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BIHERMITIAN METRICS ON HOPF SURFACES

Vestislav Apostolov and Georges Dloussky

Abstract. Inspired by a construction due to Hitchin [20], we produce strongly biher-

mitian metrics on certain Hopf complex surfaces, which integrate the locally conformally
Kähler metrics found by Gauduchon–Ornea [14]. We also show that the Inoue complex

surfaces with b2 = 0 do not admit bihermitian metrics. This completes the classification
of the compact complex surfaces admitting strongly bihermitian metrics.

1. Introduction

A bihermitian structure on a 4-dimensional connected manifold M consists of a
pair of integrable complex structures J+ and J− inducing the same orientation, and
a Riemannian metric g which is hermitian with respect to both J±. As a trivial
example one can take a genuine hermitian structure (g, J) and put J± = ±J . We
exclude this situation by assuming that J+(x) 6= ±J−(x) at at least one point x of
M . The special case when J+ 6= J− everywhere on M will be referred to as strongly
bihermitian structure.

In pure mathematics literature the theory of bihermitian 4-manifolds was initi-
ated [30, 29, 26, 2] from the point of view of 4-dimensional conformal geometry, where
the two integrable almost-complex structures are given by the roots of the conformal
Weyl tensor. Subsequent work [29, 3, 1, 9] was mainly focussed on answering the
following

Question 1. When does a compact complex surface (M,J) admit a bihermitian struc-
ture (g, J+, J−) with J = J+?

There has been a great deal of interest in bihermitian geometry more recently,
motivated by its link with the notion of generalized Kähler geometry, introduced and
studied by Gualtieri [16] in the context of the theory of generalized geometric struc-
tures initiated by Hitchin [18]. It turns out [16] that a generalized Kähler structure
is equivalent to the data of a Riemannian metric g and two g-orthogonal complex
structures (J+, J−), satisfying the relations dc

+F g
+ + dc

−F g
− = 0, ddc

±F g
± = 0, where

F g
±(·, ·) = g(J±·, ·) are the fundamental 2-forms of the hermitian structures (g, J±),

and dc
± are the associated i(∂± − ∂±) operators. (These conditions on a pair of her-

mitian structures were, in fact, first described in the physics paper [10] as the general
target space geometry for a (2, 2) supersymmetric sigma model.) In four dimensions
we obtain a bihermitian structure, provided that the generalized Kähler structure is of
even type (which corresponds to our assumption that J± induce the same orientation
on M) and F g

+ 6= ±F g
− (i.e. J+ 6= ±J−).
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When the first Betti number of M is even, it follows from [3] (see also Remark 2
below) that, conversely, any bihermitian metric arises from a generalized Kähler struc-
ture, up to a conformal change of the metric. This correspondence was used to pro-
duce a number of new constructions of bihermitian metrics [15, 8, 19, 28], where the
existence of a Kähler structure on M plays a crucial rôle.

When the first Betti number b1(M) is odd, on the other hand, the manifold (M,J)
does not admit Kähler metrics, nor a bihermitian conformal structure necessarily come
from a generalized Kähler structure. (As a matter of fact no strongly bihermitian
metric can be obtained from a generalized Kähler structure, see Remark 2). Thus,
examples of bihermitian structures in this case are still scarce (see, however, [29, 3]).

Thus motivated, we prove in this note the following result.
Theorem 1. A compact complex surface (M,J) with odd first Betti number admits a
strongly bihermitian structure (g, J+, J−) with J+ = J if and only if it is a Hopf sur-
face whose canonical bundle defines a class in the image of H1(M, R∗

+) → H1(M,O∗).
These are the Hopf surfaces with universal covering space C2 \ {(0, 0)} and funda-

mental group Γ which belongs to one of the following cases:

(a) Γ is generated by the automorphism (z1, z2) 7→ (αz1, ᾱz2) (where α ∈ C, 0 <
|α| < 1), and a finite subgroup of SU(2);

(b) Γ is generated by the automorphisms (z1, z2) 7→ (αz1, aα−1z2) (where α ∈
C, 0 < |α|2 < a < |α| < 1), and (z1, z2) 7→ (εz1, ε

−1z2) with ε primitive `-th
root of 1;

(c) Γ is generated by the automorphisms (z1, z2) 7→ (βmz1 + λzm
2 , βz2) (where

λ ∈ C∗, βm+1 = a, 0 < a < 1), and (z1, z2) 7→ (εz1, ε
−1z2) with ε primitive

`-th root of 1, where m = k`− 1, k ∈ N∗.

Note that the Hopf surfaces with fundamental group belonging to the case (a)
of the above theorem are precisely those which admit a compatible hyperhermitian
structure (see [7]). A description of all possible finite subgroups of SU(2) that appear
in this case can be found in [23].

Combined with the results in [3], Theorem 1 yields the complete list of compact
complex surfaces (M,J) which carry a strongly bihermitian structure with J+ =
J : these are K3 surfaces, complex tori, and the Hopf complex surfaces of the type
described above. Note that in the case when b1(M) is even, (M,J) does also admit
a compatible hyperhermitian structure [7], but this is not longer true when b1(M) is
odd.

Compared to the partial results in [1], Theorem 1 brings in two new ingredients.
First of all, we show that the Inoue surfaces with b2(M) = 0 (defined and studied in

[21]) do not admit compatible bihermitian structures. This is achieved by combining
a recent result of A. Teleman [32, Rem. 4.2] (according to which on any Inoue surface
the degree of the anti-canonical bundle is negative with respect to any standard
hermitian metric) together with an observation from [1, Rem. 1] (that this degree
must be positive, should a bihermitian structure exists).

Secondly, we address the question of existence of bihermitian structures on the Hopf
surfaces in our list. We give a concrete construction of bihermitian metrics by using
an idea of Hitchin [20]. It allows us to deform the locally conformally Kähler metrics
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(gGO, J) found by Gauduchon–Ornea [14] in order to obtain a family of bihermitian
metrics (gt, J, J t

−) with J t
− = φ∗t (J), where φt is a path of diffeomorphisms; as t → 0,

J t
− → J and gt/t → gGO.

2. Bihermitian geometry – preliminary results

In this section we recall some properties of bihermitian metrics, which we will need
for the proof of our main results. The articles [1, 3, 20] are relevant references for
more details.

Let (g, J+, J−) be a bihermitian structure on a 4-manifold M , i.e. a riemannian
metric g and two g-compatible complex structures J± with J+(x) 6= ±J−(x) at some
point x ∈ M , and such that J+ and J− induce the same orientation on M . Notice
that any riemannian metric which is conformal to g is again bihermitian with respect
to J±; we can therefore define a bihermitian conformal structure (c = [g], J+, J−) on
M .

For a fixed metric g ∈ c, we consider the fundamental 2-forms F g
+ and F g

− of the
hermitian metrics (g, J+) and (g, J−), defined by F g

±(·, ·) = g(J±·, ·). The correspond-
ing Lee 1-forms, θg

+ and θg
−, are introduced by the relations dF g

+ = θg
+ ∧ F g

+ and
dF g

− = θg
− ∧ F g

−, or equivalently θg
± = J±(δgF g

±), where δg is the co-differential of g
and the action of an almost complex structure J on the cotangent bundle T ∗(M) is
given by (Jα)(X) = −α(JX). Notice that with respect to a conformal change of the
metric g̃ = efg, the Lee forms change by θg̃

± = θg
± + df .

The following result was established in [2, 3].

Lemma 1. For any bihermitian metric (g, J+, J−), the Lee forms θg
± satisfy

2δgθg
+ + |θg

+|2g = 2δgθg
− + |θg

−|2g,

where | · |g is the point-wise norm induced by g.
Moreover, the 2-form d(θg

+ + θg
−) is anti-selfdual so that, when M is compact,

θg
+ + θg

− is closed.

The complex structures J± must satisfy the relation [29, 3]

(1) J+J− + J−J+ = −2p Id,

where p = − 1
4 trace(J+J−) is the so-called angle function which, at each point x ∈ M ,

verifies |p(x)| ≤ 1 with p(x) = ±1 if and only if J+(x) = ±J−(x). In particular, in
the strongly bihermitian case, |p| < 1 everywhere.

Another natural object associated to the bihermitian structure (g, J+, J−) is the
g-skew-symmetric endomorphism [J+, J−] = J+J−−J−J+ which anti-commutes with
both J±. Using the metric g, we define a real J±-anti-invariant 2-form by

Φg(·, ·) =
1
2
g([J+, J−]·, ·).

Letting
Ψg
±(·, ·) := −Φg(J±·, ·),

we consider the complex 2-forms

Ωg
±(·, ·) = Φg + iΨg

±,

which are of type (2, 0) on the respective complex manifolds (M,J±).
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Using (1) and that F g
±,Φg,Ψg

± are all selfdual 2-forms satisfying the obvious or-
thogonality relations given by their types with respect to J±, it is straightforward to
check (see [3, Lemma 2])

F g
+ = pF g

− + Ψg
−, F g

− = pF g
+ −Ψg

+,

Φg ∧ Φg = Ψg
± ∧Ψg

± = 2(1− p2)dvg, Φg ∧Ψg
± = 0, Ψg

+ ∧Ψg
− = pΦg ∧ Φg,

(Ψg
−)1,1

J+
= (1− p2)F g

+,

(2)

where (·)1,1
J+

denotes the J+-invariant part of a 2-form.
Still using the metric g, we define the g-duals of the (0, 2)-forms Ω̄g

±, which are
smooth sections, say σg

±, of the respective anti-canonical bundles K−1
J±

= ∧2(T 1,0
J±

(M)).
Notice that at any point where J+(x) 6= ±J−(x), Ωg

± and σg
± do not vanish, because

of (1).
The following key result was established in [3, Lemmas 2,3].

Lemma 2. For any bihermitian metric (g, J+, J−) the (2, 0)-forms Ωg
± and bi-vector

fields σg
± satisfy

dΩg
± =

(1
2
(θg

+ + θg
−) + d log(1− p2)

)
∧ Ωg

±,

∂̄±σg
± = −1

2
(θg

+ + θg
−)0,1

J±
⊗ σg

±,

where the first equality holds on the open subset of points where J+(x) 6= ±J−(x),
and in the second equality ∂̄± stand for the corresponding Cauchy–Riemann operators
on the respective anti-canonical bundles K−1

J±
, and (·)0,1

J±
denote the (0, 1)-parts taken

relatively to the respective complex structure.

The first equality in the above lemma tells us that the real 2-forms Φg,Ψg
± satisfy

dΦg = τ ∧ Φg, dΨg
± = τ ∧ Ψg

± with τ = 1
2 (θg

+ + θg
−) + d log(1 − p2). Together with

the relations (2), this allows to reconstruct the strongly bihermitian metric from the
2-forms Φg,Ψg

+,Ψg
−.

Proposition 1. Suppose Φ,Ψ+,Ψ− are non-degenerate real 2-forms on M which
satisfy the relations

Φ2 = Ψ2
+ = Ψ2

−, Φ ∧Ψ± = 0,

dΦ = τ ∧ Φ, dΨ± = τ ∧Ψ±,

for some 1-form τ .
Then, there exists a strongly bihermitian metric (g, J+, J−) on M with Φg =

Φ, Ψg
± = Ψ± if and only if Ψ+ ∧ Ψ− = pΦ2, where p is a smooth function with

|p| < 1

Proof. The necessity of the condition follows from (2) and Lemma 2. (Recall that
p(x) = ±1 if and only if J+(x) = ±J−(x)).

In the other direction the result was originally established in [3, Thm. 2] in the
case when τ = 0. Following [3], the almost complex structures J± are introduced by
Ψ±(·, ·) = −Φ(J±·, ·), while the conformal structure is determined by the property
that Φ,Ψ+,Ψ− are selfdual 2-forms. The only notable difference with the proof given
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in [3, Thm. 2] is in establishing the integrability of J±. For that we would need to
generalize [3, Lemma 5] in order to show that for any pair of 2-forms, (Φ,Ψ), satisfying

Φ2 = Ψ2, Φ ∧Ψ = 0,

the almost-complex structure they define by Ψ(·, ·) = −Φ(J ·, ·) is integrable, provided
that

dΦ = τ ∧ Φ, dΨ = τ ∧Ψ,

for some 1-form τ . This fact is well-known (see e.g. [30]) but we give here a short
proof for completeness. Note that, by the assumption made, the differential of the
(2, 0)-form Ω = Φ + iΨ does not have a component of type (1, 2). Thus, for any two
complex vector fields V̄ , W̄ of type (0, 1), and any complex vector field U of type
(1, 0), we have

0 = dΩ(U, V̄ , W̄ ) = −Ω([V̄ , W̄ ]1,0, U).

As Ω is a non-degenerate 2-form on the complex vector bundle T 1,0
J (M), it follows

that [V̄ , W̄ ]1,0 = 0, i.e. J is integrable. �

In the case when J+ = J is given, there is a useful ramification of the above
criterion, due to Hitchin.

Corollary 1. [20] Let (M,J) be a complex surface endowed with a non-vanishing
complex (2, 0)-form Ω = Φ + iΨ such that dΩ = τ ∧ Ω for some real 1-form τ .

Then, any real 2-form Ψ− on M satisfying Ψ2
− = Φ2, dΨ− = τ ∧Ψ−, and whose

(1, 1)-part with respect to J is positive definite, gives rise to a strongly bihermitian
metric (g, J+, J−) on M with J+ = J .

Proof. Let F := (Ψ−)1,1
J be the positive definite (1, 1)-component of Ψ− with respect

to the complex structure J . By putting g(·, ·) = F (·, J ·), we obtain a Riemannian
metric with respect to which Φ,Ψ+ = Ψ and Ψ− are selfdual 2-forms of equal length.
It then follows that Ψ+ ∧Ψ− = pΦ ∧ Φ for a smooth function p satisfying |p(x)| ≤ 1
with p(x) = ±1 if and only if Ψ+(x) = ±Ψ−(x). The later inequality is impossible
because the (1, 1)-part of Ψ− is positive definite while Ψ+ is J-anti-invariant. (This
is also consistent with the last identity in (2).) We can now apply Proposition 1. �

On a compact bihermitian 4-manifold (M, g, J+, J−), an overall assumption which
we will make from now on, Lemma 2 has the following interpretation.

To simplify notation, consider one of the complex structures, say J = J+, and drop
the index + for the corresponding (2, 0)-form Ωg, bi-vector field σg, canonical bundle
KJ , Cauchy–Riemann operator ∂̄, etc.

Since 1
2 (θg

+ +θg
−) is a closed 1-form by Lemma 1, it defines a holomorphic structure

on the trivial (smooth) complex bundle M × C, by introducing the connection ∇ :=
∇0 + i

2J(θg
+ + θg

−), where ∇0 is the flat connection on M × C; the new holomorphic
structure depends, in fact, only on the de Rham class a = 1

2 [θg
+ + θg

−], so we denote
this holomorphic line bundle by La. This is consistent with the sequence of natural
morphisms

(3) H1(M, R) 7→ H1(M, R∗
+) ↪→ H1(M, C∗) 7→ H1

0 (M,O∗),

where the first morphism is induced by the exponential map (and hence is an iso-
morphism), and H1

0 (M,O∗) is the space of equivalent classes of topologically trivial
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holomorphic line bundles. We will say that a topologically trivial holomorphic line
bundle L ∈ H1

0 (M,O∗) is of real type if it is in the image of H1(M, R∗
+).

The second equality of Lemma 2 simply means that σg is a holomorphic section
of K−1

J ⊗ L−a, while the first equality and (2) imply that its inverse, 1
|σg|2g

Ωg, is a

meromorphic section of KJ ⊗ La (where L−a = L−1
a in terms of the morphisms (3)).

Notice that by its very definition, σg(x) = 0 if and only if J+(x) and J−(x) commute,
which in view of (1), means J+(x) = ±J−(x). In other words, K−1

J ⊗L−a
∼= O if and

only if (c, J+, J−) is strongly bihermitian.
We now recall the definition [11] of degree of a holomorphic line bundle with re-

spect to a standard hermitian metric on (M,J). A hermitian metric g on a compact
complex surface (M,J) is called standard if its fundamental 2-form F g is ddc-closed
(equivalently ∂∂̄F g = 0); this is the same as requiring that the corresponding Lee
form θg is co-closed. A fundamental result of Gauduchon (see e.g. [12]) affirms that
such a metric exists, and is unique up to homothety, in each conformal class c of
hermitian metrics on (M,J). Given a standard metric g on (M,J), one defines the
degree of a holomorphic line bundle L by

(4) degg(L) =
1
2π

∫
M

ρ ∧ F g,

where ρ is the real curvature form of any holomorphic connection on L (with the usual
convention that ρ represents 2πc1(L)R). Thus defined, it has the usual properties of
degree, notably it gives the volume with respect to g of the divisor defined by any
meromorphic section of L; in particular, the degree is non-negative for bundles with
holomorphic sections, and is positive if there are sections with zeroes.

For a topologically trivial holomorphic line bundle of real type, say La (a ∈
H1

dR(M, R)), its degree with respect to a standard metric g is easy to compute: we
choose a representative closed 1-form ξ for a and consider the holomorphic connection
∇ξ = ∇0 + iJξ on La, with curvature ρ = dcξ. Substituting in (4) and integrating by
parts gives

(5) degg(La) =
1
2π
〈ξ, θg〉g =

1
2π
〈ag

h, θg
h〉g,

where ag
h is the harmonic representatives of a with respect of g, θg

h is the harmonic
part of the Lee form θg and 〈·, ·〉g is the global L2 product on 1-forms induced by the
standard metric g. (For the last equality we have used that θg is co-closed.)

In the case of a bihermitian conformal structure (c, J+, J−) on (M,J) (with J =
J+), we take a standard metric g in c with respect to J and calculate the degree of
La with a = 1

2 [θg
+ + θg

−] as above. By using the first relation of Lemma 1 one gets
(see [1])

(6) degg(La) =
1
4π
〈θg

+ + θg
−, θg

+〉g =
1
8π
||θg

+ + θg
−||2L2 .

Notice that by [12], the harmonic part of θg
h is zero if b1(M) is even. In this case

the degree of La must be zero, hence La = O and θg
+ + θg

− = 0 with respect to the
standard metric of (c, J+) (which is therefore standard too with respect to J−), cf. [3,
Lemma 4].

As σg is a non-zero holomorphic section of K−1
J ⊗ L−a, this bundle has always

positive or zero degree (the later is possible only when the bundle is trivial, i.e. the



BIHERMITIAN METRICS ON HOPF SURFACES 833

metric is strongly bihermitian). We thus obtain that degg(K−1
J ) is either positive or

is zero (and this is true for any standard metric on (M,J)). The zero case can only
happen if both KJ and L are trivial, and θg

+ + θg
− = 0 with respect to the standard

metric g of the bihermitian conformal structure. However, the later combination is
impossible when b1(M) is odd, as shown in [3, Prop. 4].

We summarize our discussion in the following proposition which gathers most of
the information used so far to narrow the list of compact complex surfaces which can
possibly admit bihermitian metrics [1, 3, 9, 29].
Proposition 2. [1, 3] Let (M,J) be a compact complex surface. Any bihermitian
conformal structure (c, J+, J−) with J = J+ defines a topologically trivial holomorphic
line bundle L of real type and non-positive degree with respect to the standard metric
of (c, J), and a non-zero holomorphic section of K−1

J ⊗L. In particular, the degree of
K−1

J must be non-negative with respect to the standard metric of (c, J).
Moreover, L is holomorphically trivial when b1(M) is even and the degree of K−1

J

is positive when b1(M) is odd.
The holomorphic bundle K−1

J ⊗ L is trivial if and only if (g, J+, J−) is strongly
bihermitian.

Remark 1. One can show that on a compact bihermitian surface the signs of degg(L)
and degg(K) are the same with respect to any standard metric on (M,J).

In the case when b1(M) is even this is obvious because, by Proposition 2, L = O
and H0(M,K−1) 6= 0.

In the case when b1(M) is odd, Proposition 2 tells us that the degree of the anti-
canonical bundle (with respect to a particular standard metric) is positive and, there-
fore, by the properties of degree, the pluricanonical line bundles K⊗m

J (m ≥ 1) do not
have non-zero holomorphic sections, i.e. (M,J) is of Kodaira dimension −∞. This
means that (M,J) belongs to the class VII of the Enriques–Kodaira classification [5].
In particular, b1(M) = 1. According to [13] 1, on a compact complex surface with
odd first Betti number the harmonic part of the Lee form θg

h of any standard metric
g is non-zero. Since the space of standard metrics is convex (and b1(M) = 1), we
obtain from (5) that degg(La) has the same sign (positive or zero by (6)) for any stan-
dard metric g on (M,J). The same is true for degg(K−1) because, by Proposition 2,
H0(M,K−1 ⊗ L) 6= 0.
Remark 2. A bihermitian metric (g, J+, J−) corresponds to a (twisted) generalized
Kähler structure on TM ⊕ T ∗M in the sense of [16] if it verifies the extra relations

dc
+F g

+ + dc
−F g

− = 0, ddc
±F g

± = 0.

Since J± yield the same orientation on M , the first relation is equivalent (by applying
the Hodge ∗ operator) to θg

+ + θg
− = 0, while the second relations mean that g is

standard metric with respect to both J± (i.e. δgθg
± = 0). Thus, for a bihermitian

metric to come from a generalized Kähler structure the line bundle L in Proposition 2
must be trivial. Conversely, any bihermitian conformal structure (c, J+, J−) with
L = O satisfies the above conditions with respect to the standard metric of (c, J+)
(and thus, by [16, Thm. 6.37], induces a twisted generalized Kähler structure on
TM ⊕ T ∗M). This follows from the formula (6) which shows that θg

+ + θg
− = 0 with

1The result used here is readily available in [4, Prop. 1].
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respect to the standard metric of (c, J+), provided that degg(L) = 0. Proposition 2
implies that a strongly bihermitian surface with odd first Betti number is never of
this type.

3. Strongly bihermitian metrics on complex surfaces with odd first Betti
number–Proof of Theorem 1

We now specialize to the case when (M,J) has odd first Betti number and admits
a strongly bihermitian metric.

As we explained in Remark 1, the fact that (M,J) has a standard metric with
respect to which the degree of the anti-canonical bundle is positive (see Proposition 2)
implies that (M,J) belongs to the class VII of the Enriques–Kodaira classification [5].
In particular, b1(M) = 1 and b+(M) = 0, where b+(M) = 1

2 (b2(M) + σ(M)) is the
dimension of the space of self-dual harmonic 2-forms with respect to any metric on
M , and σ(M) is the topological signature. In the strongly bihermitian case KJ = L
is topologically trivial (see Proposition 2), and then

0 = c2
1(M) = 2e(M) + 3σ(M) = −b2(M),

where e(M) = 2 − 2b1(M) + b2(M) is the Euler characteristic. Thus, (M,J) is a
minimal surface of class VII with zero second Betti number. By Bogomolov’s theorem
(see [31] or [27] for a proof), (M,J) is either a minimal Hopf surface or an Inoue surface
described in [21].

Combining Proposition 2 with a result of [32, Rem. 4.2] allows us to exclude the
case of Inoue surfaces. We reproduce the proof for completeness.

Lemma 3. [32] The degree of the anticanonical bundle of an Inoue complex surface
with zero second Betti number is negative with respect to any standard metric. By
Proposition 2, such a complex surface can not admit compatible bihermitian metrics.

Proof. Following [32], we show that the canonical bundle of an Inoue complex surface
has positive degree with respect to any standard metric.

Recall that an Inoue surface is a quotient of H × C (where H denotes the upper
half-plane) by properly discontinuous group Γ of affine transformations. An explicit
description of all such groups can be found in [21], and they belong to one the following
three types.

For the Inoue surfaces SM , the generators of Γ are of the form

γ0(w, z) = (αw, βz), γk(w, z) = (w + ak, z + bk), k = 1, 2, 3,

with α, ak ∈ R and α|β|2 = 1 (where w ∈ H, z ∈ C). The tensor

Im(w)
( ∂

∂w
∧ ∂

∂z

)
⊗

( ∂

∂w̄
∧ ∂

∂z̄

)
is clearly invariant under Γ, and therefore, by symmetrising, defines an hermitian
metric on the canonical bundle of SM . The curvature of this metric is

−i∂∂̄ log(Im(w)) =
i

Im(w)2
dw ∧ dw̄,

which is a non-negative (but non-zero) 2-form, so the degree of the canonical bundle
is positive with respect to any standard metric.
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Similarly, for the other two types of Inoue surfaces, S+
N,p,q,r,t and S−P,p,q,r, the

generators of Γ are of the form

γ0(w, z) = (αw, εz + t), γk(w, z) = (w + ak, z + bkw + ck), k = 1, 2, 3,

with α, ak, bk, ck ∈ R and ε = ±1. Now a Γ-invariant tensor is

Im(w)2
( ∂

∂w
∧ ∂

∂z

)
⊗

( ∂

∂w̄
∧ ∂

∂z̄

)
which defines an hermitian metric on the canonical bundle with non-negative curva-
ture 2i

Im(w)2 dw ∧ dw̄; one concludes as before that the degree of the canonical bundle
is positive with respect to any standard metric. �

Let us now examine the Hopf surfaces. These are, by definition, compact complex
surfaces with universal covering space C2 \ {(0, 0)}. It was shown by Kodaira [24]
that the fundamental group Γ of such a surface is a finite extension of the infinite
cyclic group Z. The list of concrete realizations of Γ as a group of automorphisms of
C2 can be found in [22] and we shall make extensive use of this classification in the
following rough form: Γ ∼= 〈γ0〉n H, where

• 〈γ0〉 denotes the infinite cyclic group generated by a contraction of C2 of the
form

(7) γ0(z1, z2) = (αz1 + λzm
2 , βz2),

where α, β, λ ∈ C with 0 < |α| ≤ |β| < 1, λ(α− βm) = 0,m ∈ N∗;
• H is a finite subgroup of U(2), subject to the following constraint

(i) if λ 6= 0, then H ⊂ U(1)× U(1) is abelian and commutes with γ0;
(ii) if λ = 0 and |α| 6= |β|, then H ⊂ U(1)× U(1).

Lemma 4. The Hopf surfaces with canonical bundle of real type are precisely those
described in Theorem 1. In particular, by Proposition 2, these are the only Hopf
surfaces which can possibly admit a compatible strongly bihermitian metric.

Proof. This is rather standard (see e.g. [9, p.669]). On a Hopf surface (M,J), the
morphism H1(M, C∗) → H1

0 (M,O∗) is injective (it is also surjective [24, II,p.699]).
This is because flat C∗-bundles are in bijection with C∗-representations of Γ = π1(M)
at one hand, and a non-vanishing holomorphic function f on C2, which satisfies
f ◦ γ0 = αf, α ∈ C∗ (where γ0 is the contraction (7)) must be constant, at the other.
It follows that a flat C∗-bundle is of real type if and only if the corresponding C∗-
representation of Γ takes values in R∗

+. The pull-back of the canonical bundle K to
the universal covering space C2 \ {(0, 0)} is trivialized by the holomorphic (2, 0)-form
Ω = dz1 ∧ dz2. The contraction γ0 acts by γ∗0 (Ω) = (αβ)Ω, while for any element h
of the finite group H ⊂ U(2) we have h∗(Ω) = det(h)Ω. It follows that K−1 is a flat
C∗-bundle associated to the representation γ0 7→ αβ, h 7→ det(h); it is therefore of
real type if and only if αβ ∈ R∗

+ and H ⊂ SU(2).
From this and Kato’s classification mentioned above, the cases (a), (b) and (c)

of Theorem 1 follow easily: The particular form of the contraction γ0 is obtained
from (7) by putting αβ = a ∈ R∗

+. There is nothing more to prove about H in the
case (a) (which corresponds to |α| = |β| in Kato’s classification). For the cases (b)
and (c) we have |α| 6= |β|, λ = 0 and λ 6= 0, respectively. From Kato’s classification
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H ⊂ S(U(1) × U(1)). As H ⊂ SU(2), it acts freely on the unit sphere S3 ⊂ C2

(because the action of SU(2) is the same as S3 acting on itself by left multiplications).
It follows that H acts freely on S1 × {0} and {0} × S1. Thus, the projections of
U(1)× U(1) to its factors inject H ⊂ U(1)× U(1) into S1. Since H is finite, it must
be cyclic. There is a unique finite cyclic sub-group of S(U(1) × U(1)) of order `,
namely the group generated by (z1, z2) 7→ (εz1, ε

−1z2) where ε is a primitive `-th root
of 1.

Finally, as the case (c) corresponds to λ 6= 0 in Kato’s classification, Γ must
be abelian, meaning that (z1, z2) 7→ (εz1, ε

−1z2) (with ε primitive `-th root of 1)
commutes with γ0. This places the constraint m = k`− 1, k ∈ N∗. �

We now turn to the construction of strongly bihermitian metrics on the Hopf
surfaces listed in Theorem 1.

Proposition 3. Any Hopf surface (M,J) described in Theorem 1 admits a strongly
bihermitian metric (g, J+, J−) with J+ = J .

Proof. The Hopf surfaces described in the case (a) of the theorem are hyperhermitian
and the complex structure J belongs to the underlying hypercomplex family (cf. [7,
29]). To see this directly, notice that in this case the fundamental group respects
the standard (flat) hyperhermitian conformal structure on C2. Notice also that any
hyperhermitian metric on a compact complex surface can be deformed to obtain non-
hyperhermitian strongly bihermitian metrics [3, Prop. 1].

Let us now consider the Hopf surfaces described in the case (b) of Theorem 1.
Recall that in terms of the Kato classification referred to earlier, this is the case when
λ = 0 and αβ = a ∈ R∗

+ in (7), and H is a finite cyclic subgroup of S(U(1)× U(1)).
We shall use Corollary 1 first on the universal covering space C2 \ {(0, 0)}, then on

the quotient (M,J) =
(
C2 \ {(0, 0)}

)
/Γ.

Following [20, Prop. 3], consider the closed (2, 0)-form Ω = dz1 ∧ dz2 = Φ + iΨ
on C2 \ {(0, 0)} and a function f which is a Kähler potential (i.e. ddcf > 0). Let
X be the Φ-hamiltonian vector field corresponding to f , defined by iXΦ = df . Put
Ψt
− := φ∗t (Ψ), where φt is the flow of X. Then the forms (Φ,Ψ,Ψt

−) satisfy the
conditions of Corollary 1 (with τ = 0), except the last (positivity) condition. However,
we have (Ψ0

−)1,1 = 0 and

(8)
( ∂

∂t
Ψt
−

)
t=0

= LXΨ = d(iXΨ) = −d(iJXΦ) = ddcf,

so (Ψt
−)1,1 is positive definite for small t (at least in a neighborhood of each point).

We now have to make a special choice of the Kähler potential f so that the con-
struction descends to the quotient of C2\{(0, 0)} by Γ. In fact, we shall use the Kähler
potentials introduced by Gauduchon–Ornea [14] in order to construct (explicit) lo-
cally conformally Kähler metrics on Hopf surfaces. Following [14, Remark 2], for any
α, β (as in (7) with λ = 0) consider the flow ϕt(z1, z2) = (αtz1, β

tz2) of a vector field
generating the contraction, i.e. γ0 = ϕ1 (this requires a choice of arg(α) and arg(β)).
We then define a function rα,β : C2\{(0, 0)} → R as follows: rα,β(z) is the real number
such that ϕ−rα,β

(z) belongs to the unit sphere S3 ⊂ C2. It is shown in [14] that this

definition is correct and that the positive real function fα,β = exp
(
(ln |α|+ln |β|)rα,β

)
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is a Kähler potential on C2\{(0, 0)}. In fact, as rα,β(γ0 ·z) = rα,β(z)+1 by definition,
we have

(9) fα,β(γ0 · z) = |α||β|fα,β(z),

By the explicit formulae in [14], fα,β is also U(1) × U(1)-invariant (and is U(2)-
invariant when |α| = |β|). It follows that

Fα,β :=
1

fα,β
ddcfα,β

is a Γ-invariant positive definite (1, 1)-form which defines a locally conformally Kähler
metric on the corresponding Hopf surface (M,J).

We use the function fα,β in our construction of the 2-forms (Φ,Ψ,Ψt
−) as above.

First of all, because in our case αβ = |α||β| and H ⊂ S(U(1)×U(1)), it follows from
(9) that the corresponding vector field X is Γ-invariant, and thus X and its flow φt

are defined on (M,J). Secondly, by (9), the 2-forms ( 1
fα,β

Φ, 1
fα,β

Ψ, 1
fα,β

Ψt
−) are Γ-

invariant, and therefore define a triple of 2-forms (Φ̌, Ψ̌, Ψ̌t
−) on (M,J), satisfying the

conditions of Corollary 1 (with τ = −d log fα,β), except possibly the last (positivity)
condition. But as fα,β is invariant under φt by construction, we get by (8)( ∂

∂t
Ψ̌t
−

)
t=0

= Fα,β ,

which is a positive definite (1, 1)-form on the compact manifold (M,J). As the (1, 1)-
part of Ψ̌t

− at t = 0 is zero, it must be positive definite for all small t different than
0.

To conclude the proof we consider the Hopf surfaces in the case (c) of Theorem 1.
These correspond to λ 6= 0 and α = βm in (7), with βm+1 = |β|m+1 = a. Recall that
in this case H is the cyclic group generated by (z1, z2) 7→ (εz1, ε

−1z2) with ε primitive
`-th root of 1 so that H commutes with the contraction (7).

It is well-known (see e.g. [17, 25]) that any two Hopf surfaces with fundamental
groups Γβ,m,λ,ε and Γβ,m,λ′,ε corresponding to generators with the same values of β,
m and ε (but possibly different non-zero values λ and λ′) are isomorphic as complex
manifolds. Because of this fact, in order to adapt the construction in the case (b) to
the case (c), it suffices to find some λ0 6= 0, and a positive function fβ,m on C2\{(0, 0)}
such that

• fβ,m(γ0 · z) = |β|m+1fβ,m(z), where γ0 is given by (7) with λ = λ0;
• ddcfβ,m > 0;
• fβ,m is H-invariant.

The argument in [14, p.1125] produces positive functions which satisfy the first two
but not, a priori, the third requirement. However, their construction starts by pro-
ducing a family of positive smooth functions fβ,m,λ satisfying the first condition and
limλ→0 fβ,m,λ = fβm,β , where fβm,β is the function fα,β with α = βm, defined above.
Since fβm,β is H-invariant (it is, in fact, U(1) × U(1)-invariant as one can see from
the equation (10) in [14]) and since H commutes with γ0, by replacing fβ,m,λ with
its average over H, we can assume without loss that fβ,m,λ are H-invariant. Thus,
still following [14], the (1, 1)-form Fβ,m,λ := ddcfβ,m,λ

fβ,m,λ
descends to the respective com-

plex manifold (Mλ, Jλ). By identifying Mλ with M0 (as smooth manifolds), we have
limλ→0 Jλ = J0, limλ→0 Fβ,m,λ = Fβm,β , where J0 is the complex structure on M0
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obtained by taking γ0 with α = βm, λ = 0 (note that H stays unchanged). As Fβm,β

is a positive definite (1, 1)-form with respect to J0, so is Fβ,m,λ (with respect to Jλ)
for λ sufficiently small. �
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[11] P. Gauduchon, Le théorème de dualité pluriharmonique, C.R. Acad. Sci. Paris 293 (1981),
59–63.
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