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ON A CLASSIFICATION OF GRADIENT SHRINKING SOLITONS

Lei Ni and Nolan Wallach

Abstract. The main purpose of this article is to provide an alternate proof to a result
of Perelman on gradient shrinking solitons. Moreover in dimension three our proof

generalizes Perelman’s result by removing the κ-non-collapsing assumption and allowing

general curvature growth. The method also allows us to prove a classification result
on gradient shrinking solitons with vanishing Weyl curvature tensor in high dimensions,

which includes the rotationally symmetric ones.

1. Introduction

In his surgery paper [P2] Perelman proved the following statement (we refer the
reader to [P2] as well as [CZ, KL, MT, CLN] for unexplained terminology and nota-
tion):

Theorem 1.1 (Perelman). Any three dimensional κ-non-collapsed gradient shrinking
soliton with bounded positive sectional curvature must be compact.

This combined with Hamilton’s convergence (or curvature pinching) result [H1] (see
also [I]) implies thatM3 must be isometric to a quotient of S3. The importance of such
a result is that it rules out the possible complications caused by the (a priori possible)
existence of noncompact singularity models with positive curvature and implies a
classification of finite time singularity models. This allows the use of surgery methods
possible in the case of dimension three. More precisely, ancient solutions (which are
noncompact in interesting cases) can be obtained as the Cheeger-Gromov limit of the
sequence of blow-ups (via the compactness result of Hamilton [H3]) as we approach
to the singular time. The gradient shrinking solitons arise from the non-collapsed
ancient solutions as blow-down limits [P1] (at least) in the case that the ancient
solution has nonnegative curvature operator. By ruling out noncompact shrinking
solitons with positive curvature one can conclude that a shrinking soliton that arises
from an ancient solution must be the cylinder S2×R or a quotient of it. This provides
the phototype for the surgery. This relation of the gradient shrinking solitons with
the Ricci flow suggests the importance of studying noncompact gradient shrinking
solitons.

On the other hand, Perelman’s proof, of which has a detailed exposition in [CZ,
KL, MT] (see also pages 377-386 of [CLN]), is geometric and relies on detailed analysis
of the level sets of the potential function, and more importantly, the Gauss-Bonnet
formula for surfaces. The authors could not adapt Perelman’s argument to higher

Received by the editors September 11, 2007.
The first author’s research was supported in part by NSF grant DMS-0504792 and an Alfred

P. Sloan Fellowship, USA. The second author’s research was partially supported by an NSF grant
DMS-0500495.

941



942 LEI NI AND NOLAN WALLACH

dimensions. The main goal of this article is to provide an alternate approach and
generalize the above result of Perelman to the dimensions greater than 3. We remove
the uniform bound assumption on curvature. Perhaps more importantly we do not
assume that the gradient shrinking soliton is κ-non-collapsed, as assumed in the above
mentioned result of Perelman. For the high dimensional case, our method gives a
classification of gradient shrinking solitons which are locally conformally flat. The
following is our main result.

Theorem 1.2. Let (Mn, g) be a gradient shrinking soliton whose Ricci curvature is
nonnegative. If n ≥ 4 we assume that (M, g) is locally conformally flat. Then either
M is isometric to Rn, or it is a quotient of Sn or Sn−1 × R. In the case that M is
compact, the assumption that the Ricci curvature is nonnegative is not needed.

In particular, if (Mn, g) has positive Ricci curvature it must be compact.

As a corollary we have a more general result than Theorem 1.1.

Corollary 1.3. Let (M3, g) be a gradient shrinking soliton whose Ricci curvature is
positive. Then M must be compact.

It is important to relax the condition of bounded curvature since the gradient
shrinking solitons obtained from singularity analysis usually do not have bounded
curvature (cf. [N]). Secondly, when M is noncompact, the assumption that Ricci
curvature is nonnegative is only used to ensure that the integrals involved are finite.
1

Some new invariant cones, which bound the Weyl curvature by the scalar curvature,
have been discovered in [BW2] very recently. They may be related to our result.

The rotationally symmetric gradient shrinking solitons has been studied in [K].
A straightforward computation shows that the rotational symmetric manifolds have
vanishing Weyl curvature. Hence our result gives a self-contained classification of
rotationally symmetric gradient shrinking solitons. (The proof in [K] appealed the
strong result of Böhm-Wilking [BW1] for the compact case.)

Acknowledgements

The first author would like to thank T. Ilmanen for interests and hospitality during
his visit at ETH in the summer of 2007.

2. Preliminaries

Recall that (M, g) is a gradient shrinking soliton if there exists a function f such
that its Hessian fij satisfies

Rij + fij −
1
2
gij = 0.

As shown in [CLN], Theorem 4.1, there exists a family of metrics g(t), a solution to
Ricci flow with the property that g(0) = g and a family of diffeomorphisms φ(t), which
is generated by the vector field X = 1

τ∇f , such that φ(0) = id and g(t) = τ(t)φ∗(t)g
with τ(t) = 1 − t, as well as f(t) = φ∗(t)f . The following can be checked by some
straight forward computations [CLN].

1In fact, the nonnegativity of the Ricci curvature can be removed in the case. This is a observation
due to Petersen and Wylie. Please see the Remark 5.5.
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Lemma 2.1. For τ > 0,

∂

∂τ
|Ric |2 = −2

τ
|Ric |2 − 〈∇|Ric |2,∇f〉,(2.1)

∂

∂τ
S2 = −2

τ
S2 − 〈∇S2,∇f〉.(2.2)

Here S is the scalar curvature.

This holds, in particular, at t = 0 (namely τ = 1). A direct consequence is that

(2.3)
∂

∂t

(
|Ric |2

S2

)
= 〈∇

(
|Ric |2

S2

)
,∇f〉.

We shall also need the following results. First we need Proposition 1.1 of [N] to
bound the scalar curvature from below.

Proposition 2.2. Assume that (M, g) is a non-flat gradient shrinking soliton. As-
sume that it has nonnegative Ricci curvature. Then there exists δ = δ(M) > 0 such
that S ≥ δ.

The following result on the bound of f as well as its gradient is implicit in the
argument of [P2] when the Ricci curvature is assume to be bounded. For the general
case without assuming the curvature bound, it is included in the proof of Proposition
1.1 of [N].

Lemma 2.3. Assume the same assumption as in Proposition 2.2. Then for any
A > 0, there exist constants B = B(M,f,A), C = C(M,f) > 0 such that

(2.4) f(x) ≥ Ar(x)− C,

(2.5) f(x) ≤ 2r2(x), |∇f |(x) ≤ 4r(x)

for r(x) ≥ B. Here r(x) is the distance function to some fixed point o ∈ M with
respect to g(0) metric. Moreover

(2.6) S(x) ≤ C(r(x) + 1)2

for some C > 0.

Under the assumption that (M, g) has nonnegative Ricci curvature, it is also an
easy consequence of the soliton equation (e.g. from the proof of Proposition 1.1 in
[N]) that

(2.7) |∇S|2 ≤ 4S2|∇f |2.

Using the soliton equation and the assumption that Rij ≥ 0 we also have that

(2.8) |fij |2 ≤ max{n
2
, S2}.

We will use these inequalities to justify the finiteness of some integrals. Most im-
portantly recall the following local derivative estimates of Shi (cf. Theorem 13.1 of
[H3]).
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Theorem 2.4. For any α > 0 there exists a constant C(n,K, r, α) such that if
(M, g(t)) is a solution to Ricci flow with t ∈ [0, t1], 0 < t1 ≤ α

K , p ∈M and

|Rijkl|(x, t) ≤ K

for all x ∈ Bg(0)(p, r), t ∈ [0, t1], then

|∇sRijkl|(y, t) ≤
C(n,

√
Kr, α)K√
t

for all y ∈ Bg(0)(p, r
2 ) and t ∈ (0, t1]. Moreover, for the same (y, t)

|∇mRijkl|(y, t) ≤
C(n,m,K, r, α)

t
m
2

.

3. Three dimensional case

We first give a different proof to Perelman’s theorem mentioned in the introduction.
In fact what we prove is a more general result since we assume neither that gradient
shrinking soliton is κ-noncollapsed nor that the curvature is uniformly bounded. Most
argument of the proof can also be used in dimensions n ≥ 4.

For the argument involving the integration by parts, we assume that there exists
β > 0 the Ricci curvature satisfies that

(3.1) |Ric |(y, t) ≤ β(r2(x) + 1)

for all y ∈ Bg(− 1
2 )(x,

r(x)
2 ) and t ∈ [− 1

2 , 0]. Here r(x) is the distance function to
some fixed point o ∈ M with respect to the metric g(0). Notice that (3.1) can be
easily verified if we assume that |Ric | is uniformly bounded at t = 0. It is also not
hard to show that under the assumption Ric ≥ 0, the assumption (3.1) follows from
(2.6). Namely on a gradient shrinking soliton with nonnegative Ricci curvature the
assumption (3.1) is always true. The main purpose of this section is to show the
following result.

Theorem 3.1. Let (M3, g) be a complete gradient shrinking soliton with the positive
sectional curvature. Then M must be the quotient of S3.

Note that we do not need to assume (M, g) is κ-non-collapsed. The proof also
concludes that M = S3/Γ directly without appealing to Hamilton’s result. In later
sections we, in fact, directly obtain a classification of solitons under the assumption
that Ric ≥ 0.

First we recall a result of Hamilton. In [H1], the following result was proved for
solutions to Ricci flow on a three manifold M .

Proposition 3.2.
(3.2)(
∂

∂t
−∆

) (
|Ric |2

S2

)
= − 2

S4
|S∇pRij −∇pSRij |2 −

P

S3
+ 〈∇

(
|Ric |2

S2

)
,∇ logS2〉,

where

P =
1
2

(
(µ+ ν − λ)2(µ− ν)2 + (λ+ ν − µ)2(λ− ν)2 + (λ+ µ− ν)2(λ− µ)2

)
with µ, ν and λ are eigenvalues of Ric.
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If (M3, g) is a gradient shrinking soliton, combining the discussion above we find
that at t = 0,

0 = ∆
(
|Ric |2

S2

)
− 〈∇

(
|Ric |2

S2

)
,∇f〉 − 2

S4
|S∇pRij −∇pSRij |2(3.3)

− P

S3
+ 〈∇

(
|Ric |2

S2

)
,∇ logS2〉.

Now multiply both sides of the above equation by |Ric |2e−f and then integrate by
parts. For the rest of the argument we will assume that all integrals involved are
finite and the integration by parts can be performed, which we shall justify after we
complete the (formal) argument.

0 =
∫

M

−〈∇
(
|Ric |2

S2

)
,∇|Ric |2〉e−f − 2|Ric |2

S4
|S∇pRij −∇pSRij |2 e−f

∫
M

− P

S3
|Ric |2e−f + 〈∇

(
|Ric |2

S2

)
,∇ logS2〉|Ric |2e−f .

Since

∇
(
|Ric |2

S2

)
=
∇|Ric |2

S2
− ∇S2

S4
|Ric |2

we deduce that∫
M

−〈∇
(
|Ric |2

S2

)
,∇|Ric |2〉e−f + 〈∇

(
|Ric |2

S2

)
,∇ logS2〉|Ric |2e−f

= −
∫

M

∣∣∣∣∇(
|Ric |2

S2

)∣∣∣∣2 S2e−f .

Hence, we have that

0 =
∫

M

−
∣∣∣∣∇(

|Ric |2

S2

)∣∣∣∣2 S2e−f − 2|Ric |2

S4
|S∇pRij −∇pSRij |2 e−f∫

M

− P

S3
|Ric |2e−f .

In particular, |Ric |2
S2 is a constant,

(3.4) S∇pRij −∇pSRij = 0

and P = 0. If we choose a orthornormal frame such that Rij is diagonal, the equality
(3.4) implies that

S∇pRjj = ∇pSRjj(3.5)
S∇pRij = 0, for i 6= j.(3.6)

Combining this with the second Bianchi identity we have
1
2
∇iS =

∑
p

∇pRip = ∇iRii

and
1
2
S∇iS = S∇jRjj = ∇iSRii.



946 LEI NI AND NOLAN WALLACH

On the other hand, P = 0 implies that R11 = R22 = R33 = 1
3S. It follows that

1
2
S∇iS = (∇iS)

S

3
.

Hence S is a constant. Now (3.5) and (3.6) imply that ∇pRij = 0 for any p, i, j. This
implies that M is a compact locally symmetric space with positive curvature. The
claim then follows from well known results.

Now with the help of Proposition 2.2 and Lemma 2.3 we now justify the finiteness
of the integrals involved and the integration by parts.

First note that if we assume that supx∈M |Rijkl|(x) ≤ C for some C > 0, namely
the curvature is bounded, invoking the Bernstein-Bando-Shi type derivative estimates
(cf. [CK], Theorem 7.1), we have that |∇mRijkl| are uniformly bounded on M . Hence
all the integrals involved are finite which then implies, via cut-off function argument,
that the integrations by parts are completely legal, in view of the fast decay of e−f

ensured by Lemma 2.3 and the lower bound of S provided by Proposition 2.2.
For the more general case that Ric satisfies (3.1), notice first that for three mani-

folds the assumption on |Ric | is equivalent to the same assumption on |Rijkl| (with a
factor of absolute constant). Hence we have that for any ε > 0, there exists β(ε) > 0
such that

(3.7) |Rijkl|(y, t) ≤ β(r(x) + 1)2

for all y ∈ Bg(− 1
2 )(x,

r(x)
2 ) and t ∈ [− 1

2 , 0].

We estimate ∆
(
|Ric |2

S2

)
|Ric |2. The other estimates are similar. Applying the

local derivative estimate of Shi (cf. Theorem 13.1 of [H3]) we have that

|∇pRijkl|(x, 0) ≤ C1(r(x) + 1)3

|∇p∇qRijkl|(x, 0) ≤ C2(r(x) + 1)4.

A direct computation shows that

∆
(
|Ric |2

S2

)
=

∆|Ric |2

S2
− 2

〈∇|Ric |2,∇ logS2〉
S2

+ 2|Ric |2 |∇ logS2|2

S2

−∆S2

S4
|Ric |2.

At t = 0 there exist absolute constants Ci, i = 3, 4, 5 and β3(ε) depending only on β1

and β2 such that for r(x) >> 1,

I =
(∣∣∣∣∆|Ric |2

S2

∣∣∣∣ |Ric |2
)

(x, 0) ≤ C3(r(x) + 1)8,

II =
(∣∣∣∣ 〈∇|Ric |2,∇ logS2〉

S2

∣∣∣∣ |Ric |2 + |Ric |4 |∇ logS2|2

S2

)
(x, 0)

≤ C4(r(x) + 1)14,

III =
(∣∣∣∣∆S2

S4

∣∣∣∣ |Ric |4
)

(x, 0) ≤ C5(r(x) + 1)14.
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Putting the above estimates together with (2.4) we conclude that if t = 0 then∫
M

∣∣∣∣∆ (
|Ric |2

S2

)∣∣∣∣ |Ric |2e−f dµ0 <∞.

Similarly, one can establish the finiteness of the other integrals involved. Once we
have the the finiteness of the integration, the integration by parts can be checked by
approximation via the cut-off functions. This is somewhat standard we hence leave
the details to the reader.

Remark 3.3. A similar argument was used by Huisken [Hu2] in the classification of
mean convex shrinking solitons of mean curvature flow in Rn+1.

4. Preliminaries for higher dimensions

Most of the results in this section are either known (cf. [Hu1, H2]) or can be derived
easily from the literature. We include them here for completeness and in order to
adapt the statements to our specific needs. We recall the Ricci flow evolution formula
for the curvature [H1]:(

∂

∂t
−∆

)
Rijkl = 2(R2 +R#)ijkl

− (RipRpjkl +RjpRipkl +RkpRijpl +RlpRijkp)

where Q(R) = R2 +R# is defined via the Lie algebra structure of ∧2(n), which can
be identified with the Lie algebra of O(n). The below is a brief account.

Let (E, g) be a Euclidean space with metric g. We can make the following identifi-
cations: ⊗2E, the tensor space, can be identified with GL(n,R), the linear transfor-
mations on E (for any x⊗ y ∈ ⊗2E, x⊗ y(z) = 〈y, z〉x is the corresponding element
of Mn(R)); under this identification, the space symmetric two tensors S2E corre-
sponds to the symmetric transformations S2(E); ∧2E can be identified with so(n)
(ei ∧ ej = ei ⊗ ej − ej ⊗ ei is identified with the matrix eij with 1 at (i, j)-th position
and −1 at (j, i)-th position and zeros everywhere else. The metric on TM extends
naturally to all the related tensor spaces such as ⊗2TM , S2TM , ∧2TM . With respect
to the previous identification, the metric on so(n) is given by 〈A,B〉 = − 1

2 tr(AB)
(= 1

2 tr(AtB)) thus {ei∧ej}i<j is an orthonormal basis of ∧2TM). The identification
also equips ∧2TM with a Lie algebra structure, which is of fundamental importance
in the study of evolution of curvature operators under Ricci flow. This was first ob-
served by Hamilton [H2]. Let us recall this fact first. For an orthonormal basis φα of
∧2TM (say φα = ei ∧ ej , which is identified with eij), the Lie bracket is given by

[φα, φβ ] = cαβγφγ .

It is easy to check, by simple linear algebra, that

〈[φ, ψ], ω〉 = −〈[ω, ψ], φ〉.
This immediately implies that cαβγ is anti-symmetric. If A,B ∈ S2(∧2TM) one can
define

(A#B)αβ =
1
2
cαγηcβδθAγδBηθ.

It is easy to see that A#B is symmetric too. Also from the anti-symmetry of cαβγ

A#B = B#A.
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The easy computation also shows that

〈(A#B)(φ), ψ〉 =
1
2

∑
αβ

〈[A(ωα), B(ωβ)], φ〉 · 〈[ωα, ωβ ], ψ〉

if {ωα} is an orthonormal basis. This particularly implies that tr((A#B) · C) is
symmetric in A,B,C since

tr((A#B) · C) =
∑

γ

〈(A#B) · C(ωγ), ωγ〉

=
1
2

∑
αβγ

〈[A(ωα), B(ωβ)], C(ωγ)〉〈[ωα, ωβ ], ωγ〉.

Now define
tri(A,B,C) = tr((AB +BA+ 2A#B)C)

which is symmetric in all three variables. If we write

R(ei ∧ ej) =
1
2

∑
k,l

Rijklek ∧ el

we would have that
|Rijkl|2 = 4〈R,R〉.

We denote tri(R) = tri(R,R,R) = 〈2(R2 +R#),R〉 and Q(R) = R2 +R#.
The curvature operator R has an orthogonal splitting, with respect irreducibleO(n)

representation, into the trace part RI = S
n(n−1) I, the traceless Ricci part RRic0 =

2
n−2 Ric0 ∧ id, where Ric0 denotes the traceless part of the Ricci curvature, and the
Weyl curvature RW (cf. [BW1]). We denote the three subspaces by 〈I〉, 〈Ric0〉 and
〈W 〉 respectively. Equipped with the above notation we have that

Lemma 4.1.

(4.1)
(
∂

∂t
−∆

)
|Rijkl|2 = 8 tri(R)− 2|∇pRijkl|2.

The following result is a direct consequence.

Proposition 4.2. Assume that S 6= 0. Then(
∂

∂t
−∆

) (
|Rijkl|2

S2

)
=

4
S3

(
2 tri(R)S − σ2|Rijkl|2

)
(4.2)

− 2
S4

|S∇pRijkl −∇pSRijkl|2 + 〈∇
(
|Rijkl|2

S2

)
,∇ logS2〉,

where σ2 = |Ric |2.

Recall that Tachibana [T] proved that (see also [CLN], pages 267-269), under the
assumption that R ≥ 0,

−2 tri(R) + Ric(R,R) ≥ 0

where Ric(R,R) = RipRijklRpjkl.
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In [Hu1], Huisken obtained the following identities.

(RI)ijkl(Q(R))ijkl = 4〈Q(R),RI〉 =
2

n(n− 1)
Sσ2;(4.3)

(RRic0)ijkl(Q(R))ijkl =
4

n(n− 1)
Sσ̃2 − 8

(n− 2)2
λ3

i +
4

n− 2
(RW )ijijλiλj ;(4.4)

(RW )ijkl(Q(R))ijkl = 2 tri(RW ) +
2

n− 2
(RW )ijijλiλj ;(4.5)

where λi are the eigenvalues of Ric0 and σ̃2 =
∑
λ2

i . Below we first show these
equations via the following lemma, which essentially follows from [BW1]. In [Hu1],
the result was shown by direct but long computations which were omitted. With the
help of [BW1], the result can be obtained without much computation. We include the
derivation for the sake of completeness. First we need the following lemma essentially
proved in [BW1].

Lemma 4.3.

(4.6) R+R# I = Ric(R) ∧ id .

Hence for any R1,R2 ∈ SB(∧2(n)), let

B(R1,R2) = R1 R2 +R2 R1 +2R1 #R2 .

Let Ri
I ∈ 〈I〉, R0 ∈ 〈Ric0〉, Wi,W ∈ 〈W 〉 (i = 1, 2). Then the following hold

B(RI,W ) = 0,

B(R1
I ,R

2
I ) ∈ 〈I〉

B(W1,W2) ∈ 〈W 〉
B(RI,R0) ∈ 〈Ric0〉
B(R0,W ) ∈ 〈Ric0〉

1
2
B(R0,R0) =

1
n− 2

Ric0 ∧Ric0−
2

(n− 2)2
(Ric2

0)0 ∧ id+
σ̃2

n(n− 2)
I .(4.7)

Moreover

(4.8) Ric0 ∧Ric0 = − σ̃2

n(n− 1)
I− 2

n− 2
(Ric2

0)0 ∧ id+ (Ric0 ∧Ric0)W .

The above lemma will be used in the following calculations.

tri(R,R,RI) = tri(R,RI,R)

=
2S

n(n− 1)
〈Ric∧ id,R〉

=
2S

n(n− 1)
〈S
n

id∧ id+Ric0 ∧ id,
S

n(n− 1)
id∧ id+

2
n− 2

Ric0 ∧ id〉
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Set λ̄ = S
n . Then

〈S
n

id∧ id+Ric0 ∧ id,
S

n(n− 1)
id∧ id+

2
n− 2

Ric0 ∧ id〉

= 〈λ̄ id∧ id+Ric0 ∧ id,
λ̄

n− 1
id∧ id+

2
n− 2

Ric0 ∧ id〉 =
n

2
λ̄2 +

1
2

∑
λ2

i

=
1
2
σ2.

This proves (4.3). For (4.4), let R0 = RRic0 . We next compute tri(R,R,R0). Using
the symmetry

tri(R,R,R0) = tri(R,R0,R)
= 〈B(RI,R0),R〉+ 〈B(R0,R0),R〉+ 〈B(RW ,R0),R〉
= 〈B(RI,R0),R0〉+ 〈B(R0,R0),RI +R0 +RW 〉+ 〈B(RW ,R0),R0〉
= 2 tri(R0,R0,RI) + 2 tri(R0,R0,RW ) + tri(R0,R0,R0).

Using (4.7) and (4.8) we have that

tri(R0,R0,RI) =
1

n(n− 1)
σ̃2S

Similarly,

tri(R0,R0,R0) = − 4
(n− 2)2

∑
λ3

i

and
2 tri(R0,R0,RW ) =

2
n− 2

(RW )ijijλiλj .

The above three equations give (4.4). For (4.5), notice that

tri(RW ,R,R) = tri(R0,RW ,R0) + tri(RW ,RW ,RW ).

Then the claimed equality follows from the above computation on tri(R0,R0,RW ).
We have, finally, arrived at the following formula:

2 tri(R)S − σ2|Rijkl|2 = −4|RW |2σ2 + 2S tri(RW ,RW ,RW )

− 4
n(n− 1)(n− 2)

S2σ̃2 − 4
n− 2

σ̃4(4.9)

− 8
(n− 2)2

S
∑

λ3
i +

6
n− 2

S(RW )ijijλiλj .

This follows from (4.3)-(4.5) along with the observation that

|R |2 = |RI |2 + |RRic0 |2 + |RW |2

=
S2

2n(n− 1)
+

1
n− 2

∑
λ2

j + |RW |2

and

σ2 =
S2

n
+ σ̃2.

Hence

4σ2|R |2 =
2S2

n(n− 1)
σ2 +

4S2σ̃2

(n− 2)n
+

4
n− 2

σ̃4 + 4|RW |2σ2.
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In the case that RW = 0, which is automatical if n = 3 and amounts to that (M, g)
is locally conformally flat if n ≥ 4, we have that

(4.10) 2 tri(R)S−σ2|Rijkl|2 = − 4
n(n− 1)(n− 2)

S2σ̃2− 4
n− 2

σ̃4− 8
(n− 2)2

S
∑

λ3
i .

Similarly, since (
∂

∂t
−∆

)
Rik = 2RijklRjl − 2RilRlk,

we also have the following high dimensional analogue of Proposition 3.2.

Proposition 4.4. Assume that S > 0. Then(
∂

∂t
−∆

) (
σ2

S2

)
=

4
S3

(
SRijklRjlRik − σ4

)
(4.11)

− 2
S4

|S∇pRij −∇pSRij |2 + 〈∇
(
σ2

S2

)
,∇ logS2〉.

In the case dim(M) = 3 the above implies Hamilton’s computation (Proposition
3.2).

5. High dimensional locally conformally flat manifolds

We first prove the following algebraic result.

Proposition 5.1. Let σ, σ̃, λi be as in the last section. Then

− 4
n− 2

(
1

n(n− 1)
S2σ̃2 + σ̃4 +

2
n− 2

S
∑

λ3
i

)
≤ 0.

If the equality holds, then either
(i) λi = 0 for all 1 ≤ i ≤ n, or
(ii) there exists a > 0 such that

λl =
1√

n(n− 1)
a, for 1 ≤ l ≤ n− 1;

λn = −
√
n− 1
n

a

and S =
√
n(n− 1)a.

Proof. Let

F (S, λ1, · · ·, λn) =
1

n(n− 1)
S2

∑
λ2

i +
2

n− 2
S

∑
λ3

i +
(∑

λ2
i

)2

.

The goal is to show that F ≥ 0 under the constraint that
∑
λi = 0 and analyze the

equality case. Since it is homogenous we can consider the extremal values of F under
the further constraint

∑
λ2

i = 1. Viewing F as a quadratic form in terms of S, the
result follows, by elementary consideration, if we show that(∑

λ3
i

)2

≤ (n− 2)2

n(n− 1)
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under the constraints
∑
λi = 0 and

∑
λ2

i = 1. Let G =
∑

i λ
3
i . By the method of

Lagrange multipliers we find the following identities at the critical points.

3λ2
j − λ− 2µλj = 0, for 1 ≤ j ≤ n,∑

λi = 0,∑
λ2

i = 1.

This implies that λ = 3
n and

λj =
µ+ εj

√
µ2 + 9

n

3

with εj ∈ {−1, 1}. We shall compute all possible values of λj . The problem splits
into two cases.

Case 1 : n = 2k. Let ε =
∑

j εj which takes value in {−2k,−2(k−1), · · ·,−2, 0, 2, · ·
·, 2(k − 1), 2k}. Since

∑
j λj = 0, it is easy to see that ε can not take the value 2k or

−2k. If ε = 0 then µ = 0, which then implies, after a permutation of the indices, that
λj = 1√

n
for 1 ≤ j ≤ k and λj = − 1√

n
for k ≤ j ≤ 2k. In this case G = 0.

In general assume that ε = 2(k − i) for some 1 ≤ i ≤ k. We shall consider only
the range 1 ≤ i ≤ k − 1 since the other values of i follow by symmetry. Without the
loss of the generality we may assume that εj = 1 for 1 ≤ j ≤ 2k − i and εj = −1 for
2k − i ≤ j ≤ 2k. In this case

µ = − 3(k − i)√
(2k − i)2ki

,

λl =

√
i

2k(2k − i)
, if 1 ≤ l ≤ 2k − i,

λl = −
√

2k − i

2ki
, if 2k − i < l ≤ 2k.

This implies that

G = − n− 2i√
(n− i)i

√
n
.

Since (n−2i)2

(n−i)i is monotone decreasing in i, we can conclude that G ≥ − n−2√
n(n−1)

.

Symmetrically, for ε = −2(k − i) we can find G = n−2i√
(n−i)i

√
n
. Combining these

observations we have

− n− 2√
n(n− 1)

≤ G ≤ n− 2√
n(n− 1)

.

The minimum is achieved when i = 1, which implies the second part of the statement
in the proposition in this case.

Case 2: n = 2k + 1. Again due to the fact that
∑
λi = 0, ε takes values in

{−(2k− 1), · · ·,−1, 1, · · ·, 2k− 1}. Assume that ε = 2(k− i) + 1 for some 1 ≤ i ≤ 2k.
As above we shall invoke symmetry and only consider 1 ≤ i ≤ k. Now we assume
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that εj = 1 for all 1 ≤ j ≤ 2k − i+ 1, and εj = −1 for 2k − i+ 2 ≤ j ≤ 2k + 1. Now
we have that

µ = −3
2
· 2(k − i) + 1√

2k + 1
√
i
√

2k − i+ 1
,

λl =
√
j

√
2k − j + 1

√
2k + 1

, for 1 ≤ 1 ≤ l ≤ 2k − i+ 1,

λl = −
√

2k − i+ 1√
i
√

2k + 1
, for 2k − i+ 2 ≤ l ≤ 2k + 1.

From this we can compute that

G = − n− 2i
√
n
√
n− i

√
i
.

Since

− n− 2i
√
n− i

√
i
≥ − n− 2√

n− 1
√
n
,

we conclude that G2 ≤ (n−2)2

(n−1)n . The minimum is therefore achieved when i = 1.
Combining the above two cases, we complete the proof that F ≥ 0. From the

above discussion, it is straight forward to check that the listed cases are the only two
that can achieve the equality. �

Corollary 5.2. Let (Mn, g) (n ≥ 4) be a locally conformally flat gradient shrinking
soliton whose Ricci curvature is nonnegative. Then either M is isometric to Rn, or
it is a quotient of Sn or Sn−1 × R. In the case that M is compact, the assumption
that the Ricci curvature is nonnegative is not needed.

In particular, if (Mn, g) has positive Ricci curvature it must be compact.

Proof. Notice that S satisfies the equation
(

∂
∂t −∆

)
S = 2|Ric |2. If M is compact

Lemma 2.18 of [CLN] implies that S ≥ 0. Hence in either the caseM is compact or the
case M is noncompact with Ric ≥ 0, we all have that S ≥ 0. By the strong maximum
principle we know that if S = 0 for some (x0, t0), then S(x, t) ≡ 0. Therefore Ric ≡ 0
by the above parabolic equation. Using the soliton equation which now becomes
fij = 1

2gij , we conclude that f = 1
2r

2(x, o) where o is the unique critical point of f .
Now the Laplace comparison theorem implies that M = Rn. Hence we may assume
that S > 0.

As in Section 3 we have that

0 = ∆
(
|Rijkl|2

S2

)
− 〈∇

(
|Rijkl|2

S2

)
,∇f〉 − 2

S4
|S∇pRijkl −∇pSRijkl|2(5.1)

− P

S3
+ 〈∇

(
|Rijkl|2

S2

)
,∇ logS2〉.

Here

P = −4(2 tri(R)S − σ2|Rijkl|2),
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which is nonnegative by Proposition 5.1. Multiplying |Rijkl|2e−f and integrating by
parts, which can be justified similarly as in Section 3, we have that

0 =
∫

M

−
∣∣∣∣∇(

|Rijkl|2

S2

)∣∣∣∣2 S2e−f − 2|Rijkl|2

S4
|S∇pRijkl −∇pSRijkl|2 e−f∫

M

− P

S3
|Rijkl|2e−f .

By Proposition 5.1 we have that

(5.2) ∇pSRijkl = S∇pRijkl

which implies that
∇pSRik = S∇pRik.

Also the argument of Section 3 implies that

2 tri(R)S − σ2|Rijkl|2 = −2
(

1
12
S2σ̃2 + σ̃4 + S

∑
λ3

i

)
= 0

and |Rijkl|2
S2 is a constant.

If λi = 0, then Rik = S
n δik. The second Bianchi identity implies that

1
2
S∇iS = S∇pRip =

S

4
δip∇pS.

which implies that ∇pS = 0. Then we have ∇pRijkl = 0 by (5.2).
If the second case of Proposition 5.1 happens, we have that Rij = δij

n−1S for 1 ≤
i, j ≤ n − 1 and Rnj = 0 for 1 ≤ j ≤ n. The same computation as in n = 3 shows
that ∇pS = 0, hence ∇pRijkl = 0, which means that (M, g) is locally symmetric. The
conclusion follows from the fact that (M, g) is either Einstein or its Ricci curvature
has constant rank n− 1 and with n− 1 identical nonzero eigenvalues. �

Remark 5.3. (1) The last assertion of the corollary should be compared with the
result in [NW]. In that paper, a certain curvature operator pinching condition is used
to prove that the manifold is compact.

(2) Whether or not the argument here (or some variation of it) is sufficient to show
that any shrinking gradient soliton with positive curvature operator must be compact
is an interesting question. The Kähler case has been resolved in [N]. We hope to
return to the remaining cases in the future study.

Since Proposition 5.1 also holds when n = 3, and RW = 0 automatically we have
the following corollary which generalizes Theorem 1.1.

Corollary 5.4. Let (M3, g) be a gradient shrinking soliton whose Ricci curvature is
nonnegative. Then either M is isometric to R3, or it is a quotient of S3 or S2 × R.
In the case that M is compact, the assumption on the nonnegativity of the Ricci
curvature is not needed. In particular, if (M3, g) has positive Ricci curvature it must
be compact.

Remark 5.5. After the submission of the current paper, in a recent preprint Petersen
and Wylie observed that the nonnegativity of the Ricci curvature in Corollary 5.2
can be replaced by the assumption that |Ric | is bounded. One can also modify our
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argument above to prove this by doing integration over balls of radius R and then
taking R→∞.
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