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QUASISYMMETRIC AND UNIPOTENT TENSOR CATEGORIES

PAVEL ETINGOF AND SHLOMO GELAKI

1. Introduction

One of the most important early developments in the theory of quantum groups
was Drinfeld’s classification, in characteristic zero, of quasitriangular quasi-Hopf QUE
(quantized universal enveloping) algebras [Drl, Dr2]. In the language of tensor cate-
gories, this is, in essence, a classification of 1-parameter flat formal deformations, as
a braided category’, of the representation category of a Lie algebra® go. The answer
is that such deformations are parameterized by pairs (g,t), where g is a flat formal
deformation of go, and ¢ is an element in (52g)?. More specifically, the deformed cat-
egory is the category of representations of g, with the usual tensor product functor,
the braiding is given by the formula 8 = P o /2, where P is the flip map, and the
associativity isomorphism is ®(ht12, fitag), where ®(a,b) is any Drinfeld associator.
In particular, symmetric deformations correspond to the case t = 0; in other words,
such deformations come simply from deformations g of the corresponding Lie algebra
go-

Drinfeld’s result generalizes mutatis mutandis to a more general setting where gq is
a Lie superalgebra, and to the situation when g is replaced with an affine proalgebraic
supergroup Gg. More specifically, suppose that G is an affine proalgebraic super-
group, and ug € Gy an element of order 2 acting by parity on the function algebra
O(Gp). Let Rep(Go,ug) be the category of representations of Gy on finite dimen-
sional supervector spaces, in which ug acts by parity. Then Drinfeld’s work implies
that any flat formal deformation of the category Rep(Go,ug), as a braided category,
has the form Rep(G,u), where G is a deformation of Gy, u is the (unique) deforma-
tion of ug in G, and the associativity isomorphism and braiding are ®(%it;2, ita3) and
Poe/2 for some t € (S%g)¢ (here g = Lie(G)). Moreover, (G, u,t) are determined
by the deformation uniquely up to an isomorphism. In particular, if the deformation
is symmetric then ¢ = 0, and the deformation is Rep(G, ).

By Deligne’s theorem [De2], any symmetric tensor category of exponential growth
has the form Rep(Gog, ug); thus, Drinfeld’s result provides a description of flat formal
deformations of any symmetric tensor category with at most exponential growth. In
particular, in the special case of symmetric deformations, Drinfeld’s result can be
viewed as a formal analog of Deligne’s theorem.

Received by the editors August 10, 2007.

Here by a flat formal deformation of the category of finite dimensional modules over a (topologi-
cal) algebra Ap we mean the category of finite dimensional modules over a flat formal deformation A
of Ag. This definition will suffice for our purposes; we note, however, that in general, the definition
of a flat formal deformation of an abelian category is fairly nontrivial ([LV]).

2Throughout the paper, we work over the ground field C of complex numbers.
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Unfortunately, Drinfeld’s method makes a serious use of the presence of the formal
parameter £, i.e., of the fact that the braided categories at hand are symmetric modulo
this parameter. For this reason, it cannot be applied to classifying braided categories
over C, not involving /i (even those of exponential growth). In fact, we are very far
from the classification of such categories, even in the special case of finite semisimple
(i.e., fusion) categories.

On the other hand, it turns out that there is a subclass of braided categories for
which Drinfeld’s method does work. This is the class of quasisymmetric categories,
introduced essentially in [EK2]®. They are, by definition, braided categories with
exponential growth, in which the square of the braiding is the identity on the product
of any two simple objects. For such categories, the infinite power series in i which
occur in Drinfeld’s construction terminate when applied to the tensor product of any
objects, and thus become polynomials in 4. These polynomials can then be evaluated
at i = 1, which allows one to apply Drinfeld’s method to the situation without 7.

The study of quasisymmetric categories by means of Drinfeld’s method is one of
the main goals of this paper. Another is to study unipotent tensor categories, i.e.,
such that every simple object is the neutral object. Namely, in Section 2, using
Drinfeld’s method and Deligne’s theorem, we give a classification of quasisymmetric
categories, which is similar to Drinfeld’s classification of quasitriangular quasi-Hopf
QUE algebras. Specifically, we show that equivalence classes of such categories are in
bijection with equivalence classes of triples (G, u,t), where G is an affine proalgebraic
supergroup, u € G an element of order 2 which acts by parity on the function algebra
O(G), and t a nilpotent element of (S2g)“, where g = Lie(G). This gives a general-
ization of Deligne’s theorem to the case of quasisymmetric categories. As a special
case, this result yields a classification of braided unipotent categories. In Section
3, we proceed to classify unipotent fiber functors on quasisymmetric categories, i.e.,
functors that are “standard” on the canonical symmetric part of the category (the
subcategory ®-generated by the simple objects). Namely, we show that such functors
are in bijection with nilpotent solutions r of the classical Yang-Baxter equation, such
that r + 2! = ¢. In Section 4, using the quantization theory from [EK1, EK2, EK3],
we classify coconnected Hopf algebras (i.e., Hopf algebras with a unique simple co-
module) by showing that they all come from quantization of prounipotent Poisson
proalgebraic groups. This provides a classification of unipotent tensor categories with
a fiber functor.
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the NSF grant DMS-0504847. The second author was supported by The Israel Science
Foundation (grant No. 125/05). He also thanks MIT for its warm hospitality during
his Sabbatical. Both authors were supported by BSF grant No. 2002040.

2. Quasisymmetric categories

Let C be a rigid tensor category over C. In particular, C is an abelian category, with
finite dimensional spaces of morphisms and all objects having finite length, and we
have End(1) = C. We will also assume throughout the paper that C has exponential

3To be precise, the definition of a quasisymmetric category in [EK2] is somewhat different from
the one used in this paper, but the difference is inessential for what we do.
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growth, i.e., that for every object Y there exists d(Y) > 1 such that length(Y®™) <
d(Y)" for all n > 1.

2.1. Unipotent categories.

Definition 2.1. The tensor category C is called unipotent if the only simple object
in C is the neutral object 1.

Remark 2.2. Note that the exponential growth condition is automatic for unipotent
tensor categories.

The simplest example is the following one.

Example 2.3. Let G be a prounipotent proalgebraic group. Then C := Rep(G), the
category of rational representations of G, is unipotent.

Proposition 2.4. If C is a symmetric unipotent category then C = Rep(G) for some
prounipotent proalgebraic group G.

Proof. This follows from Deligne’s theorem [Del] since the categorical dimension of
an object X is just its length, hence a positive integer. O

2.2. Unipotent radical of a supergroup. Let G be an affine proalgebraic super-
group *. Denote by U C G the intersection of the kernels of irreducible algebraic
representations of G, and set Gyeq := G/U.

Thus, we have a natural exact sequence of supergroups

1—-U—G— Greq — 1.
Definition 2.5. We will call the supergroup Geq the reductive quotient of G, and U

the unipotent radical of G. We will say that a supergroup G is reductive if U = 1 and
G = Grea-

Note that for a reductive supergroup, it is not always true that the category of its
representations is semisimple: for example, the supergroup G L(m/|n) is reductive, but
it has representations which are reducible but indecomposable.

2.3. Quasisymmetric categories. Let C be a braided category with braiding .

Definition 2.6. Let us say that C is quasisymmetric if for every simple objects
X, YeC,onehas f2=Idon X @Y.

Example 2.7. Every symmetric and every unipotent tensor category is quasisym-
metric.

Let C be a quasisymmetric tensor category. Denote by Cs the full tensor subcat-
egory of C ®-generated by simple objects of C (i.e., formed by the subquotients of
direct sums of tensor products of simple objects).

The following proposition is obvious from the braiding axioms.

Proposition 2.8. The category Cs is symmetric.
Definition 2.9. We will call Cs the canonical symmetric part of C.

4For a short introduction to supergroups and Deligne’s theorem [De2] we refer the reader, for
example, to [EG2].
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Remark 2.10. Note that a quasisymmetric category C is unipotent if and only if C,
is the category of finite dimensional vector spaces.

Example 2.11. Let G be an affine proalgebraic supergroup, and u € G an element of
order 2 acting by parity on the algebra of regular functions O(G), and let Rep(G, u)
be the category of representations of G on finite dimensional supervector spaces on
which u acts by parity. Then Cs = Rep(Greq, ).

By Deligne’s theorem [De2], Proposition 2.8 implies the following corollary.

Corollary 2.12. Let C be a quasisymmetric category. There exists a unique pair
(Gred, u), where Gheq is a reductive proalgebraic supergroup, and u € Gyreq an element
of order 2 acting by parity on O(Greq), such that Cs = Rep(Grea, ).

2.4. Construction of quasisymmetric categories. Recall that for an affine proal-
gebraic supergroup G, its Lie (super)algebra Lie(G) is defined as the set of left in-
variant derivations of O(G).

Let G be an affine proalgebraic supergroup with Lie algebra g. Let G,.q be the
reductive quotient of G, U the unipotent radical of G, and g,., u their Lie algebras.

Definition 2.13. Let us say that an element of the tensor square® g®? is nilpotent if
it projects to zero in g2, ie.,if t CgRuUtuU®g.

Let v € G be an element of order 2 acting on O(G) by parity. Let ¢t € (S%g)% be
an invariant nilpotent symmetric 2—tensor.

Let ® = ®(a,b) be a Lie associator of Drinfeld; it is an element in the completed
free associative algebra in two non-commuting variables a, b satisfying some equations
[Dr2] (see also [ES], page 158).

Now let C(G,u,t,®) be the braided tensor category defined as follows. As an
abelian category it is just Rep(G,u). The tensor product bifunctor is the usual
one, while the associativity constraint is given by a := ®(t12,t23) (ie., a|xgyez =
®(t12,t23) | x@vez). The braiding is given by #:= P o e!/2 where P is the standard
flip map.

Remark 2.14. Let us explain why « is well defined (the explanation for (3 is similar).
Recall that any object X in a finite length abelian category has a canonical filtration
F*: F°(X) is the sum of all simple subobjects of X, and F*(X) is defined inductively
as the preimage in X of F*~1(X/F°(X)). It is clear that if C = Rep(G,u), and a € u,
then aF*(X) C Fi=}(X), so a lowers the filtration degree by 1. This implies that
if the lengths of XY, Z are Ix,ly,lz, and n > Ix 4+ ly + Iz — 3, then any product
ti g, ---ti,j, acts by zeroin X®Y ®Z. This means that the series defining o terminates,
and thus a is well defined.

Proposition 2.15. We have
(i) The category C(G,u,t,®) is quasisymmetric.
(i) For all ®, ®', C(G,u,t,®) is equivalent to C(G,u,t, d').

5Since @ is a affine proalgebraic group, g is a provector space. Thus tensor powers of g will be
understood in the completed sense.
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Proof. (i) Since t acts by zero in X ® Y, where X and Y are simple G—modules, the
result follows.

(i) Set ®q := P(hit12, hitas), Po := D’(ht12, hitez). By Theorem 3.15 in [Drl], there
exists an invariant symmetric twist T := T'(ht) € (U(g)®2)%[[R]], given by a universal
formula, such that ®] = ®,. Now, since t is nilpotent, similarly to Remark 2.14,
T(ht) xey is a polynomial in 7 for all X,Y, and hence can be evaluated at i = 1.
So T'(t) is a well defined functorial morphism X ® Y — X ® Y. The identity functor
C(G,u,t,®) — C(G,u,t,®") equipped with the tensor structure T'(¢) is an equivalence
of braided tensor categories, as desired. O

Remark 2.16. By Proposition 2.15, we may (and will) denote C(G,u,t, ®) simply
by C(G,u,t). Note that C(G,u,0) = Rep(G, u) as a braided tensor category. If u =1,
we will write C(G, t) for C(G, 1,¢).

2.5. Classification of quasisymmetric categories. Let GT = GT(C) be the
Grothendieck-Teichmiiller semigroup, defined by Drinfeld [Dr2]. Recall that this semi-
group consists of pairs (), f), where A € C and f(A, B) = ef(og 4108 B) where fisa
formal Lie series satisfying some properties.

Recall (see e.g. [EK2], Section 2.2) that the semigroup GT acts on the set of
equivalence classes of quasisymmetric categories. Namely, let C be a quasisymmetric
category. The action of ¢ = (A, f) on C is given by preserving the abelian cate-
gory structure and the functor of tensor product, and transforming the associativity
isomorphism and braiding by the formulas

B =po (6%
o =ao f(BiyaoBi o).

Remark 2.17. Note that 8’ in the above formula is well defined since 5% — 1 is
nilpotent. Namely, for any complex number s, (4%)* is by definition equal to e*!°8 '82,

where
m—1 (62 - 1)m )

m

A—1
2
3

log 8% =log(1+ (8> — 1)) = > _ (1)

m>1

Recall also ([Dr2], Proposition 5.2) that every Lie associator ® gives rise to a
canonical 1-parameter subsemigroup go (M) = (A, fo(N)).
We can now state our first main result.

Theorem 2.18. (i) Any quasisymmetric tensor category is equivalent, as a braided
tensor category, to C(G,u,t) for some (G, u,t) with nilpotent t € (S%g)¢.

(ii) C(G,u,t) is equivalent to C(G',u',t") if and only if there exists a supergroup
isomorphism ¢ : G — G’ sending u to u' such that (d¢ ® do)(t) =t'.

(iii) Any braided unipotent tensor category is equivalent, as a braided tensor cate-
gory, to C(G,t), where G is a prounipotent proalgebraic group, and t € (S?g)%. The
pair (G, t) is determined uniquely up to an isomorphism.

Proof. Let C be a quasisymmetric category. Consider the 1-parameter family of qua-
sisymmetric categories C(A) := go(A)(C) (so C(1) = C). This family depends polyno-
mially on A: the abelian category structure and the tensor product functor do not
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change with A, while the associativity isomorphism and the braiding depend polyno-
mially on A.

The main point is that the category C(0) is symmetric. Therefore, by Deligne’s
theorem [De2], it is equivalent to Rep(G,u) for some (G,u). Thus we can identify
C with Rep(G,u) as an abelian category with the tensor product functor. Then
the category C(\) can be described as follows. The braiding in this category is P o
eM/2 where P is the symmetry morphism of Rep(G,u) and ¢t = log(3?), and the
associativity isomorphism is o = ®(At12, Atez). Expanding the hexagon relations in
powers of A and taking the linear part, we find that ¢;2 3 = 13 + t23, which implies
that t € (S%g)“. Moreover, because of the quasisymmetry condition, ¢ is nilpotent.
Thus, setting A = 1, we get C = C(G,u,t,®) = C(G, u,t). This proves part (i) of the
theorem.

To prove part (ii), assume that we have an equivalence of braided tensor categories
F:C(G,u,t,®) — C(G',u/,t',®). Applying the semigroup ge(A) to this equivalence,
we get an equivalence Fy : C(G,u, \t,®) — C(G', v, \t',®). By setting A = 0 and
using Deligne’s theorem, we can assume that (G,u) = (G’,v’) and F is the identity
functor. Then we get ¢ = ¢/, as desired. This proves (ii).

Part (iii) follows from (i) and (ii).

This completes the proof of the theorem. O

3. Fiber functors on quasisymmetric categories

3.1. Unipotent fiber functors. Let C be a quasisymmetric category (so C =
C(G,u,t), where t is nilpotent).

Definition 3.1. Let us say that a fiber functor F' : C — Vec is unipotent if it coincides
with the standard one on the subcategory Cs = Rep(Gied, ).

Let us give a construction of unipotent fiber functors. (In the case ¢ = 0, this
construction appears in [EG1], Theorem 5.5.) Let r € g ® g be a nilpotent solution
to the classical Yang-Baxter equation

[r12,713] + [r12, T23] + [r13,723) = 0,

such that ¢ = r+712. Then by the results of [EK1], [EK2], [E], there exists a universal
formula J = J(hr) defining a pseudotwist killing the associator ®(fit12, hitas). Since r
is nilpotent, similarly to Remark 2.14, the series J(Ar), when evaluated in any product
X ®Y, is in fact a polynomial in i. Thus, it can be evaluated at i = 1. This gives
rise to a unipotent fiber functor F;. : C — Vec, which is the usual forgetful functor on
Rep(G, u) with tensor structure defined by J(r).

3.2. Classification of unipotent fiber functors. Our second main result is the
following one.

Theorem 3.2. If F is a unipotent fiber functor on C then F = F,. for some nilpotent
r, and r is uniquely determined up to conjugation.

Proof. As we have already mentioned above, according to [EK1, EK2, E|, the quanti-
zation (Un(g), R) of a quasitriangular Lie bialgebra (g, r) can be obtained by twisting
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the enveloping algebra U(g)[[%]] by a pseudotwist J(hr), given by a certain universal
formula. The quantum R-matrix of Uy(g) is then given by the universal formula

R(hr) = Jop (hr)e" 72072 J(he) = = 1 + hr + O(B?).

Thus
log R = H(hr) = hr + O(h?),

where H is some infinite series. Since H is the identity modulo higher terms, this
formula can be inverted:

(1) hr = H ' (log R).

Now suppose that F' is a unipotent fiber functor on C. Then B = End(F) is
a (topological) quasitriangular Hopf algebra. Let us now apply formula (1) to the
R-matrix of B, R = P o F(f3). Because of the unipotency of F', this R-matrix is
unipotent, and hence H ~!(log R) makes sense, even though H ! is an infinite series,
and there is no formal parameter h. So we can set » = H~!(log R). Let us twist B
by the twist J(r)~!, and denote the corresponding Hopf algebra by By. It follows
from the fact that the quantization of quasitriangular Lie bialgebras gives rise to a
prop isomorphism (Section 5 of [EE]) that By is cocommutative, and the category
Rep(By) with trivial symmetric structure is equivalent to Rep(G,u) as a symmetric
tensor category. Moreover, r € g ® g, and By is equipped with a quasitriangular
co-Poisson structure defined by r. It is now clear that FF = F,. This proves the
existence part of the theorem. The uniqueness of r up to conjugation follows from
the canonicity of the above construction (see also Theorem 5.3 of [EE]). O

Remark 3.3. Note that if C is a unipotent category, then the conditions of unipotency
of F' and nilpotency of r are vacuous and can be dropped.

Corollary 3.4. Let C = Rep(G,t), where G is a prounipotent proalgebraic group.
Then the assignment r — F,. defines a bijection between isomorphism classes of fiber
functors on C and elements r € g® g which satisfy the classical Yang-Bazter equation
and the condition r + r?! = t.

Note that if G is a unipotent algebraic group, and r is as in Corollary 3.4 with
t = 0 (i.e., 7 € A?g) then by a well known theorem of Drinfeld (see [ES]), the
image of r (regarded as a map g* — g) is a Lie subalgebra  C g defining a closed
subgroup H C G, and w = 7! is a nondegenerate 2-cocycle (i.e., a left-invariant
symplectic form) on H. Conversely, for any closed subgroup H C G and a left-
invariant symplectic form w on H, the element r = w™!, regarded as an element of
A2g, is a solution of the classical Yang-Baxter equation. Thus, Corollary 3.4 implies

Corollary 3.5. Let C = Rep(G), where G is a unipotent algebraic group. Then
equivalence classes of fiber functors on C are in bijection with conjugacy classes of
pairs (H,w), where H is a closed subgroup of G, and w is a left invariant symplectic
form on H.

This corollary is an analog, for unipotent algebraic groups, of the classification of
fiber functors on Rep(G) for finite group G, due to Movshev [M].
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Remark 3.6. We note that a classification of fiber functors on Rep(G, u) for a gen-
eral affine algebraic supergroup G is unknown. It is clear that to obtain such a
classification, it would be sufficient to do so for G = GL(m|n), which is equivalent
to classifying unitary solutions of the quantum Yang-Baxter equation which are in-
vertible and skew-invertible. This problem is open even for n = 0 (starting from
m=4).

3.3. Classification of coconnected coquasitriangular Hopf algebras.

Definition 3.7. (see e.g. [S]) A Hopf algebra A is called coconnected if every simple
comodule over A is trivial.

Corollary 3.8. Let A be a coconnected coquasitriangular Hopf algebra. Then A
is obtained by twisting the product of the function algebra O(G) of a prounipotent
proalgebraic group G by a pseudotwist J = J(r), where r € g®? is a solution of the
classical Yang-Baxter equation, such that t = r + 2! is G-invariant. Moreover, the
pair (G,r) is determined by A up to an isomorphism.

Proof. Follows from Theorem 2.18(iii) and Corollary 3.4, since the comodule cate-
gory of a coconnected coquasitriangular Hopf algebra is a unipotent braided tensor
category. O

4. Classification of coconnected Hopf algebras
In this section we will give a classification of coconnected Hopf algebras.

4.1. Construction of coconnected Hopf algebras. Let G be a prounipotent
Poisson proalgebraic group, and g its Lie algebra. Then g has a Lie bialgebra structure
0 which determines the Poisson-Lie structure on G. Consider the lower central series
filtration go on g: go = g and g;+1 = [gi, ). Then the bracket [,] of g has degree
1 with respect to this filtration, while the cobracket ¢ has degree 0 (since 6([a,b]) =
a®14+1®a,d(b)]+[0(a),b®1+1®Db]).

Consider now the Etingof-Kazhdan quantization Op(G) of the Poisson group G,
[EK3]. This is the space O(G)[[h]] with certain product and coproduct deforming the
standard Hopf algebra structure on O(G). These product and coproduct are given
by some universal formulas (infinite series) in terms of the bracket and cobracket of
g. Because the degree of the bracket is 1 and of the cobracket is zero, these infinite
series terminate, and thus the formal quantization of G is actually defined over the
polynomials C[A], which means that the Hopf algebra Op(G) has a lattice Op(G)por
over C[h]. Specializing this lattice to & = 1, we get a Hopf algebra A = A(G, §) over
C. As a vector space, it coincides with O(G).

Lemma 4.1. The Hopf algebra A is coconnected.

Proof. Let Ag := O(G), and let Cq(Ag) be the coradical filtration of Ay. Since Ag
is coconnected, Cy(Ag) = C. It is easy to see that the product in Ay preserves this
filtration, while the Poisson bracket preserves it in the strict sense, i.e., decreases the
filtration degree by 1. This implies that the product and coproduct in A preserve the
coradical filtration (as they are obtained from the product, coproduct, and Poisson
bracket of Ag by a universal formula). In particular, the coradical filtration Ce(A) of
A coincides with Co(Ap). This implies that A is coconnected. O
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4.2. Classification of coconnected Hopf algebras. Our third main result is the
following theorem.

Theorem 4.2. Any coconnected Hopf algebra over C is of the form A(G,0), and
(G, 9) is determined up to an isomorphism.

Proof. The results of [EK2|,[EE] imply that the formulas expressing the product p
and coproduct A of Oy (G) in terms of the product ug, coproduct Ag, and bracket §
of O(G) are invertible. Let A be a coconnected Hopf algebra, and let us apply the
inverse formulas at 7 = 1 to introduce a commutative product pg, coproduct Ag, and
bracket 6 on A. As before, the formulas make sense for i = 1 because series terminate
due to the pronilpotency of g. In this way we get a commutative Poisson-Hopf algebra
Agp, which coincides with A as a vector space.

Let Co(A) be the coradical filtration of A. Since A is coconnected, Cy(A4) = C.
Also, this filtration is fixed by the product and coproduct p, A in A. Hence it is fixed
by the new coproduct Ag, as Ag expresses via u, A by a universal formula. Thus
Co(A) coincides with the coradical filtration Ce(Ag) of Ag. Hence Ay is coconnected,
ie, Ag = O(G). It is now clear that A = A(G, ). The uniqueness of G, 0 is clear
from the canonicity of this construction. The theorem is proved. O

Remark 4.3. A classical theorem of Kostant states that a coconnected cocommuta-
tive Hopf algebra over C is the same thing as an enveloping algebra of a Lie algebra.
This fits with Theorem 4.2 as follows. It is easy to show that the cocommutativity
condition of A(G,d) is equivalent to the condition that G is abelian. Thus G = g is
a provector space. Denote the topological dual space g* by L; it is an ordinary (dis-
crete) vector space, possibly infinite dimensional. Then 6 gives rise to a Lie bracket
on L, and it is easy to see that A(G,d) = U(L).

Remark 4.4. In categorical terms, Theorem 4.2 provides a classification of unipotent
tensor categories with a fiber functor; namely, they are categories of finite dimensional
comodules over Hopf algebras A(G, ).

Remark 4.5. If C is a finite unipotent tensor category, then it is shown in [EO],
Section 2.10, that C is the category of vector spaces. This is a special case of Theorem
4.2, since in the finite case we must have G = 1.

Remark 4.6. One may hope that along these lines one should be able to obtain a clas-
sification of general unipotent tensor categories; namely, one could expect that their
equivalence classes are in a natural bijection with equivalence classes of prounipotent
groups G with a Lie quasibialgebra structure on Lie(G). Unfortunately, this remains
out of reach, as a quantization theory of Lie quasibialgebras is still unavailable.

Remark 4.7. We have obtained several theorems giving a classification of various
kinds of tensor categories in terms of affine proalgebraic supergroups with some ad-
ditional data. We note that in these theorems, an additional requirement that the
relevant affine proalgebraic supergroup be actually algebraic is equivalent to the re-
quirement that the corresponding category C be finitely ®-generated ([De2]), i.e., there
exists an object X in C such that every object in C is a subquotient of a direct sum
of tensor powers of X.
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