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ON REFINED STARK CONJECTURES IN THE NON-ABELIAN
CASE

David Burns

Abstract. We discuss an explicit integral refinement of Stark’s Conjecture in the gen-

eral (non-abelian) case. We show that, upon specialization to the case of odd irreducible

degree two complex characters of Gal(Q/Q) for which the associated L-function van-

ishes to order one at s = 0, our conjecture refines a question of Stark and a conjecture of
Chinburg. As supporting evidence for our conjecture we give a full proof in the function

field case and (in the number field case) a proof for rational valued characters and for

degree one characters of either Gal(Q/Q) or Gal(Q/k) for suitable imaginary quadratic
fields k.

Introduction

The principal conjecture of Stark, as interpreted by Tate in [21], asserts (roughly
speaking) that the leading term at s = 0 of Artin L-functions is equal, to within an
undetermined algebraic factor, to a regulator constructed from algebraic units. For
Artin L-functions associated to characters that factor through abelian Galois exten-
sions, subsequent refinements of this conjecture (due firstly to Stark [19] with later
refinements and generalisations by, amongst others, Gross, Tate and Rubin) have had
the effect of bounding the denominator of the undetermined algebraic factor. An anal-
ogous refinement in the general (non-abelian) case would have significant advantages
over the original conjecture of Stark (not least for the purposes of obtaining evidence
via computer calculations - see the discussion of Dummit in [10, §14]). Indeed, for the
special case of odd irreducible complex representations of Gal(Q/Q) that are of degree
2 and such that the associated L-function vanishes to order 1 at s = 0, the connection
to modular forms provided by the theorem of Deligne and Serre first led Stark [20] to
investigate the possibility of an explicit such ‘integral’ refinement and then Chinburg
[8] to formulate a precise conjecture for this special case (see the discussion of [21,
Ch. III, §4]). Computer calculations of, amongst others, Chinburg [8], Fogel [12] and
Jehanne, Roblot and Sands [14] have since given credence to this conjecture (which
is referred to in loc. cit. as the ‘Stark-Chinburg Conjecture’). However, it has been
a long-standing problem to give a more conceptual approach to Stark’s question and
to Chinburg’s conjecture and perhaps thereby suggest an explicit integral refinement
of Stark’s Conjecture in a more general setting.

In §2 of this article we shall now formulate, as Conjecture 2.1, an explicit integral
refinement of Stark’s Conjecture in the most general possible case (that is, for any
non-trivial irreducible complex representation that is associated to any finite Galois
extension of any global field). This conjecture is in effect a natural non-abelian
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analogue of the conjecture formulated by Rubin in [18, Conj. B]. Further, in §3
we show that, upon specialisation to the cases considered by Stark and Chinburg,
Conjecture 2.1 refines both the original question posed by Stark in [20] and also (in
any case in which the Euler factors of all primes which ramify in the given Galois
extension are trivial) the Stark-Chinburg Conjecture itself. At the end of §3 we shall
also make an explicit correction to the paper of Jehanne, Roblot and Sands [14]. In §4
we first prove an important reduction of Conjecture 2.1 and then use this to deduce
the validity of Conjecture 2.1 in the function field case from a result of Bae in [1]
and to show in the number field case that Conjecture 2.1 is a consequence of the
‘Strong-Stark Conjecture’ that is formulated by Chinburg in [7]. Further, the latter
result (Theorem 4.1(v)) combines directly with, for example, a result of Tate to show
that Conjecture 2.1 is valid for all (non-trivial irreducible) complex representations
with rational valued character and with results of Ritter and Weiss, and of Flach,
to show that Conjecture 2.1 is valid for all degree one complex representations of
Gal(Q/Q). In addition, since the Strong-Stark Conjecture has been shown to follow
from the ‘equivariant Tamagawa number conjecture’ formulated by Flach and the
present author in [5], Theorem 4.1(v) shows that Conjecture 2.1 follows from the
general formalism of Tamagawa number conjectures that originates with Bloch and
Kato in [3] and hence provides a much more conceptual approach to the original
work of Stark and Chinburg. Indeed, when combined with the main result of [4]
(which deals with the abelian case), Theorem 4.1(v) now shows that the equivariant
Tamagawa number conjecture underlies all of the ‘integral’ refinements to Stark’s
Conjecture of which the present author is aware.

To the best of our knowledge, Tate was the first to ask (in 1999) whether the
equivariant Tamagawa number conjecture might provide an ‘explanation’ for the type
of explicit integral refinements of Stark’s (non-abelian) Conjecture that had been
considered by both Stark and Chinburg. Somewhat belatedly, this article now proves
that his intuition was indeed correct.

1. Algebraic preliminaries

We fix a finite group G, an irreducible finite dimensional complex character χ of
G and a subfield E of C which is both Galois and of finite degree over Q and over
which χ can be realised. We let eχ denote the central idempotent χ(1)

|G|
∑

g∈G χ(g)g of
E[G] and fix an indecomposable idempotent fχ of E[G]eχ. We write O for the ring of
algebraic integers in E, choose a maximal O-order M in E[G] which contains fχ and
define an O-torsion-free right O[G]-module by setting Tχ := fχM. The associated
right E[G]-module Vχ := E ⊗O Tχ has character χ. For any (left) G-module M we
set M [χ] := Tχ ⊗Z M , upon which G acts on the left by t ⊗Z m 7→ tg−1 ⊗Z g(m)
for each t ∈ Tχ,m ∈ M and g ∈ G. Then there is a natural isomorphism of (left)
O[G]-modules

(1) M [χ] ∼= HomO(T ∗χ ,O ⊗Z M)

where G acts in the usual (diagonal) manner on the Hom-set and T ∗χ := HomO(Tχ,O)
is endowed with the natural left G-action and hence spans a left E[G]-module of
character χ.
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For any G-module M , subgroup J of G and integer i we write Hi(J,M) for the
Tate cohomology in degree i of M with respect to J . We also write MJ , resp. MJ ,
for the maximal submodule, resp. maximal quotient module, of M upon which J
acts trivially. Then we obtain a left, resp. right, exact functor M 7→ Mχ, resp.
M 7→ Mχ, from the category of left G-modules to the category of O-modules by
setting Mχ := M [χ]G and Mχ := M [χ]G = Tχ ⊗Z[G] M . For any homomorphism
of G-modules f : M → N we write fχ : Mχ → Nχ and fχ : Mχ → Nχ for the
induced homomorphisms of O-modules. The action of

∑
g∈G g on M [χ] induces a

homomorphism of O-modules t(M,χ) : Mχ −→ Mχ with kernel H−1(G,M [χ]) and
cokernel H0(G,M [χ]). Thus t(M,χ) is bijective whenever M , and hence also M [χ],
is a cohomologically trivial G-module. If M is finitely generated and torsion-free,
then we shall always regard Mχ as an O-submodule of O ⊗Z M by means of the
identification described in the following result.

Lemma 1.1. We fix a finitely generated torsion-free G-module M and observe that
E[G] ⊗Z M has two commuting left actions of G: the first via left multiplication on
E[G] and the second such that each g in G sends x ⊗Z m to xg−1 ⊗Z g(m) for x in
E[G] and m in M . We write (E[G]⊗ZM)G,2 for the subset of E[G]⊗ZM comprising
elements that are invariant under the second action of G and use the first action of
G on E[G] ⊗Z M to regard (E[G] ⊗Z M)G,2 as an E[G]-module. Then the E-linear
map E[G]⊗Z M → E ⊗Z M that sends g ⊗Z m to g(m) for each g in G and m in M
restricts to give an isomorphism of E[G]-modules (E[G]⊗Z M)G,2 ∼= E ⊗Z M . With
respect to this isomorphism one has Mχ ⊆ χ(1)−1 ·Mχ ⊆ O ⊗Z M.

Proof. Since E[G]⊗ZM is cohomologically-trivial with respect to any action of G the
subspace (E[G]⊗ZM)G,2 is equal to the image of

∑
g∈G g acting (via the second action

of G) on E[G]⊗ZM and hence to the E-linear span of {
∑

g∈G g
−1⊗Z g(m) : m ∈M}.

Using this description it is easy to see that the given map induces an isomorphism of
E[G]-modules (E[G] ⊗Z M)G,2 ∼= E ⊗Z M . To prove the second claim we set N :=
O ⊗Z M and N∗ := HomO[G](N,O[G]). Then, as N is O-torsion-free, it is equal to
the set {x ∈ E⊗ON : θ(x) ∈ O[G] for all θ ∈ N∗}. Thus, setting n := χ(1), it suffices
to prove that θ(Mχ) ⊆ n ·O[G] for each θ ∈ N∗. But θ(Mχ) ⊆ Z[G]χ and, since Z[G]
is cohomologically-trivial and Z[G]χ = Tχ, one has Z[G]χ = im(t(Z[G], χ)) = |G| ·Tχ.
Thus it suffices to note that |G| · Tχ = |G| · fχM ⊆ |G| · eχM ⊆ n · O[G], where the
latter inclusion follows from Jacobinski’s description in [13] of the central conductor
of M in O[G] (see also [9, Th. (27.13)]). �

For anyG-module, resp. O-module, M we writeMtor for the (Z-)torsion submodule
of M and set M := M/Mtor, which we identify as a submodule of Q ⊗Z M , resp.
E ⊗O M , in the natural way. If M is a G-module and m ∈ M , then we write fχ(m)
for the image of fχ ⊗Z[G] m ∈Mχ under the natural surjection Mχ →Mχ.

2. Statement of the conjecture

We fix a finite Galois extension of global fields K/k and a non-trivial irreducible
finite dimensional complex character χ of G := Gal(K/k). For any finite non-empty
set of places S of k we write S(K) for the set of places of K which lie above those
in S, YS for the free abelian group on S(K) and XS for the kernel of the homomor-
phism YS → Z which sends each element of S(K) to 1. If S contains the set S∞
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of all archimedean places of k (in the number field case), then we write US for the
multiplicative subgroup of K× consisting of those elements that are units at all places
outside S and λS : R⊗Z US → R⊗Z XS for the isomorphism of R[G]-modules which
at each u ∈ US satisfies

(2) λS(u) = −
∑

π∈S(K)

log|u|π · π

where | · |π denotes the normalised absolute value at π. Now, since XS is torsion-free,
the bijectivity of λS combines with [9, §6, Exer. 6] to imply the existence of injective
homomorphisms of G-modules of the form ϕ : XS → US . For any such ϕ we set

RS
ϕ(χ) := detC[(C⊗R λS) ◦ (C⊗Z ϕ) | (C⊗E Vχ)⊗Z[G] XS ] ∈ C×.

Then, after taking account of the isomorphism (1), Stark’s Conjecture (as interpreted
in [21, Ch. I, Conj. 5.1]) states that for each α ∈ Aut(C) one has

(3)
L∗S(0, χα)
RS

ϕ(χα)
= α

(
L∗S(0, χ)
RS

ϕ(χ)

)
where L∗S(0, χ) denotes the leading non-zero coefficient in the Taylor expansion at
s = 0 of the S-truncated Artin L-function LS(s, χ) and χα := α ◦ χ.

For each place v in k we fix a place w of K above v, write Gw for its decomposition
subgroup in G and set

rS :=
∑
v∈S

dimE(V Gw
χ ).

Then, since χ is non-trivial, one has

rS = dimE(Vχ ⊗Z[G] XS) = dimE(E ⊗O XS,χ)

and the function LS(s, χ) vanishes to order rS at s = 0 (by [21, Ch. I, Prop. 3.4]).
Further, after unwinding the definition of RS

ϕ(χ), one finds that (3) implies

(4) L∗S(0, χ) · ∧rS

E (Vχ ⊗Z[G] XS) = λ
(χ)
S (∧rS

E (Vχ ⊗Z[G] US))

where
λ

(χ)
S : C⊗E (∧rS

E (Vχ ⊗Z[G] US)) ∼−→ C⊗E (∧rS

E (Vχ ⊗Z[G] XS))
is the isomorphism of C-spaces that is induced by λS .

We assume henceforth that the finite (non-empty) set S contains both S∞ (in the
number field case) and also all places which ramify in K/k. To formulate a conjectural
refinement of (4) in this case we find it convenient to avoid complications that arise
from the torsion subgroup of US by using the same method as Tate [21, Ch. IV] and
Rubin [18]. Thus, we fix a finite non-empty set of places T of k which is disjoint from
S and set

L∗S,T (0, χ) := L∗S(0, χ)
∏
v∈T

detE(1−Nv · Fr−1
w | Vχ) ∈ C×

where Frw is the Frobenius automorphism of w in Gw and Nv is the absolute norm of
v. We also write US,T for the (finite index) subgroup of US consisting of those elements
that are congruent to 1 modulo all of the places in T (K). We note that if US,T , and
hence Uχ

S,T , is torsion-free, then the exterior power ∧rS

O U
χ
S,T is also torsion-free and

so can be regarded as an O-submodule of ∧rS

E (Vχ ⊗Z[G] US).
We can now state our conjectural refinement of (4).
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Conjecture 2.1. Let S be any finite non-empty set of places of k which contains S∞
and all places which ramify in K/k. Let T be any finite non-empty set of places of
k that is disjoint from S and such that US,T is torsion-free. Then (3) is valid for all
α ∈ Aut(C) and in C⊗E (∧rS

E (Vχ ⊗Z[G] XS)) one has

|G|rSL∗S,T (0, χ) · ∧rS

O XS,χ ⊆ FitO(H−1(G,XS [χ])) · λ(χ)
S (∧rS

O U
χ
S,T ).

We will see (in Proposition 4.8) that it is in fact reasonable to expect that the
inclusion of Conjecture 2.1 is an equality for any set S which is ‘large enough’.

In §3 we shall also describe some consequences of Conjecture 2.1 of a much more
explicit nature. However, we now end this section by making some clarifying remarks.

Remark 2.2. (The set T ) If K is a (global) function field, then US,T is torsion-
free for any non-empty set T . If K is a number field, then US,T is torsion-free if,
for example, not all of the places in T have the same residue characteristic or if T
contains a place with residue characteristic greater than |US,tor|.

Remark 2.3. (The term FitO(H−1(G,XS [χ]))) It is easy to describe an explicit
lower bound for the ideal FitO(H−1(G,XS [χ])) in Conjecture 2.1. Indeed, the exact
sequence of O[G]-modules 0 → XS [χ] → YS [χ] → Z[χ] → 0 gives rise to an exact
sequence of O-modules

H−2(G,Z[χ]) ∂−→ H−1(G,XS [χ]) → H−1(G, YS [χ]) ε−→ H−1(G,Z[χ])

and hence to an equality

FitO(H−1(G,XS [χ])) =
FitO(H−1(G, YS [χ]))FitO(im(∂))FitO(cok(ε))

FitO(H−1(G,Z[χ]))

=
∏

v∈S FitO(H−1(Gw, Tχ))FitO(im(∂))FitO(cok(ε))
FitO(H−1(G,Z[χ]))

where the last equality follows from the isomorphism YS [χ] ∼=
⊕

v∈S IndG
Gw
Tχ. Also, if

v1 is any fixed place in S such that V Gw1
χ = 0, for w1 the chosen place of K above v1,

then TGw1
χ = TG

χ = 0 and so there is a surjective homomorphism of finite O-modules
H−1(Gw1 , Tχ) = (Tχ)Gw1

� (Tχ)G
∼= (Z[χ])G = H−1(G,Z[χ]) and hence an inclusion

FitO(H−1(Gw1 , Tχ)) ⊆ FitO(H−1(G,Z[χ])). Thus one has

FitO(H−1(G,XS [χ])) ⊆
∏

v∈S\{v1}

FitO(H−1(Gw, Tχ)) ⊆
∏
v

FitO((Tχ)Gw)

where the second product is over all places v in S \ {v1} with V Gw
χ = 0 and the

second inclusion is valid because for each such v one has H−1(Gw, Tχ) = (Tχ)Gw . We
finally note that if Gw is a non-trivial group of prime power order, then Nakayama’s
lemma implies that FitO((Tχ)Gw

) is a non-trivial (integral) ideal and hence the term
FitO(H−1(G,XS [χ])) represents a non-trivial integrality constraint on the elements
that we discuss in §3 below.

Remark 2.4. (Special cases) In the following two special cases we are aware of
an explicit integral refinement of Stark’s conjecture that is actually stronger than
Conjecture 2.1.
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(i) The case rS = 0. In this case (3) implies LS,T (0, χ) belongs to E and Conjecture
2.1 further predicts that LS,T (0, χ) belongs to FitO(H−1(G,XS [χ])). In fact, by using
a natural notion of ‘non-commutative Fitting invariant’, Parker has recently shown
that the equivariant Tamagawa number conjecture leads to a stronger restriction on
LS,T (0, χ) in this case (for details see [16]).

(ii) The abelian case. If χ has degree one, then it factors through the abelianisation
Gab of G. Also, if V Gw

χ vanishes and Gab
w denotes the image of Gw in Gab, then

FitO((Tχ)Gw
) is equal to the image of the kernel of the projection map Z[Gab] →

Z[Gab/Gab
w ] under the homomorphism Z[Gab] → O that is induced by χ. By taking

this (and Remark 2.3) into account, one can show that in this case the inclusion of
Conjecture 2.1 is a consequence of the finer congruence properties of L∗S,T (0, χ) that
are discussed in [4]. In particular, in this way one sees that Conjecture 2.1 can be
interpreted as a natural non-abelian analogue of the conjecture formulated by Rubin
in [18, Conj. B].

3. Stark units

In this section we shall describe some explicit consequences of Conjecture 2.1.
Before stating the first such result we note that if US,T is torsion-free, then Lemma
1.1 allows us to regard the exterior power ∧rS

O (χ(1)−1 · Uχ
S,T ) as a submodule of

O ⊗Z ∧rS

Z US,T . We set cS := FitO(H−1(G,XS [χ])).

Proposition 3.1. Assume that there exists a place v in S for which V Gw
χ vanishes

(for any fixed place w of K above v). For each integer i with 1 ≤ i ≤ rS fix a
place wi in S(K) and let Σ denote the ordered set {wi : 1 ≤ i ≤ rS}. If Conjecture
2.1 is valid, then for any element d′ of c−1

S there exists a unique element uΣ(d′) of
∧rS

O (χ(1)−1 · Uχ
S,T ) ⊂ O ⊗Z ∧rS

Z US,T for which

(5) λ
(χ)
S (uΣ(d′)) =

d′|G|rS

χ(1)rS
L∗S,T (0, χ) · ∧i=rS

i=1 fχ(wi).

Proof. The isomorphism YS [χ] ∼=
⊕

v∈S IndG
Gw
Tχ induces an isomorphism (YS,χ)tor ∼=⊕

v∈S(Tχ)Gw,tor. One also has (Tχ)Gw,tor = (Tχ)Gw whenever V Gw
χ vanishes. Thus,

the (assumed) existence of a place v in S for which V Gw
χ vanishes implies that the natu-

ral map YS → Z induces a surjection (YS,χ)tor � (Tχ)G = Zχ. The inclusion XS ⊂ YS

therefore induces an identification XS,χ = YS,χ and so the element ∧i=rS
i=1 fχ(wi) be-

longs to ∧rS

O XS,χ. The existence of an element uΣ(d′) of ∧rS

O (χ(1)−1 · Uχ
S,T ) which

satisfies (5) thus follows directly from the inclusion of Conjecture 2.1. The uniqueness
of uΣ(d′) then follows from the injectivity of λ(χ)

S . �

In the rest of this section we describe more explicit versions of Proposition 3.1
in the case that rS = 1. In this case there exists a unique place v = v1 in S with
V

Gw1
χ 6= 0 for any fixed place w1 of K above v1. In addition, the fact that rS = 1

is the multiplicity of χ in the Q-rational representation C⊗Z XS = C⊗Q (Q⊗Z XS)
implies that the Schur index of χ is equal to 1 and so we can take the field E in
Proposition 3.1 to be the field of values of χ. We also set Γ := Gal(E/Q) and write
DE for the different of the extension E/Q.
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For each γ ∈ Γ we write L′S,T (0, χγ) for the value at s = 0 of the first derivative of
LS,T (s, χγ).

Proposition 3.2. Assume that rS = 1 and |S| > 1. Let v1 be the unique place in
S with V

Gw1
χ 6= 0 (for any fixed place w1 of K above v1) and set S1 := S∞ ∪ {v1}.

If Conjecture 2.1 is valid, then for any element d of c−1
S D−1

E there exists an element
uw1(d) of US1,T which at each place w of K satisfies

(6) − log |uw1(d)|w =


0, if w - v1,∑

γ∈Γ

∑
h∈Gw1

γ(d)χγ(gh)L′S,T (0, χγ), if w = g(w1) for

any g in G.

Proof. We assume throughout this argument that Conjecture 2.1 is valid. We also
note that, since both rS = 1 and |S| > 1, there exists a place v in S with V Gw

χ = 0
and so Proposition 3.1 applies in this context.

We set n := χ(1) and prχ := n−1|G|eχ =
∑

g∈G χ(g)g ∈ O[G] and let eχ =∑j=n
j=1 fχ,j be the decomposition of eχ as a sum of indecomposable idempotents in

E[G], with fχ,1 = fχ. We also fix d′ ∈ c−1
S and d′′ ∈ D−1

E and set d := d′d′′ (note
that, by linearity, it suffices to consider elements d of this form). For each index j as
above we then define

η(d, χ, j) :=
d|G|
n

L′S,T (0, χ)
RS

ϕ(χ)
· (C⊗O ϕχ)(fχ,j(w1)) ∈ C⊗O Uχ

S,T

where, just as in Proposition 3.1, we regard fχ,j(w1) as an element of E ⊗O XS,χ.
Now L∗S,T (0, χ) = L′S,T (0, χ) because rS = 1 and hence, since fχ,1(w1) is a non-

zero element of the dimension one C-space C⊗OXS,χ, the definition of RS
ϕ(χ) implies

that λS(η(d, χ, 1)) = d|G|n−1L′S,T (0, χ) · fχ,1(w1). Thus η(d, χ, 1) is equal to the
element d′′ · u{w1}(d

′) of n−1D−1
E · Uχ

S1,T that is described by Proposition 3.1. But
V Gw

χ = 0 for all v ∈ S \ {v1} so Y χ
S\S1

= 0 and hence the natural exact sequence
0 → US1,T → US,T → YS\S1 implies Uχ

S1,T = Uχ
S,T . After recalling Lemma 1.1 we

therefore deduce that η(d, χ, 1) belongs to D−1
E ⊗Z US1,T .

Upon replacing fχ = fχ,1 by fχ,j (for any given index j) in the definition of
Tχ, the same argument proves that η(d, χ, j) belongs to D−1

E ⊗Z US1,T and satisfies
λS(η(d, χ, j)) = d|G|n−1L′S,T (0, χ) · fχ,j(w1). The element η(d, χ) :=

∑j=n
j=1 η(d, χ, j)

of D−1
E ⊗Z US1,T therefore satisfies

dL′S,T (0, χ) · prχ(w1) =
j=n∑
j=1

d|G|n−1L′S,T (0, χ) · fχ,j(w1) = λS(η(d, χ)).

Further, the assumed validity of (3) combines with the definition of each element
η(d, χ, j) to imply that η(γ(d), χγ) = γ(η(d, χ)) for each γ ∈ Γ, where on the right
hand side we use the natural semi-linear action of Γ on D−1

E ⊗Z US1,T . Thus, if we
set uw1(d) :=

∑
γ∈Γ γ(η(d, χ)), then the last displayed formula implies that

(7)
∑
γ∈Γ

γ(d)L′S,T (0, χγ) · prχγ (w1) = λS(uw1(d)).
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But TrE/Q(D−1
E ) ⊆ Z and so uw1(d) belongs to TrE/Q(D−1

E )⊗ZUS1,T ⊆ US1,T . It now
only remains to note that the definition of λS in (2) implies that (7) is equivalent to
the claimed equalities (6). �

An elementary exercise in Galois theory shows that (6) implies that the fieldKker(χ)

is generated over k by the G-conjugates of uw1(d)
N for any large enough integer N (cf.

[21, Ch. III, §3.3]). However, to discuss further properties of the conjectural elements
uw1(d) we now assume in addition that k is a number field, that χ has degree two
and that v1 is (real) archimedean. In this case Gw1 has order two (since V Gw1

χ 6= Vχ)
and we write τ for its non-trivial element. We also fix an embedding of K in C that
corresponds to w1 and use this to regard K as a subfield of C.

Proposition 3.3. We assume that k is a number field, that rS = 1 and |S| > 1, that
the unique place v1 in S with V Gw1

χ 6= 0 is archimedean and that χ has degree two. If
Conjecture 2.1 is valid, then for each element d of c−1

S D−1
E the element

ε(d) := exp(−
∑
γ∈Γ

γ(d)L′S,T (0, χγ))

is a real unit in K which satisfies all of the following conditions:-
• either ε(d) or −ε(d) is congruent to 1 modulo all of the places in T (K);
• |ε(d)|w = 1 if w is any place of K which does not lie above v1;
• for each g ∈ G one has

− log |g−1(ε(d))|w1 =
∑
γ∈Γ

γ(d)(χγ(g) + χγ(gτ))L′S,T (0, χγ).

Proof. Since, by assumption, both dimE(Vχ) = 2 and dimE(V Gw1
χ ) = 1 the set of

eigenvalues of the action of τ on Vχ is equal to {−1,+1} and hence χ(τ) = 0. From
the equality (6) (with g the identity element of G) we therefore find that

uw1(d) · τ(uw1(d)) = |uw1(d)|w1 = exp(−2
∑
γ∈Γ

γ(d)L′S,T (0, χγ)) = ε(d)2.

But from (6) we also know that |τ(uw1(d))|w = |uw1(d)|w for all places w ofK (indeed,
this is clear if w - v1 and in the case w = g(w1) follows easily from the explicit
formula given in (6) and the fact that χ is a class function on G) and so the element
(ε(d)/uw1(d))

2 = τ(uw1(d))/uw1(d) belongs to US1,T ∩ ker(λS) = (US1,T )tor. Hence,
by our choice of T , we find that (ε(d)/uw1(d))

2 = 1 and so ε(d) = ±uw1(d). From this
equality we deduce that ε(d) belongs to US1 and so is a unit in K (since S1 = S∞).
On the other hand, the last displayed equality implies that ε(d)2 is a positive real
number and hence that ε(d) is itself real. Lastly, the properties of uw1(d) that are
described in (6) imply directly that ε(d) = ±uw1(d) satisfies all of the conditions listed
in Proposition 3.3. �

Following Proposition 3.3, we now further specialise to the case that k = Q and
v1 is archimedean. For simplicity, we also assume that O is generated as a Z-module
by the set {χ(g) : g ∈ G} (as is the case, for example, for all of the examples
considered by Fogel in [12] and by Jehanne, Roblot and Sands in [14]). Then [14,
Prop. 2.7, Prop. 2.12] shows that, if we replace the condition d ∈ c−1

S D−1
E that occurs

in Proposition 3.3 by the stronger condition d ∈ D−1
E and take S equal to the set S0
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consisting of v1 and all rational primes which ramify in K/Q, then the question of
the existence of real units in K which satisfy the conditions listed in Proposition 3.3
was first considered by Stark in [20]. Also, under our stated assumption about O,
the subsequent conjecture [8, Conj. 1] of Chinburg differs from Stark’s question only
in that LS0(s, χ) is replaced by the primitive L-function L(s, χ). Thus, modulo these
differences (and the occurrence of the auxiliary set of places T ), the factor cS0 which
occurs in Proposition 3.3 predicts that the units that occur in Stark’s question and
in Chinburg’s conjecture should be N -th powers of real units in K× where N is the
largest integer such that cS0 ⊆ N · O. We remark that the possibility of such ‘extra
divisibility’ in the Stark-Chinburg Conjecture has already been observed numerically
in both [12] and [14] (but see the following remark).

Remark 3.4. (A correction to the paper of Jehanne, Roblot and Sands) The displayed
formula which occurs in [14, Rem. 2.10] is incorrect. Indeed, since (in the notation
of loc. cit.) the norm || − || is attached to a complex place whilst the element ε(d)
is real, the left hand side of the given formula should read ‘ε(d)2’ rather than ‘ε(d)’.
Corresponding corrections are then also required in the calculations that are made in
[14, §4] and hence in the data listed in [14, Table 3]. In particular, this error accounts
for the fact that, as explicitly remarked at the beginning of [14, §4.2], the authors
found that ‘the unit ε(d) was a square in K. In fact, in almost all examples, it is
actually a fourth power’. Taking account of the necessary corrections, this assertion
should have read ‘the unit ε(d) belongs to K. In fact, in almost all examples, it is
actually a square’. Despite these errors [14, Th. 4.2] remains valid as stated.

4. The main result

In this section we prove the following result.

Theorem 4.1. Conjecture 2.1 is valid in each of the following cases:-
(i) k is a global function field;
(ii) k is a number field and χ is rational valued;
(iii) k = Q and χ has degree one;
(iv) k is an imaginary quadratic field of class number one and χ is a degree one

character whose order is divisible only by primes which split completely in k/Q;
(v) k is a number field and the ‘Strong-Stark Conjecture’ of [7, Conj. 2.2] is valid

for K/k.

Remark 4.2. (An A4 example) In [6, §3] it is shown that [7, Conj. 2.2] is a con-
sequence of the ‘equivariant Tamagawa number conjecture’ of [5, Conj. 4] for the
pair (h0(SpecK),Z[G]). Theorem 4.1(v) thus combines with a recent result of Nav-
ilarekallu in [15, Th. 3] to verify Conjecture 2.1 in an example with k = Q, G
isomorphic to the alternating group of order 12, χ the unique irreducible degree three
character of G and rS = 2.

Our proof of Theorem 4.1 will proceed as follows. We first show that it is enough
to prove Conjecture 2.1 for sets S that satisfy a variety of extra hypotheses. We
then show that for such sets S the inclusion of Conjecture 2.1 is a consequence of the
Strong-Stark Conjecture and finally we deduce Theorem 4.1 from known cases of the
latter conjecture.
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4.1. A useful reduction. In this section we use the same notation as in Conjecture
2.1. In addition, for each finite non-empty set of places Σ of k that contains S∞ we
write OΣ for the subring of K consisting of those elements that are integral at all
places outside Σ(K).

Proposition 4.3. It suffices to prove Conjecture 2.1 in the case that both of the
following conditions are satisfied:-
(i) Pic(OS) = 0;
(ii) There exists an exact sequence of G-modules of the form

0 → US,T
⊆−→ US → F×T → 0

where F×T denotes the direct sum of the multiplicative groups of the residue fields
of all places in T (K).

This result follows directly upon combining the next two lemmas.

Lemma 4.4. There exists a finite set S′′ of places of k which do not belong to S ∪T ,
are each totally split in K/k and are such that the conditions (i) and (ii) of Proposition
4.3 are satisfied with S replaced by S′ := S ∪ S′′.

Proof. With S′ as in the statement of the lemma, there exists a natural exact sequence
of G-modules of the form

0 → US′,T
⊆−→ US′ → F×T → Pic(OS′)T → Pic(OS′) → 0,

where Pic(OS′)T is the quotient of the group of fractional ideals of OS′ that are prime
to T (K) by the subgroup of principal ideals with a generator congruent to 1 modulo
all places in T (K) (cf. [18, (1)]). It is therefore enough to show that we may choose S′′

so that Pic(OS′)T = 0. But class field theory identifies Pic(OS′)T with Gal(HS′,T /K)
where HS′,T is the maximal abelian extension of K which is unramified outside T (K)
and is such that all places in S′(K), resp. in T (K), are totally split, resp. at most
tamely ramified. The existence of a suitable set S′′ thus follows as a consequence of
Tchebotarev’s Density Theorem. �

Lemma 4.5. Let S′′ be any finite set of places of k which do not belong to S ∪T and
are each totally split in K/k and set S′ := S ∪ S′′. If Conjecture 2.1 is valid with S
replaced by S′, then it is also valid as stated.

Proof. An obvious reduction allows us to assume that S′′ = {v} for some place v of k
which does not belong to S ∪ T and splits completely in K/k. We fix a place w of K
above v and write F for the free abelian group on the set of prime ideals ofOS which lie
above v. Then F is a free Z[G]-module with basis the prime ideal p that corresponds

to w and there is an exact sequence of G-modules 0 → US,T
⊆−→ US′,T

c−→ F in which
c is the map which sends each element x of US′,T to the image of xOS under the
natural map from the group of fractional OS-ideals to F .

We set n := χ(1). If necessary, after replacing E by a larger field, we can assume
that Tχ is a free O-module and then fix a basis {bi : 1 ≤ i ≤ n}. For each such index
i we then define ϑi ∈ HomO(Uχ

S′,T ,O) to be the composite

Uχ
S′,T

cχ

−→ Fχ |G|−1

−−−−→ Fχ
ε−→ Z[G]χ = Tχ

b∗i−→ O.
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Here we use the fact that (since F is a free G-module) Fχ = im(t(F, χ)) = |G| ·Fχ ⊆
E ⊗O Fχ, the isomorphism ε is induced by the map F ∼= Z[G] sending p to 1 and b∗i
is the element of HomO(Tχ,O) which satisfies b∗i (bj) = δij for each j with 1 ≤ j ≤ n.
We also set r := rS and r′ := rS′ = r + n and write

Θ : E ⊗O ∧r′

OU
χ
S′,T → E ⊗O ∧r

OU
χ
S′,T

for the homomorphism that is induced by ∧i=n
i=1ϑi. Now, since im(cχ) is a torsion-free,

and hence projective, O-module, the exact sequence

0 → Uχ
S,T

⊂−→ Uχ
S′,T

cχ

−→ Fχ

implies that we can choose a direct sum decomposition ofO-modules Uχ
S′,T = Uχ

S,T⊕M
in such a way that cχ induces an isomorphism M ∼= im(cχ). Then

∧r′

OU
χ
S′,T =

i=r′∑
i=0

∧i
OU

χ
S,T ⊗O ∧

r′−i
O M = ∧r

OU
χ
S,T ⊗O ∧

n
OM,

where the second equality follows from the fact that Uχ
S,T and M are projective O-

modules of rank r and n respectively. Since Uχ
S,T ⊆ ker(ϑi) for each index i one

therefore has

(8) Θ(∧r′

OU
χ
S′,T ) = (∧i=n

i=1ϑi)(∧n
OM) · ∧r

OU
χ
S,T ⊆ ∧r

OU
χ
S,T .

We next set F ′ := Z[G] ·w ⊂ YS′ and observe that there is a (split) exact sequence
of G-modules

0 → XS
⊂−→ XS′

d−→ F ′ → 0
in which d is the composite of the inclusion XS′ ⊂ YS′ and the natural projection
YS′ → F ′. We also fix an arbitrary element x of ∧r

OXS,χ and pre-images b̃j of each

element bj under the surjection XS′,χ
dχ−→ F ′χ

ε′−→ Z[G]χ = Tχ where ε′ is induced
by the isomorphism F ′ ∼= Z[G] which sends w to 1. Then x ∧O ∧j=n

j=1 b̃j belongs to
∧r′

OXS′,χ. Also, since F ′ is a free G-module, the last displayed exact sequence induces
an isomorphism of O-modules H−1(G,XS [χ]) ∼= H−1(G,XS′ [χ]) and thus an equality
FitO(H−1(G,XS′ [χ])) = cS := FitO(H−1(G,XS [χ])). Hence, by the assumed validity
of Conjecture 2.1 for S′, there exists an element ξx of cS · ∧r′

OU
χ
S′,T such that

|G|r
′
L∗S′,T (0, χ)(x ∧O ∧j=n

j=1 b̃j) = λ
(χ)
S′ (ξx).

For each index i with 1 ≤ i ≤ n we now let b̃∗i ∈ HomO(XS′,χ,O) denote the
composite

XS′,χ
dχ−→ F ′χ

ε′−→ Z[G]χ = Tχ
b∗i−→ O.

Then (∧i=n
i=1 b̃

∗
i )(∧

j=n
j=1 b̃j) = (∧i=n

i=1 b
∗
i )(∧

j=n
j=1 bj) = 1. Hence, since XS,χ ⊆ ker(b̃∗i ) for

each index i, one has

|G|rL∗S,T (0, χ) · x =(∧i=n
i=1 b̃

∗
i )(|G|rL∗S,T (0, χ)(x ∧O ∧j=n

j=1 b̃j))

=(∧i=n
i=1 b̃

∗
i )((|G|log(Nw))−n|G|r

′
L∗S′,T (0, χ)(x ∧O ∧j=n

j=1 b̃j))

=(∧i=n
i=1 b̃

∗
i ) ◦ λ

(χ)
S′ ((|G|log(Nw))−nξx)

=λ(χ)
S (Θ(ξx)),
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where the second equality is valid because L∗S′,T (0, χ) = (log(Nw))nL∗S,T (0, χ) and
the last equality follows from Lemma 4.6 below. Finally we observe that (8) implies
that the element Θ(ξx) belongs to cS ·λ(χ)

S (∧r
OU

χ
S,T ) and so the last displayed formula

validates Conjecture 2.1. This completes the proof of Lemma 4.5 and hence also of
Proposition 4.3. �

Lemma 4.6. On C⊗O ∧r′

OU
χ
S′,T one has (∧i=n

i=1 b̃
∗
i ) ◦ λ

(χ)
S′ = (|G|log(Nw))n · λ(χ)

S ◦Θ.

Proof. We write γ : C ⊗O Fχ
∼= C ⊗O F ′χ for the isomorphism of C-spaces that is

induced by the isomorphism of G-modules F → F ′ which sends p to w and we set
t := |G| log(Nw). Then the definitions of the maps λS′ , c

χ, dχ, ε and ε′ combine to
ensure the commutativity of the following diagram of surjective homomorphisms

C⊗O Uχ
S′,T

C⊗O(|G|−1·cχ)−−−−−−−−−−→ C⊗O Fχ
C⊗Oε−−−−→ C⊗O Z[G]χ = C⊗O Tχ

λS′

y yt·γ
yt·id

C⊗O XS′,χ
C⊗Odχ−−−−−→ C⊗O F ′χ

C⊗Oε′−−−−→ C⊗O Z[G]χ = C⊗O Tχ.

We write κ1 and κ2 for the composite homomorphisms given respectively by the upper
and lower row of this diagram. It is clear that λS′ restricts to give a surjection from
the kernel C ⊗O Uχ

S,T of C ⊗O (|G|−1 · cχ) to the kernel C ⊗O XS,χ of C ⊗O dχ and
that κ2(b̃j) = bj for each index j. Hence for each j we can fix uj in C ⊗O Uχ

S′,T

with both κ1(uj) = bj and λS′(uj) = t · b̃j . Now if x is any non-zero element of
C⊗O ∧r

OU
χ
S,T , then x∧C ∧j=n

j=1uj is a C-basis of C⊗O ∧r′

OU
χ
S′,T . The claimed equality

of homomorphisms is thus valid because

((∧i=n
i=1 b̃

∗
i ) ◦ λ

(χ)
S′ )(x ∧C ∧j=n

j=1uj) = (∧i=n
i=1 b̃

∗
i )(λ

(χ)
S (x) ∧C ∧j=n

j=1λS′(uj))

= tn · λ(χ)
S (x) ∧C (∧i=n

i=1 b̃
∗
i )(∧

j=n
j=1 b̃j)

= tn · λ(χ)
S (x) ∧C (∧i=n

i=1 b
∗
i )(∧

j=n
j=1κ1(uj))

= tn · λ(χ)
S (x) ∧C (∧i=n

i=1ϑi)(∧j=n
j=1uj)

= tn · (λ(χ)
S ◦Θ)(x ∧C ∧j=n

j=1uj).

Here we use the equalities C⊗Oϑi = (C⊗O b∗i )◦κ1 and the fact that (∧i=n
i=1 b̃

∗
i )(∧

j=n
j=1 b̃j)

and (∧i=n
i=1 b

∗
i )(∧

j=n
j=1κ1(uj)) = (∧i=n

i=1 b
∗
i )(∧

j=n
j=1 bj) are both equal to 1. �

4.2. The proof of Theorem 4.1. We assume henceforth that S is as in Proposition
4.3. Then the validity of (3) for each α ∈ Aut(C) implies that L∗S(0, χ)/RS

ϕ(χ) belongs
to E. Further, in this case the ‘Strong-Stark Conjecture’ of Chinburg predicts that

(9)
L∗S(0, χ)
RS

ϕ(χ)
O = q(ψχ)−1,

where ψχ denotes the composite homomorphism of O-modules

XS,χ
ϕχ−−→ US,χ

t(US ,χ)−−−−−→ Uχ
S .
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Here we have used the following general notation: for any homomorphism of finitely
generated O-modules f : M → N which has both finite kernel and finite cokernel we
define a fractional O-ideal by setting

q(f) :=
FitO(cok(f))
FitO(ker(f))

.

Remark 4.7. (The Strong Stark Conjecture) After taking account of the isomorphism
(1), it is straightforward to check that if k is a number field, resp. a global function
field, then (9) is equivalent to the conjecture formulated by Chinburg in [7, Conj.
2.2], resp. to the conjecture discussed by Bae in [1, §3.1] as a natural analogue of [7,
Conj. 2.2].

Proposition 4.8. Let S be as in Proposition 4.3. If (9) is valid, then

|G|rSL∗S,T (0, χ) · ∧rS

O XS,χ = FitO(H−1(G,XS [χ])) · λ(χ)
S (∧rS

O U
χ
S,T )

and so the inclusion of Conjecture 2.1 is also valid in this case.

Proof. We set r := rS , X := XS , U := US and UT := US,T . We also write iT : Uχ
T →

Uχ for the homomorphism that is induced by the inclusion UT → U .
Then from Lemma 4.9 below it follows that L∗S,T (0, χ) · ∧r

OXχ is equal to

L∗S(0, χ) · q(iT )∧r
OXχ = RS

ϕ(χ)
q(iT )
q(ψχ)

∧r
OXχ(10)

=
q(iT )
q(ψχ)

(λ(χ)
S ◦ ∧r

C(C⊗O ϕχ))(∧r
OXχ)

=
q(iT )q(ϕχ)FitO(Xχ,tor)
q(ψχ)FitO(Uχ,tor)

λ
(χ)
S (∧r

OUχ)

=
q(iT )FitO(Xχ,tor)

q(t(U, χ))FitO(Uχ,tor)
λ

(χ)
S (∧r

OUχ)

=
q(iT )FitO(Xχ,tor)
|G|rFitO(Uχ

tor)
λ

(χ)
S (∧r

OU
χ)

= |G|−rFitO(Xχ,tor)λ
(χ)
S (∧r

OU
χ
T ).

Indeed, the first equality here follows from (9), the second from the definition of
RS

ϕ(χ) and the fourth from the equality q(ψχ) = q(t(U, χ))q(ϕχ) which is a conse-
quence of the kernel-cokernel sequence of the composite ψχ = t(U, χ)◦ϕχ. The third,
fifth and sixth equalities in (10) follow by applying Lemma 4.10 below with f equal
to ϕχ : Xχ → Uχ, t(U, χ) : Uχ → Uχ and iT : Uχ

T → Uχ respectively.
To deduce the equality of Proposition 4.8 from (10) it is enough to show that

Xχ,tor = H−1(G,X[χ]). But, since Xχ ⊆ X[χ] is torsion-free, this follows directly

from the exact sequence 0 → H−1(G,X[χ]) → Xχ
t(X,χ)−−−−→ Xχ. This completes the

proof of Proposition 4.8. �

Lemma 4.9. L∗S,T (0, χ) · O = L∗S(0, χ) · q(iT ) ⊂ C.
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Proof. For each place v in T we fix a place w of K above v and write Fw for the
residue field of w. Then, since v is unramified in K/k there is an exact sequence of
Gw-modules

0 → Z[Gw]
·(1−Nv·Fr−1

w )−−−−−−−−−→ Z[Gw] → F×w → 0

in which the third arrow sends the identity element of Gw to any choice of generator
of the (cyclic) group F×w . Inducing this sequence from Gw to G and then summing
over all places in T gives an exact sequence of G-modules

(11) 0 →
⊕
v∈T

Z[G]
(ρw)v−−−−→

⊕
v∈T

Z[G] → F×T → 0

in which ρw denotes the endomorphism of Z[G] given by x 7→ x(1−Nv · Fr−1
w ). This

sequence implies that F×T , and hence also F×T [χ], is a cohomologically-trivial G-module
and this fact combines with the exact sequence

0 → UT [χ] → U [χ] → F×T [χ] → 0

coming from Proposition 4.3(ii) to imply that the induced map H1(G,UT [χ]) →
H1(G,U [χ]) is bijective. The last displayed sequence therefore gives rise to an exact
sequence of O-modules 0 → Uχ

T
iT−→ Uχ → (F×T )χ → 0. Thus, since Uχ

T,tor = 0 (by our
choice of T ), one has q(iT ) = FitO((F×T )χ).

Now the sequence (11) also induces an exact sequence of O-modules

0 →
⊕
v∈T

Z[G]χ
(ρχ

w)v−−−−→
⊕
v∈T

Z[G]χ → (F×T )χ → 0

and so, since Z[G]χ is a projective O-module, FitO((F×T )χ) = (
∏

v∈T detE(ρχ
w)) · O.

But, with respect to the natural identification of Z[G]χ with Tχ, the endomorphism
ρχ

w corresponds to the action of 1− Nv · Fr−1
w on Tχ. The ideal q(iT ) = FitO((F×T )χ)

is therefore equal to

(
∏
v∈T

detE(ρχ
w)) · O = (

∏
v∈T

detE(1 − Nv · Fr−1
w | Vχ)) · O =

L∗S,T (0, χ)
L∗S(0, χ)

· O,

as required. �

Lemma 4.10. If f : M → N is any homomorphism of finitely generated O-modules
which has both finite kernel and finite cokernel, then

∧d
E(E ⊗O f)(∧d

OM) = q(f)
FitO(Mtor)
FitO(Ntor)

∧d
ON

with d := dimE(E ⊗O M).
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Proof. We consider the following exact commutative diagram
0 0y y

ker(ftor) ker(f) 0y y y
0 −−−−→ Mtor −−−−→ M −−−−→ M −−−−→ 0

ftor

y f

y f

y
0 −−−−→ Ntor −−−−→ N −−−−→ N −−−−→ 0y y y
0 −−−−→ cok(ftor) −−−−→ cok(f) −−−−→ cok(f) −−−−→ 0y y y

0 0 0.
Here ftor and f denote the homomorphisms that are induced by the given map f ;
the equality ker(ftor) = ker(f) and the injectivity of f both follow from the as-
sumption that ker(f) is finite and the exactness of the bottom row follows by an
application of the Snake lemma. Now M , and hence also N since cok(f) is finite,
is a projective O-modules of rank d and so the definition of FitO(cok(f)) implies
that ∧d

E(E ⊗O f)(∧d
OM) = FitO(cok(f)) · ∧d

ON. On the other hand, the exactness
of the bottom row and left hand column of the above diagram combines with the
multiplicativity of Fitting ideals on exact sequences of finite O-modules and the
definition of q(f) to imply that FitO(cok(f)) = FitO(cok(f))FitO(cok(ftor))−1 =
q(f)FitO(Mtor)FitO(Ntor)−1. The claimed equality is thus clear. �

Proposition 4.8 shows that a stronger version of Conjecture 2.1 (in which the
inclusion is replaced by an equality) is a consequence of the equality (9) for any set S
as in Proposition 4.3. It also shows that Theorem 4.1(v) follows directly from Remark
4.7 and the result of Proposition 4.3. Further, all of the remaining claims of Theorem
4.1 now follow by combining the same observation with the fact that the equality (9)
is known to be valid in each of the following cases:-
• k is a global function field: in this case (9) was proved by Bae in [1, Th. 3.5.4];
• k is a number field and χ is rational valued: in this case (9) was proved by Tate

in [21, Ch. II, Th. 6.8];
• k = Q and χ has degree one: if 2 is unramified in K/Q, then (9) was proved

by Ritter and Weiss in [17] and the remaining 2-primary difficulties were subse-
quently resolved by Flach (indeed this follows by combining the first assertion of
Remark 4.2 with the results of [11, Th. 5.1, Th. 7.1(c)]);

• k is an imaginary quadratic field of class number one and χ is a degree one
character whose order is divisible only by primes which split completely in k/Q:
in this case (9) follows from (the first assertion of Remark 4.2 and) the result of
Bley in [2, Th. 4.2].
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