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THE JACOBIAN IDEAL OF A HYPERPLANE ARRANGEMENT

Max Wakefield and Masahiko Yoshinaga

Abstract. The Jacobian ideal of a hyperplane arrangement is an ideal in the poly-

nomial ring whose generators are the partial derivatives of the arrangements defining
polynomial. In this article, we prove that an arrangement can be reconstructed from its

Jacobian ideal.

1. Introduction

Let V ∼= C` and choose coordinates for V ∗ such that we can identify the symmetric
algebra S = S(V ∗) with the polynomial ring C[z1, . . . , z`]. A hyperplane in V is a
codimension one affine space in V . A hyperplane arrangement in V is a finite collection
of hyperplanes denoted by A. When all the hyperplanes of an arrangement contain
the origin we say the arrangement is central. For most of this note we assume the
arrangement is central. In this case we can ‘projectivize’ all the hyperplanes and
view the arrangement as an arrangement of hyperplanes in CP`−1. Further, we say a
central arrangement A is essential if

⋂
H∈A

H = {0}.

For each H ∈ A choose a linear polynomial αH ∈ S such that H = ker αH . Let
Q =

∏
H∈A

αH denote the defining polynomial of the arrangement A. Then the main

character of this note is the homogeneous ideal in S defined by

J(Q) :=
(

∂Q

∂z1
, . . . ,

∂Q

∂z`

)
.

We call this ideal the Jacobian ideal and sometimes denote it by J(A). The Jacobian
ideal determines a closed subscheme ProjS/J(Q) of the projective space CP`−1, which
we call the Jacobian scheme.

The purpose of this paper is to prove the following result, which simply put, states
that the Jacobian scheme contains all the information of the arrangement. We say two
hyperplane arrangements A1 and A2 are identical when Q1 = cQ2 for some c ∈ C∗
where Q1 and Q2 are the defining polynomials respectively.

Theorem 1.1. Suppose A1 and A2 are two central and essential arrangements in
dimension ` ≥ 3. Then A1 and A2 are identical if and only if the Jacobian schemes
ProjS/J(A1) and ProjS/J(A2) are equal as closed subschemes of CP`−1.

The proof of Theorem 1.1 is inspired by a Torelli-type theorem of Dolgachev and
Kapranov [2, 1]. In [2], Dolgachev and Kapranov prove that the module D(A) of
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derivations of a generic arrangement A contains all the information of the arrange-
ment. More precisely, they consider the set of jumping lines of the torsion free (actu-
ally locally free when A is a generic arrangement [5, 8]) sheaf D̃(A) on the projective
space. From the set of jumping lines, the arrangement A can be recovered. Then in
[1], by considering a certain subsheaf of D̃(A), Dolgachev extended these results to a
wider class of arrangements.

Instead of jumping lines, we consider the subscheme obtained as the intersection
K ∩ ProjS/J(A) ⊂ CP`−1, for a given hyperplane K ⊂ V . In particular, we focus
on the (`− 3)-dimensional components of K ∩ProjS/J(A) and compute the (`− 3)-
dimensional degree (i.e. the coefficient of the ` − 3 term in the Hilbert polynomial).
Then we can prove that K ∈ A precisely when this degree is maximized. We also note
that the reduced Jacobian scheme ProjS/

√
J(Q) does not contain all the information

of A (see Remark 4.2).
Another closely related result is found in [3, Prop. 1.1]. Let f ∈ Sd be a homo-

geneous polynomial of degree d. Then Donagi proved that the Jacobian ideal J(f)
recovers f up to PGL-action. Our main result in this paper strengthens this asser-
tion for hyperplane arrangements, namely, the saturated Jacobian ideal Sat(J(Q))
recovers the defining equation Q up to constant multiple.

2. Minimal Components of J(Q)

In this section, we will study the minimal primary components of the Jacobian
ideal of the arrangement A.

Throughout this paper we use the following notation. Let L(A) be the intersection
lattice of A which is the set of all intersections of elements from A with the order
being reverse inclusion. Moreover, let Lk(A) = {X ∈ L(A) | codim(X) = k}. For
X ∈ L(A) let AX = {H ∈ A | X ⊆ H} and L(A)X = {Y ∈ L(A) | X ( Y }. Then we
define the Möbius function µ on L(A) by setting µ(V ) = 1 and the recursive formula:

µ(X) = −
∑

Y ∈L(A)X

µ(Y ).

We assume the dimension ` ≥ 3. For given an intersection X ∈ L(A), put

QX =
∏

H∈AX

αH ,

QX =
Q

QX
=

∏
X*H

αH .

Obviously Q = QXQX . Let us denote I(X) :=
∑

H∈AX
SαH the prime ideal repre-

senting X.
Since the Jacobian ideal J(Q) determines the singular loci of the union

⋃
H∈AH

of hyperplanes, we have √
J(Q) =

⋂
X∈L2(A)

I(X).

This implies that the set of minimal associated primes of J(Q) is {I(X) | X ∈ L2(A)}.
The localization technique enables us to obtain the corresponding minimal primary
components as follows.
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Lemma 2.1. The set of minimal components of the Jacobian ideal J(Q) is equal to
{J(QX) | X ∈ L2(A)}.

Remark 2.2. Generally, the Jacobian ideal J(Q) has a lot of embedded primes. If A
is a free arrangement, then S/J(Q) is known to be Cohen-Macaulay [7]. In this case,
J(Q) has no embedded primes. Thus we have the primary decomposition J(Q) =⋂

X∈L2(A) J(Q(X)), [7].

Remark 2.3. The degree of the ideal J(QX) is

deg J(QX) = µ(X)2 = (|AX | − 1)2.

Hence the degree of the Jacobian ideal J(Q) is
∑

X∈L2(A) µ(X)2. For details see [6,
Theorem 2.5].

3. ProjS/J(Q) intersected with a hyperplane

Fix a hyperplane K = {β = 0} that is not necessarily in A. In this section, we
consider the codimension two components of K ∩ProjS/J(Q) = ProjS/(J(Q)+ (β))
in CP`−1. In particular, we compute its degree in terms of the Möbius function.

The essential part of the computation is the following 2-dimensional case.

Lemma 3.1. Let Q(z1, z2) = a0z
n
1 + a1z

n−1
1 z2 + . . . + anzn

2 ∈ C[z1, z2] be a non-zero
degree n homogeneous polynomial of two variables. Suppose {Q = 0} defines a distinct
n lines. Then J(Q) + (z2) = (zn−1

1 , z2) and

dim C[z1, z2]/(J(Q) + (z2)) = n− 1.

Recall that if I ⊂ S is a homogeneous ideal and assume dim ProjS/I ≤ m, then
the Hilbert polynomial is of the form

HP(S/I, d) =
am

m!
dm +

am−1

(m− 1)!
dm−1 + · · · .

Let us denote the coefficient am by deg(m) ProjS/I, which depends only on the m-
dimensional components of the closed subscheme ProjS/I ⊂ CP`−1. By definition, if
dim ProjS/I < m, then deg(m) ProjS/I = 0.

Lemma 3.2. For any arrangement A with defining polynomial Q and any hyperplane
K = {β = 0}, we have

(3.1) deg(`−3) ProjS/(J(Q) + (β)) =
∑

X∈L2,X⊂K

µ(X).

Proof. First note that every (`− 3)-dimensional component of ProjS/(J(Q)+ (β)) is
of the form ProjS/(J(QX) + (β)) ⊂ CP`−1 such that X ∈ L2(A) and X ⊂ K. Then
the lemma is immediate from Lemma 3.1. �

We denote the right hand side of (3.1) by µA(K) :=
∑

X∈L2,X⊂K µ(X).
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4. Reconstruction of the arrangement by the Jacobian scheme

In this section we prove that the Jacobian ideal of a hyperplane arrangement and
its saturation contain all the information from the arrangement. Hence, we prove
Theorem 1.1. Let A be a central arrangement.

Lemma 4.1. If the hyperplane K is in A, then µA(K) = |A| − 1. If K is not in A,
` ≥ 3 and A is essential, then µA(K) < |A| − 1.

Proof. The first statement follows easily from the definition (3.1). Suppose that K
is not in A. Put the set L2(A)K = {X ∈ L2(A) | X ⊂ K}. If L2(A)K is empty,
there is nothing to prove. If L2(A)K = {X} consists of one element, then there exists
H ∈ A such that X * H since A is essential. Hence |AX | ≤ |A| − 1. We also obtain
µA(K) = |AX | − 1 < |A| − 1. Finally suppose L2(A)K = {X1, X2, . . . , Xp} with
p ≥ 2. Then from the assumption, we have AXi

∩ AXj
= ∅ for 1 ≤ i < j ≤ p. Thus

we have µA(K) =
∑p

i=1 |AXi | − p < |A| − 1. �

Now, we can prove Theorem 1.1. Let A be an essential hyperplane arrangement
with ` ≥ 3. Let K = {β = 0} be a hyperplane and K ⊂ CP`−1 the projectivization.
Then the scheme theoretic intersection with ProjS/J(Q) is obtained by

K ∩ ProjS/J(Q) = ProjS/(J(Q) + (β)).

From Lemma 4.1, deg(`−3) K∩ProjS/J(Q) is not greater than |A|−1 and maximized
precisely when K ∈ A. This reconstructs A from ProjS/J(Q). �

Example 4.2. It may be worth noting that from the reduced Jacobian scheme
ProjS/

√
J(Q), we can not reconstruct A. Suppose A1 is defined by Q1 = z1z2z3(z1+

z2− z3) and A2 is defined by Q2 = Q1× (z1− z3). Recall in general ProjS/
√

J(Q) is
the reduced scheme structure on the singular locus, which is the union of codimension
two intersections X ∈ L2(A). Then the radical of Jacobian ideals are equal, more
precisely,√

J(Q1) =
√

J(Q2) = (z1, z2)∩(z1, z2−z3)∩(z2, z1−z3)∩(z1, z3)∩(z2, z3)∩(z1+z2, z3).

So, the reduced Jacobian ideal does not even record the number of hyperplanes.
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