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THE STRUCTURE OF SALLY MODULES OF RANK ONE

Shiro Goto, Koji Nishida, and Kazuho Ozeki

Abstract. A complete structure theorem of Sally modules of m-primary ideals I in a
Cohen-Macaulay local ring (A, m) satisfying the equality e1(I) = e0(I)− `A(A/I) + 1 is

given, where e0(I) and e1(I) denote the first two Hilbert coefficients of I.

1. Introduction

This paper aims to give a structure theorem of Sally modules of rank one.
Let A be a Cohen-Macaulay local ring with the maximal ideal m and d = dim A > 0.

We assume the residue class field k = A/m of A is infinite. Let I be an m-primary
ideal in A and choose a minimal reduction Q = (a1, a2, · · · , ad) of I. Then we have
integers {ei = ei(I)}0≤i≤d such that the equality

`A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d− 1

d− 1

)
+ · · ·+ (−1)ded

holds true for all n � 0. Let

R = R(I) := A[It] and T = R(Q) := A[Qt] ⊆ A[t]

denote, respectively, the Rees algebras of I and Q, where t stands for an indeterminate
over A. We put

R′ = R′(I) := A[It, t−1] and G = G(I) := R′/t−1R′ ∼=
⊕
n≥0

In/In+1.

Let B = T/mT , which is the polynomial ring with d indeterminates over the field k.
Following W. V. Vasconcelos [11], we then define

SQ(I) = IR/IT

and call it the Sally module of I with respect to Q. We notice that the Sally mod-
ule S = SQ(I) is a finitely generated graded T -module, since R is a module-finite
extension of the graded ring T .

The Sally module S was introduced by W. V. Vasconcelos [11], where he gave an
elegant review, in terms of his Sally module, of the works [8, 9, 10] of J. Sally about
the structure of m-primary ideals I with interaction to the structure of the graded
ring G and the Hilbert coefficients ei’s of I.

As is well-known, we have the inequality ([5])

e1 ≥ e0 − `A(A/I)
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and C. Huneke [4] showed that e1 = e0 − `A(A/I) if and only if I2 = QI. When this
is the case, both the graded rings G and F(I) =

⊕
n≥0 In/mIn are Cohen-Macaulay,

and the Rees algebra R of I is also a Cohen-Macaulay ring, provided d ≥ 2. Thus, the
ideals I with e1 = e0 − `A(A/I) enjoy very nice properties. The reader may consult
with the recent work of Wang [13], which establishes the ubiquity of ideals I with
I2 = QI.

J. Sally [10] firstly investigated the second border, that is the ideals I satisfying
the equality

e1 = e0 − `A(A/I) + 1
and gave several very important results. Among them, one can find the following
characterization of ideals I with e1 = e0 − `A(A/I) + 1 and e2 6= 0, where B(−1)
stands for the graded B-module whose grading is given by [B(−1)]n = Bn−1 for all
n ∈ Z. The reader may also consult with [1] and [12] for further ingenious use of Sally
modules.

Theorem 1.1 (Sally [10] , Vasconcelos [11]). The following three conditions are equiv-
alent to each other.

(1) S ∼= B(−1) as graded T -modules.
(2) e1 = e0 − `A(A/I) + 1 and if d ≥ 2, e2 6= 0.
(3) I3 = QI2 and `A(I2/QI) = 1.

When this is the case, the following assertions hold true.
(i) e2 = 1, if d ≥ 2.
(ii) ei = 0 for all 3 ≤ i ≤ d.
(iii) depth G ≥ d− 1.

This beautiful theorem says, however, nothing about the case where e2 = 0. It
seems natural to ask what happens, when e2 = 0, on the ideals I which satisfy the
equality e1 = e0 − `A(A/I) + 1. This long standing question has motivated the
recent research [2], where the authors gave several partial answers to the question.
The present research is a continuation of [2, 10, 11] and aims at a simultaneous
understanding of the structure of Sally modules of ideals I which satisfy the equality
e1 = e0 − `A(A/I) + 1.

Let us now state our own result. The main result of this paper is the following
Theorem 1.2, which contains Theorem 1.1 of Sally–Vasconcelos as the case where c =
1. Our contribution in Theorem 1.2 is the implication (1) ⇒ (3), the proof of which is
based on the new result that the equality I3 = QI2 holds true if e1 = e0−`A(A/I)+1
(cf. Theorem 3.1).

Theorem 1.2. The following three conditions are equivalent to each other.
(1) e1 = e0 − `A(A/I) + 1.
(2) mS = (0) and rankB S = 1.
(3) S ∼= (X1, X2, · · · , Xc)B as graded T -modules for some 0 < c ≤ d, where

{Xi}1≤i≤c are linearly independent linear forms of the polynomial ring B.
When this is the case, c = `A(I2/QI) and I3 = QI2, and the following assertions
hold true.

(i) depthG ≥ d− c and depthT S = d− c + 1.
(ii) depthG = d− c, if c ≥ 2.
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(iii) Suppose c < d. Then

`A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d− 1

d− 1

)
+

(
n + d− c− 1

d− c− 1

)
for all n ≥ 0. Hence

ei =
{

0 if i 6= c + 1,
(−1)c+1 if i = c + 1

for 2 ≤ i ≤ d.
(iv) Suppose c = d. Then

`A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d− 1

d− 1

)
for all n ≥ 1. Hence ei = 0 for 2 ≤ i ≤ d.

Thus Theorem 1.2 settles a long standing problem, although the structure of ideals
I with e1 = e0 − `A(A/I) + 2 or the structure of Sally modules S with mS = (0) and
rankB S = 2 remains unknown.

Let us now briefly explain how this paper is organized. We shall prove Theorem
1.2 in Section 3. In Section 2 we will pick up from the paper [2] some auxiliary results
on Sally modules, all of which are known, but let us note them for the sake of the
reader’s convenience. In Section 4 we shall discuss two consequences of Theorem 1.2.
The results are more or less known by [2, 10, 11]. However, thanks to Theorem 1.2,
not only the statements of the results but also the proofs are substantially simplified,
so that we would like to note the improved statements, and would like to indicate
a brief proof of Theorem 1.1 as well. In Section 5 we will construct one example in
order to see the ubiquity of ideals I which satisfy condition (3) in Theorem 1.2. We
will show that, for given integers 0 < c ≤ d, there exists an m-primary ideal I in a
certain Cohen-Macaulay local ring (A,m) such that

d = dim A, e1 = e0 − `A(A/I) + 1, and c = `A(I2/QI)

for some reduction Q = (a1, a2, · · · , ad) of I.
In what follows, unless otherwise specified, let (A,m) be a Cohen-Macaulay local

ring with d = dim A > 0. We assume that the field k = A/m is infinite. Let I be an
m-primary ideal in A and let S be the Sally module of I with respect to a minimal
reduction Q = (a1, a2, · · · , ad) of I. We put R = A[It], T = A[Qt], R′ = A[It, t−1],
and G = R′/t−1R′. Let

Ĩ =
⋃
n≥1

[In+1 :A In]

denote the Ratliff-Rush closure of I, which is the largest m-primary ideal in A such
that I ⊆ Ĩ and ei(Ĩ) = ei for all 0 ≤ i ≤ d (cf. [6]). We denote by µA(∗) the number
of generators.

2. Auxiliary results

In this section let us firstly summarize some known results on Sally modules, which
we need throughout this paper. See [2] and [11] for the detailed proofs.

The first two results are basic facts on Sally modules developed by Vasconcelos
[11].
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Lemma 2.1. The following assertions hold true.

(1) m`S = (0) for integers ` � 0.
(2) The homogeneous components {Sn}n∈Z of the graded T -module S are given

by

Sn
∼=

{
(0) if n ≤ 0,

In+1/IQn if n ≥ 1.

(3) S = (0) if and only if I2 = QI.
(4) Suppose that S 6= (0) and put V = S/MS, where M = mT + T+ is the graded

maximal ideal in T . Let Vn (n ∈ Z) denote the homogeneous component of the
finite-dimensional graded T/M -space V with degree n and put Λ = {n ∈ Z |
Vn 6= (0)}. Let q = maxΛ. Then we have Λ = {1, 2, · · · , q} and rQ(I) = q+1,
where rQ(I) stands for the reduction number of I with respect to Q.

(5) S = TS1 if and only if I3 = QI2.

Proof. See [2, Lemma 2.1]. �

Proposition 2.2. Let p = mT . Then the following assertions hold true.

(1) AssT S ⊆ {p}. Hence dimT S = d, if S 6= (0).
(2) `A(A/In+1) = e0

(
n+d

d

)
− (e0 − `A(A/I))·

(
n+d−1

d−1

)
− `A(Sn) for all n ≥ 0.

(3) We have e1 = e0 − `A(A/I) + `Tp(Sp). Hence e1 = e0 − `A(A/I) + 1 if and
only if mS = (0) and rankB S = 1.

(4) Suppose that S 6= (0). Let s = depthT S. Then depth G = s − 1 if s < d. S
is a Cohen-Macaulay T -module if and only if depth G ≥ d− 1.

Proof. See [2, Proposition 2.2]. �

Combining Lemma 2.1 (3) and Proposition 2.2, we readily get the following results
of Northcott [5] and Huneke [4].

Corollary 2.3 ([4, 5]). We have e1 ≥ e0− `A(A/I). The equality e1 = e0− `A(A/I)
holds true if and only if I2 = QI. When this is the case, ei = 0 for all 2 ≤ i ≤ d.

The following result is one of the keys for our proof of Theorem 1.2.

Theorem 2.4 ([2]). The following conditions are equivalent.

(1) mS = (0) and rankBS = 1.
(2) S ∼= a as graded T -modules for some non-zero graded ideal a of B.

Proof. See [2, Theorem 2.4]. �

The following result is also due to [2], which will enable us to reduce the proof of
Theorem 1.2 to the proof of the fact that I3 = QI2 if e1 = e0 − `A(A/I) + 1.

Proposition 2.5 ([2]). Suppose e1 = e0 − `A(A/I) + 1 and I3 = QI2. Let c =
`A(I2/QI). Then the following assertions hold true.

(1) 0 < c ≤ d and µB(S) = c.
(2) depthG ≥ d− c and depthB S = d− c + 1.
(3) depthG = d− c, if c ≥ 2.
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(4) Suppose c < d. Then `A(A/In+1) = e0

(
n+d

d

)
− e1

(
n+d−1

d−1

)
+

(
n+d−c−1

d−c−1

)
for all

n ≥ 0. Hence

ei =
{

0 if i 6= c + 1
(−1)c+1 if i = c + 1

for 2 ≤ i ≤ d.
(5) Suppose c = d. Then `A(A/In+1) = e0

(
n+d

d

)
−e1

(
n+d−1

d−1

)
for all n ≥ 1. Hence

ei = 0 for 2 ≤ i ≤ d.

Proof. See [2, Corollary 2.5]. �

The following result might be known. However, since we can find no good refer-
ences, let us include a brief proof.

Proposition 2.6. Let Q ⊆ I ⊆ J be ideals in a commutative ring A. Assume that
J = I + (h) for some h ∈ A. Then I3 = QI2, if J2 = QJ .

Proof. Since hI ⊆ J2 = QJ = QI + Qh, for each i ∈ I there exist j ∈ QI and
q ∈ Q such that hi = j + qh. Hence h(i− q) = j ∈ QI. On the other hand, we have
(i− q)I2 ⊆ (i− q)J2 = (i− q)(QI + Qh) = (i− q)QI + jQ ⊆ QI2, because i− q ∈ I
and j ∈ QI. Thus (i − q)I2 ⊆ QI2, so that we have iI2 ⊆ QI2 for all i ∈ I. Hence
I3 = QI2. �

3. Proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. See Proposition 2.2 (3) for
the equivalence of conditions (1) and (2) in Theorem 1.2. The implication (3) ⇒ (2)
is clear. So, we must show the implication (1) ⇒ (3) together with the last assertions
in Theorem 1.2. Suppose that e1 = e0 − `A(A/I) + 1. Then, thanks to Theorem 2.4,
we get an isomorphism

ϕ : S → a

of graded B-modules, where a is a graded ideal of B. Notice that once we are able
to show I3 = QI2, the last assertions of Theorem 1.2 readily follow from Proposition
2.5. On the other hand, since a ∼= S = BS1 (cf. Lemma 2.1 (5)), the ideal a of B is
generated by linearly independent linear forms {Xi}1≤i≤c (0 < c ≤ d) of B and so,
the implication (1) ⇒ (3) in Theorem 1.2 follows. We have c = `A(I2/QI), because
a1

∼= S1 = I2/QI (cf. Lemma 2.1 (2)). Thus our Theorem 1.2 has been proven
modulo the following theorem, which follows also, in the case where d ≤ 2, from a
result of M. Rossi [7, Corollary 1.5].

Theorem 3.1. Suppose that e1 = e0 − `A(A/I) + 1. Then I3 = QI2.

Proof. We proceed by induction on d. Suppose that d = 1. Then S is B-free of rank
one (recall that the B-module S is torsionfree; cf. Proposition 2.2 (1)) and so, since
S1 6= (0) (cf. Lemma 2.1 (3)), S ∼= B(−1) as graded B-modules. Thus I3 = QI2 by
Lemma 2.1 (5).

Let us assume that d ≥ 2 and that our assertion holds true for d−1. Since the field
k = A/m is infinite, without loss of generality we may assume that a1 is a superficial
element of I. Let

A = A/(a1), I = I/(a1), and Q = Q/(a1).
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We then have ei(I) = ei for all 0 ≤ i ≤ d− 1, whence

e1(I) = e0(I)− `A(A/I) + 1.

Therefore the hypothesis of induction on d yields I
3

= QI
2
. Hence, because the

element a1t is a nonzerodivisor on G if depthG > 0, we have I3 = QI2 in that case.
Assume that depthG = 0. Then, thanks to Sally’s technique ([10], [3, Lemma

2.2]), we also have depthG(I) = 0. Hence `A(I
2
/Q I) = d− 1 by Proposition 2.5 (2),

because e1(I) = e0(I) − `A(A/I) + 1. Consequently, `A(S1) = `A(I2/QI) ≥ d − 1,
because I

2
/Q I is a homomorphic image of I2/QI. Let us take an isomorphism

ϕ : S → a

of graded B-modules, where a is a graded ideal of B. Then, since

`A(a1) = `A(S1) ≥ d− 1,

the ideal a contains d− 1 linearly independent linear forms, say X1, X2, · · · , Xd−1 of
B, which we enlarge to a basis X1, · · · , Xd−1, Xd of B1. Hence

B = k[X1, X2, · · · , Xd],

so that the ideal a/(X1, X2, · · · , Xd−1)B in the polynomial ring

B/(X1, X2, · · · , Xd−1)B = k[Xd]

is principal. If a = (X1, X2, · · · , Xd−1)B, then I3 = QI2 by Lemma 2.1 (5), since
S = BS1. However, because `A(I2/QI) = `A(a1) = d − 1, we have depthG ≥ 1 by
Proposition 2.5 (2), which is impossible. Therefore a/(X1, X2, · · · , Xd−1)B 6= (0), so
that we have

a = (X1, X2, · · · , Xd−1, X
α
d )B

for some α ≥ 1. Notice that α = 1 or α = 2 by Lemma 2.1 (4). We must show that
α = 1.

Assume that α = 2. Let us write, for each 1 ≤ i ≤ d, Xi = bit with bi ∈ Q, where
bit denotes the image of bit ∈ T in B = T/mT . Then a = (b1t, b2t, · · · , bd−1t, (bdt)2).
Notice that

Q = (b1, b2, · · · , bd),
because {Xi}1≤i≤d is a k-basis of B1. We now choose elements fi ∈ S1 for 1 ≤ i ≤ d−1
and fd ∈ S2 so that ϕ(fi) = Xi for 1 ≤ i ≤ d − 1 and ϕ(fd) = X2

d . Let zi ∈ I2 for
1 ≤ i ≤ d− 1 and zd ∈ I3 such that {fi}1≤i≤d−1 and fd are, respectively, the images
of {zit}1≤i≤d−1 and zdt

2 in S. We now consider the relations Xif1 = X1fi in S for
1 ≤ i ≤ d− 1 and X2

df1 = X1fd, that is

biz1 − b1zi ∈ Q2I

for 1 ≤ i ≤ d− 1 and
b2
dz1 − b1zd ∈ Q3I.

Notice that

Q3 = b1Q
2 + (b2, b3, · · · , bd−1)2·(b2, b3, · · · , bd) + b2

dQ

and write
b2
dz1 − b1zd = b1τ1 + τ2 + b2

dτ3
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with τ1 ∈ Q2I, τ2 ∈ (b2, b3, · · · , bd−1)2·(b2, b3, · · · , bd)I, and τ3 ∈ QI. Then

b2
d(z1 − τ3) = b1(τ1 + zd) + τ2 ∈ (b1) + (b2, b3, · · · , bd−1)2.

Hence z1 − τ3 ∈ (b1) + (b2, b3, · · · , bd−1)2, because the sequence b1, b2, · · · , bd is A-
regular. Let z1 − τ3 = b1h + h′ with h ∈ A and h′ ∈ (b2, b3, · · · , bd−1)2. Then
since

b1[b2
dh− (τ1 + zd)] = τ2 − b2

dh
′ ∈ (b2, b3, · · · , bd)3,

we have b2
dh− (τ1 + zd) ∈ (b2, b3, · · · , bd)3, whence b2

dh ∈ I3.
We need the following.

Claim. h 6∈ I but h ∈ Ĩ. Hence Ĩ 6= I.

Proof. If h ∈ I, then b1h ∈ QI, so that z1 = b1h + h′ + τ3 ∈ QI, whence f1 = 0 in S
(cf. Lemma 2.1 (2)), which is impossible. Let 1 ≤ i ≤ d− 1. Then

biz1 − b1zi = bi(b1h + h′ + τ3)− b1zi = b1(bih− zi) + bi(h′ + τ3) ∈ Q2I.

Therefore, because bi(h′ + τ3) ∈ Q2I, we get

b1(bih− zi) ∈ (b1) ∩Q2I.

Notice that

(b1) ∩Q2I = (b1) ∩ [b1QI + (b2, b3, · · · , bd)2I]
= b1QI + [(b1) ∩ (b2, b3, · · · , bd)2I]
= b1QI + b1(b2, b3, · · · , bd)2

= b1QI

and we have bih− zi ∈ QI, whence bih ∈ I2 for 1 ≤ i ≤ d− 1. Consequently b2
i h ∈ I3

for all 1 ≤ i ≤ d, so that h ∈ Ĩ, whence Ĩ 6= I. �

Because `A(Ĩ/I) ≥ 1, we have

e1 = e0 − `A(A/I) + 1

= e0(Ĩ)− `A(A/Ĩ) + [1− `A(Ĩ/I)]

≤ e0(Ĩ)− `A(A/Ĩ)

≤ e1(Ĩ)
= e1,

where e0(Ĩ) − `A(A/Ĩ) ≤ e1(Ĩ) is the inequality of Northcott for the ideal Ĩ (cf.
Corollary 2.3). Hence `A(Ĩ/I) = 1 and e1(Ĩ) = e0(Ĩ)− `A(A/Ĩ), so that

Ĩ = I + (h) and Ĩ2 = QĨ

by Corollary 2.3 (recall that Q is a reduction of Ĩ also). We then have, thanks to
Proposition 2.6, that I3 = QI2, which is a required contradiction. This completes the
proof of Theorem 1.2 and that of Theorem 3.1 as well. �
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4. Consequences

In this section let us review three results of [2, 10, 11] in order to see how our
Theorem 1.2 works to prove or improve them. Let us begin with Theorem 1.1.

Proof of Theorem 1.1. Notice that condition (1) (resp. (2)) in Theorem 1.1 is equiva-
lent to condition (3) (resp. (1)) in Theorem 1.2 with c = 1. The implication (1) ⇒ (3)
and the last assertions of Theorem 1.1 are contained in Theorem 1.2. Suppose condi-
tion (3) of Theorem 1.1 is satisfied. Then S = TS1 since I3 = QI2, whence mS = (0)
and µB(S) = 1 because `A(S1) = 1 (recall that S1 = I2/QI and `A(I2/QI) = 1).
Thus condition (2) in Theorem 1.2 is satisfied. �

The following result is the main result of [2], which is exactly the case c = 2 of
Theorem 1.2. We would like to refer the reader to [2] for the proof, which can be
substantially simplified by Theorem 1.2.

Corollary 4.1 ([2, Theorem 1.2]). Suppose that d ≥ 2. Then the following four
conditions are equivalent to each other.

(1) mS = (0), rankB S = 1, and µB(S) = 2.
(2) There exists an exact sequence

0 → B(−2) → B(−1)⊕B(−1) → S → 0

of graded T -modules.
(3) e1 = e0 − `A(A/I) + 1, e2 = 0, and depth G ≥ d− 2.
(4) I3 = QI2, `A(I2/QI) = 2, mI2 ⊆ QI, and `A(I3/Q2I) < 2d.

When this is the case, the following assertions hold true

(i) depthG = d− 2.
(ii) e3 = −1, if d ≥ 3.
(iii) ei = 0 for all 4 ≤ i ≤ d.
(iv) `A(I3/Q2I) = 2d− 1.

Later we need the following result in Section 5, which is due to [2] and is exactly
the case c = d of Theorem 1.2. Here we have deleted from the original statement the
superfluous condition that I3 = QI2 in conditions (2) and (3) (cf. Proposition 2.6
also). We refer the reader to [2] for the proof.

Corollary 4.2 ([2, Corollary 2.6]). Suppose that d ≥ 2. Then the following three
conditions are equivalent to each other.

(1) S ∼= B+ as graded T -modules.
(2) e1 = e0 − `A(A/I) + 1 and ei = 0 for all 2 ≤ i ≤ d.
(3) `A(Ĩ/I) = 1 and Ĩ2 = QĨ.

When this is the case, the graded rings G, R, and R′ are all Buchsbaum rings with
Buchsbaum invariant

I(G) = I(R) = I(R′) = d.

We have learned the following example from Rossi.
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Example 4.3. Let A be a 3-dimensional regular local ring and let x, y, z be a regular
system of parameters. We put

I = (x2 − y2, x2 − z2, xy, yz, zx) and Q = (x2 − y2, x2 − z2, yz).

Then Ĩ = m2 = I + (z2) and `A(Ĩ/I) = 1. Since m4 = Qm2, the ideal I satisfies
condition (3) in Corollary 4.2, so that e1(I) = e0(I) − `A(A/I) + 1 and e2(I) =
e3(I) = 0. The graded rings G = G(I), R = R(I), and R′ = R′(I) are all Buchsbaum
rings with I(G) = I(R) = I(R′) = 3.

5. An example

In this section we construct one example which satisfies condition (3) in Theorem
1.2. Our goal is the following.

Theorem 5.1. Let 0 < c ≤ d be integers. Then there exists an m-primary ideal I in
a Cohen-Macaulay local ring (A,m) such that

d = dim A, e1(I) = e0(I)− `A(A/I) + 1, and c = `A(I2/QI)

for some reduction Q = (a1, a2, · · · , ad) of I.

To construct necessary examples we may assume that c = d. In fact, suppose
that 0 < c < d and assume that we have already chosen an m0-primary ideal I0 in a
certain Cohen-Macaulay local ring (A0,m0) such that c = dim A0, e1(I0) = e0(I0)−
`A0(A0/I0) + 1, and c = `A0(I

2
0/Q0I0) with Q0 = (a1, a2, · · · , ac)A0 a reduction of

I0. Let n = d − c and let A = A0[[X1, X2, · · · , Xn]] be the formal power series
ring. We put I = I0A + (X1, X2, · · · , Xn)A and Q = Q0A + (X1, X2, · · · , Xn)A.
Then A is a Cohen-Macaulay local ring with dim A = dim A0 + n = d and the
maximal ideal m = m0A + (X1, X2, · · · , Xn)A. The ideal Q is a reduction of I and
because X1, X2, · · · , Xn forms a super regular sequence in A with respect to I (recall
that G(I) = G(I0)[Y1, Y2, · · · , Yn] is the polynomial ring, where Yi’s are the initial
forms of Xi’s), we have ei(I) = ei(I0) (i = 0, 1) and I2/QI ∼= I2

0/Q0I0, whence
e1(I) = e0(I) − `A(A/I) + 1 and `A(I2/QI) = c. This observation allows us to
concentrate our attention on the case where c = d.

Let m, d > 0 be integers. Let

U = k[{Xj}1≤j≤m, Y, {Vi}1≤i≤d, {Zi}1≤i≤d]

be the polynomial ring with m+2d +1 indeterminates over an infinite field k and let

a = [(Xj | 1 ≤ j ≤ m) + (Y )]·[(Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d)]

+(ViVj | 1 ≤ i, j ≤ d, i 6= j) + (V 2
i − ZiY | 1 ≤ i ≤ d).

We put C = U/a and denote the images of Xj , Y , Vi, and Zi in C by xj , y, vi, and ai,
respectively. Then dim C = d, since

√
a = (Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d).

Let M = C+ := (xj | 1 ≤ j ≤ m) + (y) + (vi | 1 ≤ i ≤ d) + (ai | 1 ≤ i ≤ d) be the
graded maximal ideal in C. Let Λ be a subset of {1, 2, · · · ,m}. We put

J = (ai | 1 ≤ i ≤ d) + (xα | α ∈ Λ) + (vi | 1 ≤ i ≤ d) and q = (ai | 1 ≤ i ≤ d).

Then M2 = qM , J2 = qJ + qy, and J3 = qJ2, whence q is a reduction of both M
and J , and a1, a2, · · · , ad is a homogeneous system of parameters for the graded ring
C.
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Let A = CM , I = JA, and Q = qA. We are now interested in the Hilbert
coefficients e′is of the ideal I as well as the structure of the associated graded ring and
the Sally module of I. Let us maintain the same notation as in the previous sections.
We then have the following, which shows that the ideal I is a required example.

Theorem 5.2. The following assertions hold true.
(1) A is a Cohen-Macaulay local ring with dim A = d.
(2) S ∼= B+ as graded T -modules, whence `A(I2/QI) = d.
(3) e0(I) = m + d + 2 and e1(I) = ]Λ + d + 1.
(4) ei(I) = 0 for all 2 ≤ i ≤ d.
(5) G is a Buchsbaum ring with depth G = 0 and I(G) = d.

We divide the proof of Theorem 5.2 into a few steps. Let us begin with the
following.

Proposition 5.3. Let p = (Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d) in U . Then
`Cp(Cp) = m + d + 2.

Proof. Let Ũ = U [{ 1
Zi
}1≤i≤d] and put k̃ = k[{Zi}1≤i≤d, { 1

Zi
}1≤i≤d] in Ũ . Let X ′

j =
Xj

Z1
(1 ≤ j ≤ m), V ′

i = Vi

Z1
(1 ≤ i ≤ d), and Y ′ = Y

Z1
. Then {X ′

j}1≤j≤m, Y ′, and

{V ′
i }1≤i≤d are algebraically independent over k̃,

Ũ = k̃[{X ′
j}1≤j≤m, Y ′, {V ′

i }1≤i≤d], and

aŨ = [(X ′
j | 1 ≤ j ≤ m) + (Y ′)]·[(X ′

j | 1 ≤ j ≤ m) + (Y ′) + (V ′
i | 1 ≤ i ≤ d)]

+ (V ′
i V ′

j | 1 ≤ i, j ≤ d, i 6= j) + (
Z1

Zi
V ′

i
2 − Y ′ | 1 ≤ i ≤ d).

Let W = k̃[{X ′
j}1≤j≤m, {V ′

i }1≤i≤d] in Ũ and

b = [(X ′
j | 1 ≤ j ≤ m) + (V ′

1
2)]·[(X ′

j | 1 ≤ j ≤ m) + (V ′
i | 1 ≤ i ≤ d)]

+ (V ′
i V ′

j | 1 ≤ i, j ≤ d, i 6= j) + (
Z1

Zi
V ′

i
2 − V ′

1
2 | 2 ≤ i ≤ d)

in W . Then, substituting Y ′ with V ′
1
2 in Ũ , we get the isomorphism

Ũ/aŨ ∼= U := W/b

of k̃-algebras, under which the prime ideal pŨ/aŨ corresponds to the prime ideal
P/b of U , where P = W+ := (X ′

j | 1 ≤ j ≤ m) + (V ′
i | 1 ≤ i ≤ d). Then, since

b + (V ′
1
2) = P 2 and

`WP
([b + (V ′

1
2)]WP /bWP ) = 1,

we get

`UP
(UP ) = `WP

(WP /P 2WP ) + `WP
([b + (V ′

1
2)]WP /bWP )

= (m + d + 1) + 1
= m + d + 2.

Thus `Cp(Cp) = `UP
(UP ) = m + d + 2. �
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We have by the associative formula of multiplicity that

e0(q) = `Cp(Cp)·eC/pC
0 ([q + pC]/pC) = m + d + 2,

because p =
√

a and C/pC = U/p = k[Zi | 1 ≤ i ≤ d]. On the other hand, we have
`C(C/q) = m + d + 2, since

C/q = k[{Xj}1≤j≤m, Y, {Vi}1≤i≤d]/c2

where
c = (Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d).

Thus e0(q) = `C(C/q), so that C is a Cohen-Macaulay ring and e0(q) = m + d + 2.

Proposition 5.4. `C(J̃/J) = 1 and J̃2 = qJ̃ .

Proof. Let K = J + (y). Then `C(K/J) = 1 and K2 = qK = J2. Hence K̃ = K

because K2 = qK, while we have K̃ = J̃ because K2 = J2. Thus the assertions
follow. �

We are now in a position to finish the proof of Theorem 5.2.

Proof of Theorem 5.2. Since Ĩ = J̃A, by Proposition 5.4 we get `A(Ĩ/I) = 1 and
Ĩ2 = QĨ. Hence by Corollary 4.2 S ∼= B+ as graded T -modules, so that

e1(I) = e0(I)− `A(A/I) + 1

and ei(I) = 0 for all 2 ≤ i ≤ d. We have e1(I) = ]Λ + d + 1, because `A(A/I) =
m − ]Λ + 2 and e0(I) = e0(q) = m + d + 2. The ring G = G(I) is a Buchsbaum
ring with depthG = 0 and I(G) = d by Corollary 4.2, which completes the proof of
Theorem 5.2. �
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