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ON THE SEMISTABILITY OF THE MINIMAL POSITIVE STEADY
STATE FOR A NONHOMOGENEOUS SEMILINEAR CAUCHY

PROBLEM

BaiShun Lai1 and Yi Li1,2

Abstract. This paper is contributed to the study of the Cauchy problem8<:
ut = ∆u + K(|x|)up + µf(|x|) in Rn × (0, T ), u(x, 0) = ϕ(x) in Rn,

u(x, 0) = ϕ(x) in Rn,

with non-negative initial function ϕ 6≡ 0. We will study the asymptotic behavior and
the semistability of the minimal positive steady state. In addition, we will prove that all

slow decay positive steady states are stable and weakly asymptotically stable in some

weighted L∞ norms.

1. Introduction

In this paper, we will consider the asymptotic behavior and the stability of the
positive radial solutions of the following equation

(1.1) ∆u+K(|x|)up + µf(|x|) = 0,

which are positive steady states of the following Cauchy problem:

(1.2)

 ut = ∆u+K(|x|)up + µf(|x|) in Rn × (0, T ),

u(x, 0) = ϕ(x) in Rn,

where p > 1, x ∈ Rn, n ≥ 3,∆ =
∑n

i=1
∂2

∂x2
i

is the n−dimensional Laplacian, T > 0,
µ is some positive constant, 0 ≤ f ∈ C1(Rn \ {0}), K(x) is a given locally Hölder
continuous function in Rn \ {0}, and ϕ 6≡ 0 is a bounded non-negative continuous
function in Rn, the unique solution of (1.2) is denote by u(x, t, ϕ).

For the physical reasons, we consider the positive radial solutions of (1.1), when
K(x) = K(r), f(x) = f(r), where r = |x|. Then the equation (1.1) reduces to

(1.3) u′′ +
n− 1
r

u′ +K(x)up + µf(r) = 0 r > 0.

For the same reasons, the regular solutions that have finite limits at r = 0, are
particularly interesting, which lead us to consider the initial value problem

(1.4)
{
u′′ + n−1

r u′ +K(x)up + µf(|x|) = 0,
u(0) = α > 0,
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and we use ua = u(r, α) to denote the solution of (1.4).
The hypotheses ofK(x) are often divided into two cases: the fast decay case and the

slow decay case. In this paper, we will focus on the slow decay case, i.e. K(r) ≥ crl,
for some l > −2 and r large. First, let us introduce a collection of hypotheses on
K(x) and f :

(K.1) K(x) = k∞|x|l + O(|x|−d) at |x| → ∞ for some constants k∞ > 0 and
d > n− λ2 −m(p+ 1), where λ2 is defined by (1.7) below.

(K.2) K(x) = O(|x|τ ) at |x| = 0 for some τ > −2.
(K.3) K(r) is locally Lipschitz continuous and d

dr (r−lK(r)) ≤ 0 for a.e. r > 0.
(f.1) f(x) = O(|x|τ1) at |x| → 0 for some τ1 > −2.
(f.2) f(x) = O(|x|−q) near |x| = ∞, for some q > n−m− λ2.

Also, we introduce the following notations, which will be used throughout this
paper:

m ≡ l + 2
p− 1

, b0 ≡ n− 2− 2m,

L ≡ [m(n− 2−m)]
1

p−1 , c0 ≡ (p− 1)Lp−1,

(1.5) pc =

{
(n−2)2−2(l+2)(n+l)+2(l+2)

√
(n+l)2−(n−2)2

(n−2)(n−10−4l) n > 10 + 4l,
∞ 3 ≤ n ≤ 10 + 4l.

Note that when l = 0 we have

pc =

{
(n−2)2−4n+4

√
n2−(n−2)2

(n−2)(n−10) n > 10,
∞ 3 ≤ n ≤ 10,

which was first introduced in [15]. Also note that we have m > 0 and b0 > 0 when
p > n+2l+2

n−2 and l > −2.
Consider the equation

(1.6) λ2 + b0λ+ c0 = 0,

here b0 and c0 are as in (1.5). When p > pc, (1.6) has two negative roots −λ2 <
−λ1 < 0 and b0 > λ2,

λ1 = λ1(n, p, l) =
(n− 2− 2m)−

√
(n− 2− 2m)2 − 4(l + 2)(n− 2−m)

2
;

(1.7) λ2 = λ2(n, p, l) =
(n− 2− 2m) +

√
(n− 2− 2m)2 − 4(l + 2)(n− 2−m)

2
.

While when p = pc, (1.6) has two equal negative roots −λ2 = −λ1 = − b0
2 < 0.

There are many results about the existence and nonexistence of the positive so-
lutions for problem (1.4). For the homogeneous case (i.e. f ≡ 0) Ni and Yotsutani
showed that (1.4) has one solution u(r) for every α > 0 in [23]; Gui in [11] and
Liu, Li, Deng, in [21] obtained some existence results. For the nonhomogeneous case,
when K(x) ≡ 1, Bernard obtained the existence result for 0 ≤ f ≤ p−1

[p(1+|x|2]p/p−1L
p

in [6]; Bae and Ni obtained the nonexistence result (see Theorem D below) and the
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infinite multiplicity result (see [2,Theorem 2]). For the general case, Bae, Chang and
Pahk obtained the infinitely many positive solutions for problem (1.4) (see Theorem
C below).

In order to state the results concerning the asymptotic behavior and the stability
of the positive radial solutions, we need to clarify a few terms. A positive solution
u(r) of (1.3) in (0,∞) is said to have slow decay if

u(r) = Ar−
2+l
p−1 + o(r−

2+l
p−1 ) as r → +∞,

for some positive constant A. On the other hand, u(r) is said to have fast decay if

u(r) = O(r2−n) as r → +∞.

And a solution u(r) is said to be a regular solution of (1.3) if it is finite up to r = 0.
We call u(r) a radial singular ground state if instead u(r) → +∞ as r → 0+.
Definitions of some weighted L∞ norms are given as follows (adopted from [12,13]):
for λ > 0, µ1 > 0, let

(1.8) ‖ψ‖λ = sup
x∈Rn

|(1 + |x|)λψ(x)|,

and

(1.9) |‖ψ‖|µ1 = sup
x∈Rn

| (1 + |x|)m+λ1

log(2 + |x|)µ1
ψ(x)|,

where m,λ1 are defined in (1.5) and (1.7) respectively and ψ is a continuous function
in Rn.

We say that a steady state uα of (1.2) is stable with respect to some norm ‖·‖λ if for
every ε > 0 there exist δ > 0 such that, for ‖ϕ−uα‖λ < δ, we have ‖u(·, t;ϕ)−uα‖λ < ε
for all t > 0; in addition uα is said to be weakly asymptotically stable with respect to
norm ‖ · ‖λ if uα is stable with respect to norm ‖ · ‖λ and there exists δ > 0 such that,
for ‖ϕ− uα‖λ < δ, we have ‖u(·, t;ϕ)− uα‖λ′ → 0 as t→∞ for all λ

′
< λ. Similarly

we can define the stability with respect to the norm |‖ · ‖|µ1 , and we say that the uα

is weak asymptotic stability with respect to norm |‖ · ‖|µ1 , if the uα is stable with
respect to the norm |‖ · ‖|µ1 and there exists δ > 0 such that, for |‖ϕ − uα‖|µ1 < δ,
we have |‖u(·, t;ϕ)− uα|‖µ′1

→ 0 as t→∞ for all µ′1 > µ1.

The main result of Deng, Li and Yang in [8] can be stated in the following theorem.

Theorem A[8]. Suppose that K(r) satisfies (K.1) − (K.3), f satisfies (f.1) and
(f.2), let A={α > 0, u(r, α) is a positive solution of (1.4) for all r > 0} and S =
{α > 0, u(r, α) is a positive solution of (1.4) for all r > 0 and is of slow decay}. Define
α∗ = α(K,µ) ≡ inf{α ∈ A}, α∗∗ = inf{α ∈ S}, then 0 < α∗ ≤ α∗∗ and

(i) if p ≥ pc, then there exists µ∗ > 0 such that for every µ ∈ [0, µ∗), α∗∗ <∞, and
A = [α∗,∞), S = (α∗∗,∞) and uα(r) and uβ(r) can not intersect each other for any
α∗ ≤ α < β, i.e. 0 < uα < uβ ;

(ii) if n+2+2l
n−2 < p < pc and uα, uβ are slow decay solutions of (1.4), then they will

intersect infinity many times.
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Remark 1.1. The equation (1.4) has the minimum positive solution uα∗ , i.e. if
u(0) < α∗, then u(r) has some finite zero.

Remark 1.2. The solution of (1.4) can have three decay cases:

(i) the solution u is slow decay, i.e. u(r) ∼ r−m;
(ii) the solution u is fast decay, i.e. u(r) ∼ r2−n;
(iii) the solution u,s decay rate may be between the slow decay rate and fast decay

rate.

Remark 1.3. From Theorem A we know that the minimum solution uα∗ is fast
decay or it’s decay may be between the slow decay rate and fast decay rate. We will
prove uα∗ ∼ r2−n in a certain case in this paper.

Theorem B[8]. Suppose that p > pc, K satisfies (K.1) − (K.3), f satisfies (f.1)
and (f.2). Then any slow decay positive steady state uα of (1.2) is:

(i) stable with respect to the norm ‖ · ‖m+λ1 ;
(ii) weakly asymptotically stable with respect to the norm ‖ · ‖m+λ2 .

Theorem C [4]. Let p > pc, assume that K(x) satisfies (K.1), (K.2), f satisfies
(f.1), (f.2) and (f.3) : −(1 + |x|mp)f(x) ≤ min|z|=|x|K(z). Then there exists µ∗ > 0
such that for every µ ∈ [0, µ∗), Eq (1.4) possesses infinitely many positive entire
solutions with asymptotic behavior L

k
1

p−1
∞

|x|−m at ∞.

Some of the early results for K ≡ 1 are as follow:

Theorem D[5]. (i) Let p > pc. Suppose that near ∞
max(±f(x), 0) ≤ |x|−q± ,

where q+ > n−λ2 and q− > n−λ2−m. Then, there exists µ∗ > 0 such that for every
µ ∈ (0, µ∗), equation (1.1) possesses infinitely many solutions with the asymptotic
behavior L|x|−m at ∞.

(ii) Let p = pc. Then, the conclusions in (i) holds if we assume in addition that
either f has a compact support in Rn or f dose not change sign in Rn.

The main purpose of this paper is to study the asymptotic behavior and the
semistability of the minimal positive steady solution of equation (1.4). In addition,
motivated by the work of Gui, Ni and Wang’s results [12, 13] and Deng, Li, Yang’s
results [8], we will prove the stability of slow decay steady states in some weighted
L∞ norms. We will also show that the slow decay steady states are unstable, if the
topology is too fine or too coarse. Our main results are as follow:

Theorem 1. Let u = u(r) be the solution of (1.4), with that K(r) satisfies
(K.1), (K.2), f satisfies (f.1), (f.2). If u is positive and u(r) = o(r−m) at r = ∞,
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then we have, at r = ∞

u(r) =


O(r2−n) if q > n, O(r2−n log r)

O(r2−n log r) if q = n, O(r2−q)

O(r2−q) if m+ 2 < q < n.

Remark 1.4. (i) For homogenous case, Li and Ni in [20] and Li in [19] system-
atically investigated the asymptotic behavior of the positive steady states.

(ii) From this Theorem, we know that the minimum positive steady state solution
is of fast decay (i.e. uα∗ ∼ r2−n at ∞) if the decay of f is fast enough.

Theorem 2. Suppose that K(r) satisfies (K.1−K.3), f satisfies (f.1) and (f.2)
and p ≥ pc, q > n, and α∗ = α∗∗. Then, the minimum steady state uα∗ of (1.2) is
semistable with respect to the norms ‖ · ‖µ1 (i.e. if uα∗ ≤ ϕ), if m < µ1 < n− 2. In
this case uα∗ is also weakly asymptotically semistable respect to the norms ‖ · ‖µ1 .

The following theorem is a extension of homogeneous equations to nonhomoge-
neous.

Theorem 3. Suppose that pc > p ≥ n+2+2l
n−2 α∗ = α∗∗ and K(r) satisfies

(K.1 −K.3), f satisfies (f.1) and (f.2). In addition, assume that A = [α∗,∞), S =
(α∗,∞). Then the following conclusions hold:

(i) If 0 < ϕ(x) ≤ uα and ϕ(x) 6≡ uα, for some α > α∗. then limt→∞ u(x, t, ϕ) →
uα∗ .

(ii) If ϕ(x) ≥ uα and ϕ(x) 6≡ uα, for some α > α∗. Then the solution u(x, t, ϕ)
must blow up in some finite time.

Theorem 4. Suppose that K(r) satisfies (K.1)− (K.3) f satisfies (f.1), (f.2). In
addition, α∗ = α∗∗ and γ > λ2 such that L

k
1

p−1
∞

(r−lK(r)− k∞) + f(r)r2+m = O( 1
rγ )

at r = ∞. Then we have:

(1) Suppose that p = pc then any slow decay positive steady state uα of (1.2) is
weakly asymptotically stable with respect to the norm |‖ · ‖|ν1 , when 0 < ν1 < 1;
unstable when ν1 > 1.

(2) Suppose that p > pc, then any slow decay positive steady state uα of (1.2) is
weakly asymptotically stable with respect to the norm ‖ · ‖λ, when m + λ1 < λ <
m+ λ2, unstable when 0 < λ < m+ λ1.
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Remark 1.5. It should be mentioned that the Theorem 2, the Theorem 3 and
Theorem 4 are inspired by the work of Gui, Ni and Wang [12,13].

Remark 1.6. The following were proved by Deng, Li and Yang in [8]: uα is stable
when λ = m+ λ1 and weakly asymptotically stable when λ = m+ λ2.

For the stability and instability of the positive radial steady states with f = 0, it
seems that the first general result is given by Fujita [9]. It is showed there that for
1 < p < n+2

n , u(x, t;ϕ) blows up in finite time for any ϕ ≥ 0, ϕ 6≡ 0. Thus the trivial
steady state u0 ≡ 0 is unstable in any topology for 1 < p < n+2

n (the same is true when
p = n+2

n , as was proved by Hayakawa [14] and later by Kobayashi, Siaro, and Tanaka
[16]). In the case of p > n+2

n , for K(x) ≡ 1 and f(x) ≡ 0, for the global existence of
u(x, t, ϕ), the condition given by Fujita is that ϕ is bounded by εe−|x|

2
for some small

ε; Weissler [25] studied the problem in Lp-space and the condition there on ϕ can be
interpreted as to that ϕ is bounded by ε(1 + |x|)−γ for some constant γ > 2

p−1 and
ε small enough; Lee and Ni in [17] gave a sharp condition that ϕ has decay rate of
C|x|−

2
p−1 at ∞, where C is a positive constant; in 1992, Gui, Ni and Wang [12] prove

that every positive radial steady state solution is unstable in any reasonable sense if
p < pc; and is stable in some weighted L∞ if p ≥ pc. Further systematic study of the
stability of positive steady state is given by Gui, Ni and Wang in [13]. Bae in [1] uses
the two weights, (log r)

p
p−1 and rn−2(log r)−

p
p−1 , to show the stability of the steady

state in case l = 2 recently. For the nonhomogeneous case, the stability of positive
steady state of slow decay is obtained by Deng, Li, Yang in [8] (see Theorem B).

This paper is organized as follows. We introduce some Preliminaries in Section 2 .
The asymptotic of the minimum solution of equation (1.4) (i.e. Theorem 1) is given
in Section 3 and the proofs of the Theorem 2 and Theorem 3 are given in Section 4.
In Section 5, we give the proof of Theorem 4.

2. Preliminaries

Definition 2.1. A function u is said to be a super-solution of equation

∆u+ f(x, u) = 0

in an open set Ω ⊂ Rn if ∆u+ f(x, u) ≤ 0 in Ω; and u is said to be a sub-solution if
∆u+ f(x, u) ≥ 0 in Ω.

Adopting the definition by Wang [24], we have:
Definition 2.2. A function u is a continuous weak super-solution of ut = ∆u+ f(x, t, u) in Rn × (0, T ),

u(x, 0) = ϕ(x) in Rn,

if
(i) u is continuous on ΩT = Rn × [0, T ) and u(·, 0) ≥ ϕ;
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(ii) u satisfies

(2.1)
∫

Rn

u(x, t)η(x, t)dx|T
′

0 ≥
∫ T

′

0

∫
Rn

[u(x, s)(∆η+ ηt)+ η(x, t)f(x, t, u(x, t))]dxdt

for all T
′ ∈ [0, T ) and 0 ≤ η(x, t) ∈ C2,1(Rn× [0, T

′
]) with supp(η(·, t)) being compact

in Rn for t ∈ [0, T
′
]. Similarly, a continuous weak sub-solution is defined by reversing

the inequalities in (i) and (2.1).

Lemma 2.1. Suppose that u is a positive solution of (1.3). Let r = et, t ∈
(−∞,+∞) and v(t) = rju(r), then v satisfies

v′′ + (n− 2− 2j)v′ − j(n− 2− j)v +K(et)e(j+2−pj)vp + µf(et)e(j+2)t = 0

Let j = m, then we have that

(2.2) v′′ + b0v
′ − Lp−1v + k(t)vp + µf(et)e(m+2)t = 0,

where k(t) = e−ltK(et), and m, b0, and L are as in (1.5).

This lemma can be proved by straight forward calculations, thus we omit it here.

Now we quote some results on the asymptotic behavior of solutions to the (1.1)
(see [8]).

Proposition 2.1. (i) If γ > λ2, L

k
1

p−1
∞

(r−lK(r) − k∞) + f(r)r2+m = O( 1
rγ ) at

r = ∞, and u is a solution of (1.4), which is slow decay, then we have
(2.3)

u(r) =



L

k
1

p−1
∞ rm

+ a1
rm+λ1

+ a2
rm+2λ1

+ ...+ b1
rm+λ2

+ ...+O( 1
rn−2+ε )

if λ2 6= Λλ1

L

k
1

p−1
∞ rm

+ a1
rm+λ1

+ a2
rm+2λ1

+ ...+ c1 log r
rm+Λλ1

+ b1
rm+λ2

+ ...+O( 1
rn−2+ε )

if λ2 = Λλ1

for some positive integer Λ > 1, where ai, bj and c1 are similar to (3.18) of [7].

Proposition 2.2. Suppose that K satisfies (K.1) and (K.3) in (R,∞) for some
large R, and f satisfies (f.1). Then

(i) if ū and u are bounded continuous weak super-and sub-solutions of (1.2), re-
spectively, and ū ≥ u on Rn × (0, T ), then (1.2) has a unique solution u satisfies
ū ≥ u(x, t;ϕ) ≥ u and u ∈ C2,1((Rn \0)× (0, T )) if −2 < l < 0, u ∈ C2,1(Rn× (0, T ))
if l > 0;

(ii) If ϕ(x) is a bounded continuous weak super-solution (sub-solution) but not a
solution of (1.1) in Rn, then the solution of (1.2) is strictly decreasing (increasing,
respectively) in t > 0 as long as it exists;

(iii) If ϕ is radial and radially decreasing, so is u in x -variable.
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All the results of Proposition 2.2 can be proved by the techniques used in [24] with
replacing |x|lup by K(x)up + µf(x). For example, part (i) is similar to Lemma 1.2 of
[24] if l > 0, Theorem 2.4 (i) of [24] if −2 < l < 0; part (ii) can be proved by the same
argument as in Theorem 2.4 (ii) of [24] if −2 < l < 0, or Lemma 2.6 (ii) of [24] and
the strong maximum principle if l ≥ 0; part (iii) can be proved similarly by Theorem
2.3 of [24] if −2 < l < 0, Lemma 2.6 of [24] if l ≥ 0.

The following results are well-known, so it proof is omitted here (see [24]).

Proposition 2.3 (i) Suppose ū1(|x|) and ū2(|x|) are super-solutions to (1.1) in
BR1 := {x| |x| < R1} and Bc

R2
:= {x| |x| ≥ R2}, respectively. Assume that R1 > R2

and ū1(R1) > ū2(R1), ū1(R2) < ū2(R2). Let R = min{r ∈ (R2, R1) | ū1(r) ≥ ū2(r)},
and

(2.4) ū(|x|) =
{
ū1(|x|) 0 ≤ |x| ≤ R,
ū2(|x|) |x| > R.

Then ū(|x|) is a continuous weak super-solution to (1.1) in Rn.

(ii) Suppose u1(|x|) and u2(|x|) are sub-solutions to (1.1) in BR1 and Bc
R2

, re-
spectively. Assume that R1 > R2 and u1(R1) < u2(R1), u1(R2) > u2(R2). Let
R = min{r ∈ (R2, R1) | u1(r) ≤ u2(r)}, and

(2.5) u(|x|) =
{
u1(|x|) 0 ≤ |x| ≤ R,
u2(|x|) |x| > R.

Then u(|x|) is a continuous weak sub-solution to (1.1) in Rn.

3. Proof of Theorem 1

In order to prove Theorem 1, we now give the following lemma, which is inspired
by the work of Y-Li and W.-M. Ni [20].

Lemma 3.1. Suppose that K(r) = O(rl) at ∞ for some l > −2, f satisfies (f.1),
(f.2), and q > m + 2 and u is a solution of (1.1) which is positive in (0,∞) with
u(r) = o(r−m) at ∞, then u(r) = O(r−m−δ) at r = ∞ for some δ > 0.

Proof. Set v(r) = rmu(r) for r > 0, then v(r) → 0 as r → ∞ and v satisfies the
following equation

∆v − 2m
r
v′ − m(n− 2−m)

r2
v +K(r)r−l v

p

r2
+ µrmf = 0. (3.1)

Since v(r) → 0 as r →∞, we have for any ε > 0

∆v − 2m
r
v′ − m(n− 2−m)

r2
v + µrmf +mε

v

r2
≥ 0 at ∞. (3.2)

Defining:

Lεv ≡ ∆v − 2mv′

r
−m(n− 2−m− ε)

v

r2
+ µrmf,
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immediately by (3.1) we have

Lεv −mε
v

r2
+K(r)r−l v

p

r2
= 0.

By the (3.2), there exists an Rε > 0 such that Lεv ≥ 0 in Rn \BRε
(0).

On the other hand, for 0 < ε < n− 2−m, let ϕε(x) = |x|βε we have

Lεϕε = [β(β − 1) + (n− 1− 2m)β −m(n− 2−m− ε)]|x|βε−2 + µrmf

in Rn \ 0. Choosing βε < 0 sufficiently small such that,

βε(βε − 1) + (n− 1− 2m)βε −m(n− 2−m− ε) ≤ 0,

and
rmf

rβ
ε − 2

→ 0 at ∞.

So there exists an R′ε > 0 such that

Lεϕε ≤ 0 in Rn \BR′ε(0).

Setting R′′ε = max{R′ε, Rε}, Cε = v(R′′ε )(R′′ε )−βε , we see that
Lε(v − Cεϕε) ≥ 0 in Rn \BR′′ε (0), v − Cεϕε = 0

v − Cεϕε = 0 on ∂BR′′ε (0), v − Cεϕε → 0

v − Cεϕε → 0 at ∞,

since βε < 0. Observing that the coefficient of the term v in Lε is negative, we conclude
by the maximum principle that v−Cεϕε ≤ 0 in Rn \BRε

(0), i.e. v(r) ≤ Cεr
βε at ∞.

This guarantees that u(r) ≤ Cεr
−m+βε at ∞, and our proof is completed. �

The proof of Theorem 1. From (1.3) we have, by integration from 0 to r,

ur(r) +
1

rn−1

∫ r

0

(K(s)up + µf)sn−1ds = 0.

Now integrating from r to ∞, we obtain

u(r) =
∫ ∞

r

1
tn−1

[
∫ t

0

(K(s)up + µf)sn−1ds]dt,

since u(∞) = 0 by our assumption on u. Changing the order of the integrations, we
have that there exists R > 0, for r ≥ R,

u(r) =
1

n− 2
r2−n

∫ r

0

(K(s)up + µf)sn−1ds+
1

n− 2
r2−n

∫ ∞

r

(K(s)up + µf)sds

≤ C[r2−n + r2−n

∫ r

R

upsl+n−1ds+ r2−n

∫ r

R

sn−1fds+
∫ ∞

r

(upsl+1 + sf)ds].

Let

u1 = r2−n

∫ r

0

fsn−1ds+
∫ ∞

r

fsds.

By the Lemma 3.1 , we obtain that for some ε > 0

u(r) ≤ C[r2−n + r2−n

∫ r

R

s−p(m+ε)+l+n−1ds+
∫ ∞

r

s−p(m+ε)+l+1ds+ u1(r)]



932 BAISHUN LAI AND YI LI

By the similar computation, we have, at r = ∞

u1(r) ≤


cr2−n if q > n,

cr2−n log r if q = n,

cr2−q if m+ 2 < q < n.

So if q > n, we have

u ≤ C[r2−n + r2−n

∫ r

1

s−p(m+ε)+l+n−1ds+
∫ ∞

r

s−p(m+ε)+l+1ds

≤

 c[r2−n + r−m−pε] if m+ pε 6= n− 2,

c[r2−n + r2−n log r] if m+ pε = n− 2,

since −p(m+ ε) + l + 2 = −m− pε. If m+ pε > n− 2, we have

u(r) ≤ cr−(n−2) at ∞.

Otherwise, we repeat the arguments above and for some ρ > 0 , we have

u(r) ≤

 c[r2−n + r−m−p2ε] if m+ pε < n− 2,

c[r2−n + r−[m+p(n−2−m−ρ)]] if m+ pε = n− 2.

Let ρ be so small that m+ p(n− 2−m− ρ) > n− 2, then we have, for r > R

u(r) ≤

 c[r2−n + r−m−p2ε] if m+ pε < n− 2,

cr2−n if m+ pε = n− 2.

Iterating this process, we can show that in case m+ pε < n− 2

u(r) ≤ c[r2−n + r−m−pkε], at ∞
for any positive integer k. Since p > 1, then we have u(r) ≤ cr2−n. By the same way,
for r > R, we have

u ≤


cr2−n if q > n,

cr2−n log r if q = n,

cr2−q if m+ 2 < q < n.

The proof is complete. �

4. The stablility of the minimum steady state and proofs of Theorem 2
and Theorem 3

The Proof of Theorem 2. Because q > n, we have uα∗ = O(r2−n) at ∞.
Let v = uα∗ + ar−ν , for r > 1, 0 < a < 1. By simple computation we obtain

∆v +K(r)vp + µf = ∆(uα∗ + ar−ν) +K(r)(uα∗ + ar−ν)p + µf

= ar−(ν+2)ν(ν + 2− n) +K(r)[(uα∗ + r−ν)p − up
α∗ ] at ∞
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So if m < ν < n− 2, for any 0 < a < 1 there exists R1 > 1 independent of a such
that

∆v +K(r)vp + µf = ar−(ν+2)[ν(ν + 2− n) + o(1)] ≤ 0 r > R1.

For each fixed a > 0, we choose β > α∗ sufficiently close to α such that v(R1) >
uβ(R1). By the asymptotic expansion of the slow decay solution uβ , we know there
exists R2 > R1 such that v(R2) < uβ(R2). Therefore by Proposition 2.3 (ii) we can
construct a sup-solution ū(r) such that ū(r) > uα∗ , and

ū(r) =
{
uβ if r ≤ R′2,
v(r) if r > R′2,

where R′2 is the first zero of uβ − v.
Let

δ3 = δ3(a, β) =: inf
r≥0

(ū(r)− uα∗(r))(1 + r)ν > 0

ε3(a, β) =: ‖ū(r)− uα∗‖ν ,

then

ε3(a, β) = sup{(1 + r)ν(uβ − uα∗)r∈(0,R′2)
, (1 + r)ν(ū(r)− uα∗)r∈(R′2,∞)};

and we have that
lim

β→α∗
sup

r∈(0,1)

{(1 + r)ν(uβ − uα∗)} = 0;

lim
a→0,β→α∗

sup
r∈(1,R′2)

{(1 + r)ν(uβ − uα∗)} ≤ lim
a→0

sup
r∈(1,R′2)

{(1 + r)ν(v − uα∗)}

= lim
a→0

sup
r∈(1,R′2)

{(1 + r)νar−ν} ≤ lim
a→0

sup
r∈(1,∞)

{(1 + r)νar−ν} = 0;

similarly
lim
a→0

sup
r∈(R′2,∞)

{(1 + r)ν(ū(r)− uα∗)} = 0.

So we have
lim

a→0,β→α∗
ε3(a, β) = 0.

By Proposition 2.2, we know that the solution u(x, t, ū) of (1.2) is strictly decreasing
in t and radially symmetric in x. And ū > u(x, t, ū) ≥ uα∗ by the comparison
principle. So limt→∞ u(x, t, ū) exist, denoted by u∞ and u∞ ≤ ū. Furthermore
ū = o(r−m) at ∞, therefore u∞ = uα∗ .

Choosing δ < δ3, then for any ϕ(x) such that ‖ϕ(x) − uα∗(x)‖µ < δ, we have
ϕ(x) < ū(x). and then by the comparison principle,

(4.1) uα∗ < u(x, t, ϕ) < u(x, t, ū) < ū.

So we have that limt→∞ u(x, t, ϕ) = uα∗(x) uniformly for x in any ball in Rn.
For any ε > 0, we can find a > 0, β > α such that ε3(a, β) < ε, and we have by

(4.1) that

‖u(x, t, ϕ(x))− uα∗(x)‖ν < ε,

which prove the semistability of the solution uα∗ of (1.4).
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Now for every ν′ < ν,R > R′2, we have by (4.1) that

|(1 + |x|)ν′(u(., t;ϕ)− uα∗)| ≤
{
a(1 + |x|)ν′ |x|−ν if |x| ≥ R,

(1 +R)ν′‖u(., t, ϕ)− uα∗‖L∞(BR) if |x| < R,

≤
{
aRν′−ν if |x| ≥ R,

(1 +R)ν′‖u(., t, ϕ)− uα∗‖L∞(BR) if |x| < R.

Now for any ε > 0, ∃ R = R(ε) > R′2,∃ T (ε) when t > T (ε) we have:

aRν′−ν < ε/2, (1 +R)ν′‖u(., t, ϕ)− uα∗‖L∞(BR) < ε/2.

So, letting t > T (ε) we get

‖u(., t, ϕ)− uα∗‖ν′ ≤ ε.

Since ε is arbitrary small, it follows that limt→∞ ‖u(., t, ϕ) − uα∗‖ν′ = 0. Thus we
complete the proof. �

The Proof of Theorem 3. Without loss of generality we may assume that ϕ <
uα in Rn, because the assumptions that ϕ ≤ uα and ϕ 6≡ uα together with the strong
maximum principle for parabolic equations immediately imply that u(x, t, ϕ) < uα for
all x ∈ Rn and t > 0. Thus we may replace ϕ by u(, ε, ϕ) for some ε > 0 if necessary.
Suppose we can build a radial bounded continuous weak super- solution ψ of (1.1)
staying above ϕ(x) and below uα(x) i.e. 0 < ϕ(x) ≤ ψ(x) ≤ uα(x). Denote by ū(x, t)
the solution of (1.2) with initial value ψ(x). Then by the comparison principle, we
have

u(x, t, 0) < u(x, t, ϕ) ≤ ū(x, t) ≤ uα(x)
for x ∈ Rn and t > 0; moreover, ū(x, t) is radial in x and decreasing in t by Proposition
2.2. Thus ū(x, t) → some radial bounded steady state uα′(x) of (1.2) as t → ∞ uni-
formly for bounded x. If uα′(x) is the slow decay solution, then by (ii) of Theorem A,
uα′(x) and uα(x) intersect, which would be a contradiction. So uα′(x) = uα∗(x). Be-
sides, u(x, t, 0) is radial in x and increasing in t by Proposition 2.2. So limt→∞ u(x, t, 0)
exists, and is equal to uα∗(x). By the comparison principle, we have that

uα∗(x) ≤ lim sup
t→∞

u(x, t, ϕ) ≤ uα′(x).

So we have
lim

t→∞
u(x, t) = uα∗ .

Now, we derive the construction of a super-solution ψ(x) as mentioned above. By
(ii) of Theorem A, any two positive radial slow decay solutions of (1.1) must intersect
each other if n+2+2l

n−2 < p < pc. We set z(α, β) to be the first zero of uα − uβ where
β ∈ (α∗, α). We first observed that uβ → uα uniformly on compact subsets.

Claim: Fixed some β1 > β2 ∈ (α∗, α). Then z(α, β) ≤ z(β1, β2) <∞ as β → α.
The proof follows closely that of [12, Lemma 3.1]. For otherwise if we have z(α, β) >

z(β1, β2). Then we would have uα(x) > uβ > uβ1 > uβ2 on [0, z(β1, β2)] as β → α.
Let V = uα(x)− uβ , and v = uβ1 − uβ2 , then

∆V + pK(|x|)W p−1V = 0,
∆v + pK(|x|)wp−1v = 0,
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where W is the mean value between uα(x) and uβ , w is that between uβ1 , uβ2 so that
W > w on [0, z(β1, β2)]. Then we would have in Bz(β1,β2)(0)∫

Bz(β1,β2)(0)

v∆V − V∆v + pK(|x|)(W p−1 − wp−1)V v = 0,

or ∫
∂Bz(β1,β2)(0)

−V ∂v
∂η

+
∫

Bz(β1,β2)(0)

pK(|x|)(W p−1 − wp−1)V v = 0,

which is a contradiction, so z(α, β) ≤ z(β1, β2) <∞ as β → α.
Thus there exists max{α∗, α

2 } < β′ < α such that ϕ < uβ′ in [0, z(α, β′)], setting:

ψ(x) =
{
uβ′(r) if r ≤ z(α, β′),
uα(r) if r > z(α, β′).

We see that ϕ(x) ≤ ψ(x) ≤ uα(x) and ψ(x) is continuous, it is standard to verify that
ψ(x) is a continuous weak super-solution of (1.1).

Part (ii) of Theorem 3 may be handled in a similar fashion. As (i), we may assume,
without loss of generality that ϕ > uα. Since uβ → uα uniformly in [0, z(α, 2α)] as
β → α and z(α, β) < ∞ as α → β, there exists 3

2α > β̃ > α such that ϕ > uβ̃ in
[0, z(α, β̃)], thus setting:

ψ̃(x) =

{
uβ̃(r) if r ≤ z(α, β̃),
uα(r) if r > z(α, β̃).

We have ϕ(x) > ψ̃(x) ≥ uα(x) for all x ∈ Rn. It is standard to verify that ψ̃(x) is
a continuous weak sub-solution of (1.1). The conclusion follows similarly from [24,
Theorem 3.10], i.e. u(x, t, ϕ) must blow up in finite time. �

5 The stability and the weakly asymptotically stability of the slow decay
steady states and proof of Theorem 4

The Proof of Theorem 4. We first consider the case p = pc. We need to
construct various super-solutions and sub-solutions to (1.1). For any given slow steady
state uα(r), we consider

v(r) = uα(r) + a(log r)ν1/r(m+λ1) r > 1,

where a, ν1 are constants and ν1 > 0.
We compute

∆v +K(r)vp + µf = aν1(ν1 − 1)(log r)(ν1−2)r−(m+2+λ1)

+a[(n− 1)ν1 − ν1(2m+ 2λ1 + 1)](log r)(ν1−1)r−(m+2+λ1)

+a[(m+ λ1)(m+ λ1 + 1)− (m+ λ1)(n− 1)](log r)ν1r−(m+2+λ1)

+K[(uα + a(log r)ν1r−(m+λ1))p − up
α].
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Note that when p = pc, we have λ1 = λ2, 2(m+ λ1) = n− 2 and

(m+ λ1)(m+ λ1 − n+ 2) = −pLp−1.

Then, by (2.3), we deduce that

∆v +K(r)vp + µf = aν1(ν1 − 1)(log r)(ν1−2)r−(m+2+λ1)

+aν1[n− 2− 2(m+ λ1)](log r)ν1−1r−(m+2+λ1)

+a[(m+ λ1)(m+ λ1 + 2− n) + pLp−1](log r)ν1r−(m+2+λ1)

+o(r−(m+2+λ1)(log r)ν1−2)
= a(log)(ν1−2)r−(m+2+λ1)[ν1(ν1 − 1) + o(1)] at r = ∞.

For any ν1 > 1, there exists R1 > 1 such that ∆v + K(r)vp + µf > 0 in |x| > R1

for any 0 < a < 1. On the other hand, for any uβ(r) with β > α, it is known from
Theorem A (i) that uβ(r) > uα(r), r ≥ 0. Therefore we can fix β > α and choose
a > 0 small enough such that v(R1) < uβ(R1). By the asymptotic expansion (2.3), we
know that there exists R2 > R1 such that v(R2) > uβ(R2). Therefore by Proposition
2.3 (ii) we can construct a sub-solution u, r ≥ 0 such that u > uα, r ≥ 0 and

u(r) =
{
uβ if r ≤ R′2,
v(r) if r > R′2.

where R′2 is the first zero of uβ − v.
So we can choose u(r) such that u(r) is decreasing in r ≥ 0 and that |‖u(r) −

uα(r)‖|ν1 is as small as one wishes, by choosing β − α and a sufficiently small.
We claim that the solution u(x, t, u) of (1.2) either blow up in finite time or con-
verges to a singular solution of (1.3) as t → +∞. If not, from Proposition 2.2,
we know that u(x, t, u) is strictly increasing in t, radially symmetric in x and de-
creasing in |x|. Then u∞(|x|)=limt→∞ u(x, t, u) be a regular solution of (1.1). It is
easy to check that u∞(|x|) is a distributional solution of (1.1) in Rn. So it must
have expansion (2.3) at infinity. However, at infinity we have u∞(|x|) ≥ v(r) ≥
uα(r) + a(log r)ν1/r(m+λ1), ν1 > 1, this contradicts (2.3). This proves that uα(r) is
unstable in |‖ · ‖|ν1 when ν1 > 1. (The instability is also manifested in the following
way: If we choose −1 < a < 0, we can also construct similarly a super-solution ū(r)
such that ū(r) < uα(r) and uα(r) − ū(r) = a(log r)ν1r(m+λ1) for r ≥ R2. It can be
shown that u∞(|x|)=limt→∞ u(x, t, ū), and u∞(|x|) is the minimum steady solution
).

If 0 < ν1 < 1, for any 0 < a < 1 there exists R1 > 1 independent of a such that

∆v +K(r)vp + µf ≤ 0, r > R1 > 1.

For any uβ with β > α, we have uβ > uα. For each fixed a, we choose β > α suffi-
ciently close to α such that v(R1) > uβ(R1). Note a1 < 0 (the coefficient of r−(m+λ1))
and ν1 < 1. There exists R2 > R1 such that uβ(R2) > v(R2). Therefore we can con-
struct a super-solution ū(r) > uα(r) and ū(r) − uα(r) = a(log r)ν1r−(m+λ1), r ≥ R2.
Let

δ1 = δ1(a, β) =: inf
r≥0

(ū(r)− uα(r))(log(2 + r))−ν1(1 + r)m+λ1

ε1 = ε1(a, β) := |‖ū(r)− uα(r)‖|ν1 .
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Then 0 < δ1 < ε1, and as the proof of Theorem 2 we have

lim
a→0,β→α

ε1(a, β) = 0.

By Proposition 2.2, we know that the solution u(x, t, ū) of (1.2) is strictly decreasing
in t and radially symmetric in x, and u(x, t, ū) > uα. Let u∞ = limt→∞ u(x, t, ū). It
is easy to see that u∞ is a solution of (1.1) in Rn. Then u∞ has expansion (2.5) at
r = ∞. Furthermore the coefficient a1 (i.e. the coefficient of r−(m+λ1)) is the same
for u∞ and uα because ν1 < 1. Therefore u∞(|x|) = uα(r).

Similarly, by choosing −1 < a < 0 and β < α sufficiently close to α, we can
construct a sub-solution u(r) < uα(r) such that

0 < δ2 = δ(a, β) := inf
r≥0

(uα(r)− u(r))(log(2 + r))−ν1(1 + r)m+λ1 ,

0 < ε2 = ε2(a, β) := |‖uα(r)− u(r)‖|µ,
and as the proof of Theorem 2 we have

lim
a→0,β→α

ε2(a, β) = 0.

Moreover, limt→∞ u(x, t, u) = uα(|x|) uniformly for x in any ball in Rn.

For any ε > 0, we can find a > 0, a′ < 0, β > α, β′ < α such that ε1(α, β) <
ε, ε2(α′, β′) < ε. Choose δ = min{δ1(a, β), δ2(a′, β′)}. Then for any ϕ(x) such that
|‖ϕ(x) − uα(x)‖|ν1 < δ, we have u(x) ≤ ϕ(x) ≤ ū(x) and then by the comparison
principle, we have

|‖u(x, t, ϕ(x))− uα(x)‖|ν1 < ε.

To show that uα is weakly asymptotic stable with respect to the norm |‖ · ‖|ν1 . We
need to show that there exists δ > 0, if |‖ϕ− uα‖|ν1 < δ, then

lim
t→∞

|‖u(·, t, ϕ)− uα‖|ν′1 → 0

for every ν′1 > ν1.
By Proposition 2.2 we have

u < u(·, t;u) < u(·, t;ϕ) < u(·, t; ū) < ū;

and
lim

t→∞
u(·, t; ū) = uα = lim

t→∞
u(·, t;u) in Rn.

Now for every ν′1 > ν1, R > R′2, we have

|(log(2 + r))−ν
′
1(1 + r)m+λ1(u(·, t;ϕ)− uα)|

≤


2a (log r)ν1 (1+r)m+λ1

(log(2+r))ν′1rm+λ1

if r ≥ R,

(log(2 + r))−ν′1(1 + r)m+λ1‖u(·, t;ϕ)− uα‖L∞(BR)

if r < R,

where BR is a ball of radius R centered at 0.
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As the proof of Theorem 2, we have

lim
t→∞

|‖u(., t, ϕ)− uα∗‖|ν′1 = 0.

For the case p > pc and λ < m + λ2, we can argue similarly for the stability or
instability of uα in a range of weighted norm ‖ · ‖λ as follows.

Let v(r) = uα + ar−λ r > 1. Then we have

∆v +Kvp + µf = aK[λ(λ+ 2− n) + pLp−1 + o(1)]r−(λ+2) at r = ∞.

We observe that

λ(λ+ 2− n) + pLp−1

 > 0 if λ < m+ λ1,

< 0 if m+ λ1 < λ < m+ λ2,

and the proof is the similar to that of the Theorem 2, we omit it here. �
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