉+ 〈Sf, ∂tf〉
= 〈Stf, f〉+ 2<〈∂tf,Sf〉
= 〈Stf + [S,A]f, f〉+ 2<〈∂tf −Af,Sf〉,
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combined with the polarization identity give

(2.5) Ḋ(t) = 〈Stf + [S,A]f, f〉+
1
2
‖∂tf −Af + Sf‖22 −

1
2
‖∂tf −Af − Sf‖22.

The identity (2.1) follows from (2.4) and (2.5).
Note for future use that

Ḣ(t) = 2<〈∂tf − Sf −Af, f〉+ 2D(t),

so if ∂tf − Sf −Af = 0, one also has that Ḣ(t) = 2D(t). �

Remark 1. The abstract identity in Theorem 3 shows in disguise the “frequency
function” or “monotonicity argument” linked to the Carleman inequality

‖∂tf −Af‖22 + ‖Sf‖22 ≤ ‖∂tf − Sf −Af‖22 .
The antisymmetric and symmetric parts of ∂t − S − A, as a space-time operator,

are respectively ∂t −A and −S. Its commutator, [−S, ∂t −A], is St + [S,A]. Thus,

‖∂tf − Sf −Af‖22 = ‖∂tf −Af‖22 + ‖Sf‖2 − 2Re
∫∫

Sf∂tf −Af dxdt

= ‖∂tf −Af‖22 + ‖Sf‖22 +
∫∫

[−S, ∂t −A]ff dxdt

= ‖∂tf −Af‖22 + ‖Sf‖22 +
∫∫

(Stf + [S,A]f) f dxdt ,

and the Carleman inequality holds, when St+[S,A] is non-negative. Theorem 3 shows
that H(t) is logarithmically convex, when St+[S,A] is non-negative, ∂tf−Sf−Af =
0, and provided that the calculations and integrations by parts carried out in the
application of Theorem 3 to a particular case can be justified.

We apply Theorem 3 in our proof of Theorem 2, and in order to justify the finite-
ness of the quantities involved, integrations by parts or calculations involved in this
application of Theorem 3, we use Lemma 1 [10, pp.130] (and its higher dimensional
version whose proof is a direct extension of the one dimensional argument given there)
:

Lemma 1. Let f be an entire function such that

(2.6) |f(x+ iy)| ≤ Ne−a|x|2+b|y|2 , with N, a, b > 0, ∀x, y ∈ Rn.

Then, f̂ is an entire function and

|f̂(ξ + iη)| ≤ N ′e−a′|ξ|2+b′|η|2 , ∀ ξ, η ∈ Rn

for some positive constants N ′, a′ and b′.

Proof of Theorem 2. We apply Theorem 3 with

(2.7) f(x, t) = e
λ·x

αt+β u(x, t), λ ∈ Rn.

When the initial data to the free Schrödinger equation verifies that the right hand
side of (1.10) is finite, u0 is inH∞(Rn) and u is in C∞(R : H∞(Rn)). Also, u0 extends
to the complex-space Cn as an analytic function, and there are positive constants N ,
a and b, such that

|u0(ξ + iη)| ≤ Ne−a|ξ|2+b|η|2 for all ξ, η ∈ Rn .
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When T is positive, f(z) = e
iz2
4T u0(z), verifies the conditions in Lemma 1 and u(T )

is essentially the Fourier transform of e
i|y|2
4T u0(y). Thus,

‖ea′|x|2u(T )‖2
is finite for some positive number a′. Corollary 2.2 in [4] shows that,

sup
0≤t≤T

‖ea′′|x|2u(t)‖2 < +∞,

for some new a′′, which might depend on a and b. By Corollary 2.2 in [4] the same
occurs, when the right hand side of (1.9) is finite. Moreover, the same holds, in both
cases, for all the derivatives of u.

Once this has been settled, our choice of f in (2.7) shows that

∂tf = Sf +Af,

where

S = − 2i
αt+ β

λ · ∇ − α

(αt+ β)2
λ · x, A = i(∆ +

|λ|2

(αt+ β)2
),

St + [S,A] = − 2α
αt+ β

S

and if

H(t) =
∫

Rn

|f(x, t)|2 dx =
∫

Rn

e
2λ·x
αt+β |u(x, t)|2 dx,

the last comment in the poof of Theorem 3 shows that

∂t logH(t) = 2N(t) = 2
〈Sf, f〉
H

and

(2.8)
∂2

t logH(t) = 2Ṅ(t) ≥ 2〈Stf + [S;A]f, f〉/H

≥ − 4α
αt+ β

〈Sf, f〉
H

= − 2α
αt+ β

∂t logH(t).

In particular, (2.8) implies that the function

G(t) = H(t)αt+β , 0 ≤ t ≤ T,

is logarithmically convex. Thus,

G(t) ≤ G(0)(T−t)/T G(T )t/T , 0 ≤ t ≤ T,

and consequently

(2.9) H(t) ≤ H(0)β(T−t)/T (αt+β)H(T )t(αT+β)/T (αt+β),

which yields (1.7).
To prove (1.8) we recall the formulae

(2.10)
u(x, t) = (2π)−n/2

∫
Rn

eix·ξ−it|ξ|2 û0(ξ)dξ

= (4πit)−n/2

∫
Rn

e
i|x−y|2

4t u0(y)dy.
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Thus

u

(
x

t
,
1
t

)
=(2π)−n/2

∫
Rn

e
ix·ξ

t − i|ξ|2
t û0(ξ)dξ

=(2π)−n/2

∫
Rn

e
i|x−2ξ|2

4t +
i|x|2
4t û0(ξ)dξ,

and so

(2.11) (−it)−n/2e−
i|x|2
4t u

(
x

t
,
1
t

)
= (4πit)−n/2

∫
Rn

e
−i|x−ξ|2

4t 2−n/2 û0(ξ/2)dξ.

Hence, using the ψ-conformal or Appel transformation we define

(2.12) v(x, t) = (−it)−n/2e−
i|x|2
4t u

(
x

t
,
1
t

)
,

and see from (2.10)-(2.11) that v(x, t) is the solution of the initial value problem

(2.13)

{
∂tv = i∆v, t > 0, x ∈ Rn,

v(x, 0) = 2−n/2 û0(x/2).

Assume now that 0 < t < 1. From (1.7), with T = 1, it follows that

(2.14) ‖e
λ·x

αt+β u(t)‖2 ≤ ‖e
λ·x
β u(0)‖

β(1−t)
αt+β

2 ‖e
λ·x

α+β u(1)‖
(α+β)t
αt+β

2 .

Interchanging the role of α and β in (1.7) and applying it with T = 1/t > 1 to
v(x, t), the solution of (2.13), one gets

(2.15) ‖e
λ·x

β+α v(1)‖2 ≤ ‖eλ·x
α v(0)‖

α(1−t)
α+β

2 ‖e
λ·x

α+βt v(1/t)‖
(β+αt)

α+β

2 .

Since from (2.12)

‖e
λ·x

β+α v(1)‖2 = ‖e
λ·x

β+αu(1)‖2,
and

(2.16) ‖e
λ·x

β/t+α v(1/t)‖2 = ‖e
λ·x

αt+β u(t)‖2,

combining (2.15)-(2.16) and the value of v at the initial time, we get

(2.17) ‖e
λ·x

α+β u(1)‖2 ≤ ‖e
2λ·ξ

α û(0)‖
α(1−t)

α+β

2 ‖e
λ·x

αt+β u(t)‖
αt+β
α+β

2 .

From (2.14), and (2.17), and the fact that ‖e
λ·x

αt+β u(t)‖2 is finite (see the first
paragraph at the beginning of the proof of Theorem 2), we get

(2.18) ‖e
λ·x

αt+β u(t)‖2 ≤ ‖e
λ·x
β u(0)‖

β
αt+β

2 ‖e
2λ·ξ

α û(0)‖
αt

αt+β

2 ,

which gives (1.8).
To prove (1.10) we square both sides of (2.18), multiply them by e−|λ|

2/2, integrate
with respect to λ ∈ Rn, and use the identity

(2.19)
∫

Rn

e
2λ·x

γ − |λ|2
2 dλ = (2π)n/2e

2|x|2

γ2 , γ ∈ R,
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to obtain in the left hand side

(2.20)

∫
Rn

e−
|λ|2
2 ‖e

λ·x
αt+β u(t)‖22dλ =

∫
Rn

∫
Rn

e−
|λ|2
2 e

2λ·x
αt+β |u(x, t)|2dxdλ

=
∫

Rn

(
∫

Rn

e
2λ·x
αt+β−

|λ|2
2 dλ)|u(x, t)|2dx = (2π)n/2

∫
Rn

e
2|x|2

(αt+β)2 |u(x, t)|2dx,

and on the right hand side a combination of a similar argument to that in (2.20) with
Hölder inequality, p = αt+β

β , p′ = αt+β
αt leads to

(2.21)

∫
Rn

e−
|λ|2
2

( ∫
e

2λ·x
β |u(x, 0)|2dx

) β
αt+β

( ∫
e

4λ·ξ
α |û(ξ, 0)|2dξ

) αt
αt+β

dλ

≤
( ∫ ∫

e−
|λ|2
2 + 2λ·x

β |u(x, 0)|2dxdλ
) β

αt+β

·
( ∫ ∫

e−
|λ|2
2 + 4λ·ξ

α |û(ξ, 0)|2dξdλ
) β

αt+β

= (2π)n/2
( ∫

Rn

e
2|x|2

β2 |u(x, 0)|2dx
) 2β

αt+β
( ∫

Rn

e
8|ξ|2

α2 |û(ξ, 0)|2dξ
) αt

αt+β

.

Therefore, (2.20) and (2.21) yield (1.10).
Finally, to obtain (1.9) we reapply the argument used to get (2.20)-(2.21) but

starting with (1.7) instead of (1.8). �

Next, we introduce some notation: for f ∈ S′(Rn), p, q ∈ [1,∞], and A1, A2 > 0
we will write

f = Op,q(A1;A2) if eA1|·|2f ∈ Lp(Rn), eA2|·|2 f̂ ∈ Lq(Rn), with Mp,q(f) = A1A2.

In the case p = q we shall write Op instead of Op,p.
In this context, Hardy’s result mentioned in the introduction and its extension to

higher dimension found in [9] tells us that if M∞,∞(f) > 1/4, then f ≡ 0. Also a
result in [3] affirms that in the 1-d case if Mp,q(f) ≥ 1/4, for any p, q ∈ [1,∞] with
at least one of them finite, then f ≡ 0.

Lemma 2. If f, g, h ∈ S′(Rn) are such that f = Op,q(A1;A2), g = Or,q(B1;B2) and
h = O2(C1;C2), with p, q, r ∈ [1,∞] and 1/p+ 1/r = 1/l, then

(a) f̂ = Oq,p(A2;A1).
(b) fg = Ol,q(A1 +B1;A2B2/(A2 +B2)) and

Ml,q(fg) ≤
B2

A2 +B2
Mp,q(f) +

A2

A2 +B2
Mr,q(g).

(c) g ∗ f = Oq,l(A1B1/(A1 +B1);A2 +B2).
(d) eit∆h = O2(C1C2/(C2 + 4t

√
C1C2 + 4t2C1); C2), when t > 0.

(e) e−iτ |·|2h = O2(C2; C1C2/(C1 + 4τ
√
C1C2 + 4τ2C2)), when τ > 0.

Proof. Part (a) is immediate. To obtain (b) we need the following calculation: for
µ, ν > 0

(2.22)

∫
Rn

e−µ|x−y|2e−ν|y|2dy = e−(µ− µ2

µ+ν )|x|2
∫

Rn

e
−| µx√

µ+ν
−
√

µ+ν y|2
dy

= ( π
µ+ν )n/2e−

µν
µ+ν |x|

2
.
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Then, taking c = A2B2/(A2 + B2), and combining (2.22) and Hölder’s inequality
we get

‖ec|x|2 f̂ ∗ ĝ‖q = ‖ec|x|2
∫
eA2|x−y|2 f̂(x− y)eB2|y|2 ĝ(y)e−A2|x−y|2e−B2|y|2dy‖q

≤ ‖ec|x|2(
∫
e−q′A2|x−y|2e−q′B2|y|2dy)1/q′‖∞

‖(
∫
eqA2|x−y|2 |f̂(x− y)|qeqB2|y|2 |ĝ(y)|qdy)1/q‖q

≤ c‖eA2|x|2 f̂ ‖q ‖eB2|x|2 ĝ‖q,

which proves (b).
A combination of (a) and (b) yields (c). Part (d) follows from Theorem 2 estimate

(1.10). Finally, (e) follows by combining (a), (d) and the formula

e−iτ |x|2h(x) = ̂eiτ∆(h∨)(x).

�

Remark 2. Parts (d) and (e) in Lemma 2 still hold with t, τ ∈ R resp. by replacing
t and τ on their right hand side by |t| and |τ | resp.

Remark 3. The Lemma suggests to consider the class of functions verifying (2.6) as
a space of test functions for more general distributions than the tempered ones. This
issue will be studied elsewhere.

Corollary 1. Let u0 ∈ S′(Rn). If

eitj∆u0 ∈ L2(e2µj |x|2dx), j = 1, 2, t1 6= t2, µ1, µ2 > 0,

then
u0 ∈ O2(A1;A2), for some A1, A2 > 0.

Proof. Using part (d) in Lemma 2 and Remark 2 we can assume t1 = 0, t2 = s > 0.
Thus,

(2.23) f = u0 ∈ L2(e2µ1|x|2dx), and eis∆f ∈ L2(e2µ2|x|2dx).

But

eis∆f(x) = (4πis)−n/2

∫
Rn

e
i|x−y|2

4s f(y)dy

= (4πis)−n/2e
i|x|2
4s

∫
Rn

e
−ix·y

2s e
i|y|2
4s f(y)dy.

Therefore,

(2.24) e
−i|x|2

4s eis∆f(x) = (4πis)−n/2 ̂
e

i|·|2
4s f(x/s).

From (2.23)-(2.24) it follows that

e
i|·|2
4s f ∈ L2(e2µ1|x|2dx), and

̂
e

i|·|2
4s f ∈ L2(e2µ2(2s)2|ξ|2dξ).
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In particular, e
i|·|2
4s f = O2(µ1; 4s2µ2), and from Lemma 2, part (e) and the Remark

2, it follows that

u0 = f = O2(4s2µ2;
4s2µ1µ2

µ1 + 2
√
µ1µ2 + µ2

),

which yields the desired result. �

Proof of Theorem 1. The part (i) implies (ii) is Corollary 1. That (ii) implies (iii) is
in Theorem 2, (1.10). (iii) implies (i) is immediate. Lemma 2 part (e) shows that (i)
and (iv) are equivalent. Lemma 1 affirms that (v) and (vi) are equivalent and that
each one implies (ii). The fact that (i) implies (vi) follows from the following result
(see [10], page 130):

Suppose that f(x+iy) defined in Cn is an entire function such that f(z) = O(ec1|z|2)
for some c1 > 0 with f(x) = O(e−c2|x|2) for some c2 > 0. Then |f(x + iy)| =
O(e−a|x|2+b|y|2) for some a, b > 0.

(vii) implies (ii) is immediate using Lemma 2 part (b) . To see that (ii) implies (vii)
define

ĥ(ξ) = eδ|ξ|2 û0(ξ) ∈ L1(Rn) ∩ L∞(Rn), δ ∈ (0, b2),

So we just need to show that h ∈ L2(eε|x|2dx) for some ε > 0. Using that (ii) implies
(vi) it follows that

|ĥ(ξ + iη)| = |eδ(ξ+iη)·(ξ+iη)û0(ξ + iη)| ≤ Ne(−a+δ)|ξ|2+b1|η|2 , a, b1 > 0.

Hence, taking δ < a and using that (v) and (vi) are equivalent we get that h ∈
L2(eε|x|2dx) for some ε > 0 which completes the proof. �

3. Further results. Generalizations and Applications

3.1. Some other convex weights. We return to Theorem 1, and its proof given in
section 2. From the arguments used in (1.9)-(1.10) and (2.20)-(2.21), it is clear that
similar estimates hold with different coefficients multiplying the Gaussian weight in
each variable. More precisely, we have the following result:

Corollary 2. Using the same hypotheses and notation as in Theorem 2. Given
~γ = (γ1, . . . , γn) ∈ [0,∞)n (using summation convention over multiple indices) one
has that

‖e
γjx2

j

(αt+β)2 u(t)‖2 ≤ ‖e
γjx2

j

β2 u(0)‖θ(t)
2 ‖e

γjx2
j

(αT+β)2 u(T )‖1−θ(t)
2 ,

for any 0 ≤ t ≤ T , and

‖e
γjx2

j

(αt+β)2 u(t)‖2 ≤ ‖e
γjx2

j

β2 u(0)‖µ(t)
2 ‖e

4γjx2
j

α2 û(0)‖1−µ(t)
2 ,

when t ≥ 0.

Next, we shall extend Theorem 2 to the case where we replace the quadratic powers
in the exponents in (1.9)-(1.10) with possibly different powers in each component.

Corollary 3. Using the same hypotheses and notation as in Theorem 2. Given
~p = (p1, .., pn) ∈ (1, 2]n and ~γ = (γ1, . . . , γn) ∈ [0,∞)n there exists c = c(~p) > 0 such
that

(3.1) ‖eγj| xj
αt+β |

pj

u(t)‖2 ≤ c ‖eγj| xj
β |

pj

u(0)‖θ(t)
2 ‖eγj| xj

αT+β |
pj

u(T )‖1−θ(t)
2 ,
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for 0 ≤ t ≤ T , and

(3.2) ‖eγj| xj
αt+β |

pj

u(t)‖2 ≤ c ‖eγj| xj
β |

pj

u(0)‖µ(t)
2 ‖eγj

˛̨̨
2ξj
α

˛̨̨pj

û(0)‖1−µ(t)
2 ,

for t ≥ 0.

Proof. First, we notice that instead of the identity (2.19) one has the following as-
ymptotic formula (see [10] Proposition 2, pp. 323): in the one dimensional case∫

R
e
λx− |λ|p

′

p′ |λ|
p′−2

2 dλ = e
|x|p

p

(
(2π)

√
p− 1 + O

(
|x|−

p
2

))
,

when 1 < p < ∞, |x| ≥ 1 and 1/p + 1/p′ = 1. In particular, there is c = c(p) such
that

(3.3) c−1e
|x|p

p ≤
∫

R
e
λx− |λ|p

′

p′ |λ|
p′−2

2 dλ ≤ ce
|x|p

p ,

when x is in R. Thus, to obtain (3.1)-(3.2), one just follows the argument provided
in the proof of Theorem 2 to obtain (1.9) and (1.10) respectively, but using instead
of the identity (2.19), the inequality (3.3), when n = 1 and (3.4), when n ≥ 2:

(3.4) c−1e
|x|p

p ≤
∫

Rn

e
λ·x− |λ|p

′

p′ |λ|
n(p′−2)

2 dλ ≤ c e
|x|p

p ,

when 1 < p <∞ and |x| ≥ 1. �

Corollary 4. With the same hypotheses and notation as in Theorem 2. Given any
p ∈ (1, 2], there is c = c(p) > 0, such that

‖e|
x

αt+β |pu(t)‖2 ≤ c ‖e|
x
β |pu(0)‖θ(t)

2 ‖e|
x

αT+β |pu(T )‖1−θ(t)
2 ,

for 0 ≤ t ≤ T , and

‖e|
x

αt+β |pu(t)‖2 ≤ c ‖e|
x
β |pu(0)‖µ(t)

2 ‖e|
2ξ
α |p û(0)‖1−µ(t)

2 ,

for t ≥ 0.

Note that we have stated these results for 1 < p ≤ 2 since Hardy’s uncertainty
principle shows that for p > 2 all the functions are 0.

3.2. Products of solutions. Next, we shall apply in Corollary 5 the logarithmically
convex inequalities to a pair of solutions eit∆u0 and eit∆v0: starting with the inequal-
ity (1.7) or (1.8) for each of these solutions, multiplying the squares of their left hand
sides and their right ones respectively, and following the argument in (2.19), (2.20)
and (2.21), we obtain some estimates concerning the interaction of two solutions of
the free Schrödinger equation.

Corollary 5. Under the same hypotheses and notation as in Theorem 2, the following
inequalities hold

(3.5) ‖e
λ·(x−y)

αt+β eit∆u0(x) eit∆v0(y)‖L2(R2n
x,y)

≤ ‖e
λ·(x−y)

β u0(x) v0(y)‖θ(t)
L2(R2n

x,y) ‖e
λ·(x−y)
αT+β eiT∆u0(x) eiT∆v0(y)‖1−θ(t)

L2(R2n
x,y),
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(3.6) ‖e
|x−y|2

(αt+β)2 eit∆u0(x) eit∆v0(y)‖L2(R2n
x,y)

≤ ‖e
|x−y|2

β2 u0(x) v0(y)‖θ(t)
L2(R2n

x,y) ‖e
|x−y|2

(αT+β)2 eiT∆u0(x) eiT∆v0(y)‖1−θ(t)
L2(R2n

x,y),

for 0 ≤ t ≤ T , and

‖e
λ·(x−y)

αt+β eit∆u0(x) eit∆v0(y)‖L2(R2n
x,y)

≤ ‖e
λ·(x−y)

β u0(x) v0(y)‖µ(t)
L2(R2n

x,y) ‖e
2λ·(ξ−η)

α û0(ξ) v̂0(η)‖1−µ(t)

L2(R2n
ξ,η)

,

‖e
|x−y|2

(αt+β)2 eit∆u0(x) eit∆v0(y)‖L2(R2n
x,y)

≤ ‖e
|x−y|2

β2 u0(x) v0(y)‖µ(t)
L2(R2n

x,y)‖e
4|ξ−η|2

α2 û0(ξ) v̂0(η)‖1−µ(t)

L2(R2n
ξ,η)

,

for t ≥ 0.

Remark 4. The interaction inequalities (3.5)-(3.6) show that the αt + β power of
their left hand sides are logarithmically convex functions in [0, T ].

Also observe that appropriate versions of these inequalities can be deduced for any
finite set of solutions of the free Schrödinger equation.

In Corollary 6, we show that the “logarithmic convexity” behind the interaction
inequalities in Corollary 5, implies interaction Morawetz inequalities for the free par-
ticles in the same spirit as the interaction inequalities in [2, Sections 10 and 11].

Corollary 6. Under the same hypotheses and notation than in Corollary 5, the func-
tion of t

‖|x− y|eit4u0(x) eit4v0(y)‖2L2(R2n
x,y)

is convex in R.

Proof. For γ > 0, choose α = 0 and β =
√

2
γ in (3.6). It shows that

‖e
γ
2 |x−y|2eit4u0(x) eit4v0(y)‖2L2(R2n

x,y)

is logarithmically convex in [0, T ]. This and the fact that

‖eit4u0(x) eit4v0(y)‖L2(R2n
x,y),

is constant, gives that

(3.7)
∫

R2n

eγ|x−y|2 − 1
γ

|eit4u0(x) eit4v0(y)|2 dxdy

≤
(

1− t

T

) ∫
R2n

eγ|x−y|2 − 1
γ

|u0(x) v0(y)|2 dxdy

+
t

T

∫
R2n

eγ|x−y|2 − 1
γ

|eiT4u0(x) eiT4v0(y)|2 dxdy,

when 0 ≤ t ≤ T . The corollary follows from (3.7), after letting γ tend to zero. �
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Remark 5. Corollary 6 follows from (3.6) because the constant in front of the right
hand side of the inequality is precisely equal to 1.

Similar arguments show that

‖|x− y|α
2 eit4u0(x) eit4v0(y)‖2L2(R2n

x,y)

is convex, when n ≥ 3 and 1 ≤ α ≤ 2. In [2] the authors proved a similar result, when
u0 = v0, also in the non-linear setting.

3.3. Galilean invariance. The following result, which is a consequence of Theorem
2 and the Galilean invariant property of the free Schrödinger group, describes the
time evolution of the location of the “mass” of a Gaussian decaying solution.

Corollary 7. Using the same hypotheses and notation as in Theorem 2. For any
ν ∈ Rn

(3.8) ‖e
|x+2tν|2

(αt+β)2 u(t)‖2 ≤ ‖e
|x|2

β2 u(0)‖θ(t)
2 ‖e

|x+2T ν|2

(αT+β)2 u(T )‖1−θ(t)
2 ,

when 0 ≤ t ≤ T , and

(3.9) ‖e
|x+tν|2

(αt+β)2 u(t)‖2 ≤ ‖e
|x|2

β2 u(0)‖µ(t)
2 ‖e

4|ξ+ν|2

α2 û(0)‖1−µ(t)
2 ,

when t ≥ 0.

Proof. We recall the Galilean invariance of the free Schrödinger group

(3.10)
uν(x, t) =eit∆(eiν· u0(·))(x) = e−i|ν|2teiν·x(eit∆u0)(x− 2tν)

=e−i|ν|2teiν·xu(x− 2tν, t).

Thus combining (3.10), the identity

êiν·x u0(ξ) = u0(ξ − ν),

and the inequalities (1.9)-(1.10) in Theorem 2, we obtain (3.8) and (3.9). �

3.4. Final remarks. Next, we recall the following result established in [8], which is
one of the main estimates in that paper :

Lemma 3. There exists ε > 0 such that if

(3.11) V : Rn × [0, T ] → C, with ‖V ‖L1
t L∞x

≤ ε,

and u ∈ C([0, T ] : L2
x(Rn)) is a strong solution of the IVP

(3.12)
{
∂tu = i(∆ + V (x, t))u+ F (x, t),
u(x, 0) = u0(x),

with

(3.13) u0, uT ≡ u( · , T ) ∈ L2(e2λ·xdx), F ∈ L1([0, T ] : L2
x(e2λ·xdx)),

for some λ ∈ Rn, then there exists c independent of λ such that

(3.14) sup
0≤t≤T

‖eλ·xu( · , t)‖2 ≤ c
(
‖eλ·xu0‖2 + ‖eλ·xuT ‖2 +

∫ T

0

‖eλ·xF (·, t)‖2dt
)
. �
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Notice that in the above result one assumes the existence of a reference L2-solution
u of the equation (3.12) and then, under the hypotheses (3.11) and (3.13), shows that
the exponential decay in the time interval [0, T ] is preserved. From the arguments
used in (2.19)-(2.21), it follows that the inequality (3.14) holds with Gaussian weights,
i.e. with γ|x|2, γ > 0 instead of λ · x in the exponent.

In a forthcoming work on Schrödinger equations with potentials, among other re-
sults, we shall extend those in Lemma 3 to a class of potentials V without smallness
assumptions, and give suitable density arguments to justify the manipulations, in-
tegrations by parts and calculations, which arise at the time of trying to derive, in
this more general context, both the preservation and the logarithmic convexity of the
L2(e2γ|x|2dx)-norm, γ > 0, of the corresponding solutions.
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