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GENERALIZED CHEREDNIK-MACDONALD IDENTITIES

Jasper V. Stokman

Abstract. We derive generalizations of the Cherednik-Macdonald constant term iden-

tities associated to root systems which depend, besides on the usual multiplicity func-

tion, symmetrically on two additional parameters ω±. They are natural analogues of
the Cherednik-Macdonald constant term q-identities in which the deformation param-

eter q = exp(2πiω+/ω−) is allowed to have modulus one. They unite the Cherednik-

Macdonald constant term q-identities with closely related Jackson eq-integral identities
due to Macdonald, where the deformation parameter eq = exp(−2πiω−/ω+) is related

to q by modular inversion.

1. Introduction

The Cherednik-Macdonald identities, conjectured by Macdonald [15] and proven
in full generality by Cherednik [6], are explicit constant term evaluations for certain
families of densities ∆ on compact tori. The density ∆ (see (3.5)) depends on a
root system Σ in Euclidean space V , on a multiplicity label k on Σ (free parameters)
and on a deformation parameter q = exp(2πiω+/ω−) satisfying |q| < 1. It is viewed
as a density on the compact torus T = V/P∨, where P∨ is the co-weight lattice
of Σ in V , and can be explicitly expressed in terms of q-gamma functions. In his
well known 1987 manuscript Macdonald [16] showed that ∆, viewed as density on
the slightly enlarged torus V/Q∨ with Q∨ the co-root lattice of Σ in V , serves as the
weight function for a remarkable set of multivariate orthogonal polynomials, nowadays
known as the Macdonald polynomials. Cherednik’s [6] proof of the constant term
identities highlights the crucial role of the double affine Hecke algebra in the theory
of Macdonald polynomials.

In this paper we derive natural analogues of the Cherednik-Macdonald constant
term identities for |q| = 1. They are expected to naturally appear in harmonic
analysis on certain non-compact quantum groups (see e.g. [18, 2, 23, 19] for compelling
evidence in this direction) and in certain classes of integrable systems (compare e.g.
with [11, 5, 9, 12]).

The appearance of the q-gamma function in the Cherednik-Macdonald identities is
the first apparent obstacle for the generalization of the identities to |q| = 1, since the
q-gamma function is only well defined for |q| < 1. The key to overcome this hurdle
is Shintani’s [24] observation that a suitable quotient of the q-gamma function and
the q̃-gamma function, where q̃ = exp(−2πiω−/ω+) is the deformation parameter
related to q = exp(2πiω+/ω−) by modular inversion, admits analytic continuation to
a parameter regime with co-linear parameters ω+ and ω− (i.e. |q| = |q̃| = 1). The
analytic continuation of this remarkable quotient serves as the natural analogue of the
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q-gamma function for |q| = 1. It has (re)appeared in various guises and in different
contexts over the past century and goes by names as the double gamma function
(Barnes [1]), the double sine function (Kurokawa [14]), the quantum exponential
function (Woronowicz [28]), the hyperbolic gamma function (Ruijsenaars [21]), the
noncompact quantum dilogarithm (Faddeev and Kashaev, see e.g. [9]) and the γ-
function (Volkov [27]). In this paper we have chosen to relate it to Ruijsenaars’
[21] hyperbolic gamma function (through the formulas (2.1) and (2.3) below). The
precise links with the other close relatives can be easily deduced from the appendices
in [22, 18].

We thus seek a generalization of the Cherednik-Macdonald constant term identities
in which the role of the q-gamma function is taken over by the hyperbolic gamma
function. To achieve this we unite for a suitable restricted parameter domain (for
which in particular |q|, |q̃| < 1) the constant term identities with absolutely convergent
sums of the form ∑

λ∈P∨

∆̃(v + λ)

for suitable dual densities ∆̃ (see (3.5)) expressible in terms of q̃-gamma functions.
Alternatively, these sums can be written as multidimensional Jackson q̃-integrals.
The sums are independent of v and can be explicit evaluated using Macdonald’s [17]
summation identities. These identities are in some sense ”dual” summation versions
of the Cherednik-Macdonald constant term identities. Combining both of them gives
an explicit evaluation of the absolutely convergent integral

(1.1)
∫

V

∆(v)∆̃(v)dv =
∫

D

∆(v)
( ∑

λ∈P∨

∆̃(v + λ)
)
dv

with dv Lebesgue measure on V and D ⊂ V a fundamental domain for the translation
action of P∨ on V . It turns out that the density ∆∆̃ (as well as the explicit evalu-
ation of the integral (1.1)) can be entirely expressed in terms of hyperbolic gamma
functions. Furthermore, after a suitable rotation of the integration region V within
its complexification VC, the resulting integral identity admits analytic continuation
to a parameter regime in which the two parameters ω+ and ω− are allowed to be co-
linear (in which case |q| = |q̃| = 1). The identities thus obtained are the generalized
Cherednik-Macdonald identities referred to in the title of the paper.

Integral identities involving hyperbolic gamma functions (for which we will use
the terminology hyperbolic integral identities), have appeared at various places in the
literature. There is a large supply of univariate hyperbolic integral evaluations, see e.g.
[18, 23, 26, 27, 4]. In particular, the method employed in this paper was used in [26] to
obtain univariate hyperbolic beta integrals (containing as special case the generalized
Cherednik-Macdonald identity for Σ of rank one). Multivariate hyperbolic integral
evaluations have been obtained in e.g. [20, 8, 25, 3]. The multivariate hyperbolic
integral evaluation relevant to the generalized Cherednik-Macdonald identities is the
type II multivariate hyperbolic integral evaluation from [8, Thm. 4] (see also [20,
Cor. 4.4]). Concretely, its first level degeneration (see [8, Thm. 5]) is the generalized
constant term identity associated to Koornwinder’s [13] extension of the Macdonald
theory (in this case the associated root system Σ is the nonreduced root system of
type BC). It contains the generalized Cherednik-Macdonald identities associated to
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root systems of type A1, Bn and Cn as special cases. The techniques of the present
paper can in fact easily be generalized to include the Koornwinder case, but we do
not pursue this here in detail.

The contents of the paper is as follows. After a short introduction on the hyperbolic
gamma function in subsection 2.1 and fixing notations on root systems in subsection
2.2 we formulate the generalized Cherednik-Macdonald identities in subsection 2.3.
In subsection 3.1 we fix ω+/ω− in the upper half plane (so that |q|, |q̃| < 1); then
we use the expression of the hyperbolic gamma function as quotient of q-gamma and
q̃-gamma functions and rotate the integration regime in order to be able to fold the
integral as in (1.1). In subsection 3.2 we recall the Cherednik-Macdonald constant
term identities and the associated dual summation identities to complete the proof of
the generalized Cherednik-Macdonald identities. In section 4 we show that the gen-
eralized Cherednik-Macdonald identities associated to root systems Σ of type A1, Bn

and Cn are special cases of the first level degeneration [8, Thm. 5] of the multivariate
hyperbolic integral evaluation of type II.

Convention: We take the branch of
√
· which is nonnegative on the nonnegative real

axis and with branch cut along the negative real axis.

2. Formulation of the integral identities

2.1. The hyperbolic gamma function. We consider Cherednik-Macdonald con-
stant term identities in which the role of the q-shifted factorial

(2.1)
(
z; q
)
∞ :=

∞∏
j=0

(
1− qjz

)
, |q| < 1

is replaced by Ruijsenaars’ [21] hyperbolic gamma function (the q-gamma function
Γq referred to in the introduction relates to the q-shifted factorial by Γq(x) = (1 −
q)1−x

(
q; q
)
∞/
(
qx; q

)
∞ for 0 < q < 1). All results stated here can be immediately

traced back to [21] and [22, Appendix A]. See also the paper [27], which gives a nice
overview of some of the key properties of the closely related γ-function.

We write

C± = {z ∈ C | Re(z) ≷ 0}

for the open right/left half-plane in C and

H± = {z ∈ C | Im(z) ≶ 0}

for the open upper/lower half-plane in C. The hyperbolic gamma function, which
depends on two parameters ω± ∈ C+, is defined for |Im(z)| < 1

2Re(ω+ + ω−) by

G(ω+, ω−; z) = exp
(

i

∫ ∞

0

dy

y

(
sin(2yz)

2 sinh(ω+y) sinh(ω−y)
− z

ω+ω−y

))
.

We write G(z) = G(ω+, ω−; z) if no confusion can arise on the dependence of ω±.
We denote ω = 1

2 (ω+ + ω−) and Λ = Λω+,ω− := Z≥0iω+ + Z≥0iω− ⊂ H+ (where
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H+ is the closed upper half plane in C). The hyperbolic gamma function satisfies the
functional equations

(2.2)
G(z + iω±/2)
G(z − iω±/2)

= 2 cosh(πz/ω∓)

whenever the left hand side is defined. The functional equations allows to extend
G(ω+, ω−; z) to a meromorphic function on (ω+, ω−, z) ∈ C×2

+ ×C with zero and sin-
gular locus contained in {(ω+, ω−, z) ∈ C×2

+ ×C | z ∈ iω+Λω+,ω−} and {(ω+, ω−, z) ∈
C×2

+ × C | z ∈ −iω − Λω+,ω−}, respectively.
Important for our considerations is the fact that G(z) may be viewed as a gener-

alization of the q-shifted factorial (2.1) in which q is allowed to have modulus one.
This becomes transparent from Shintani’s [24] product formula
(2.3)

G(z) =

(
exp(−2π(z − iω)/ω−); q

)
∞(

exp(−2π(z + iω)/ω+); q̃
)
∞

exp
(
−πi

24

(ω+

ω−
+

ω−
ω+

))
exp

(
− πiz2

2ω+ω−

)
for ω+/ω− ∈ H+, where the bases q and q̃ are related to ω± by

(2.4) q = exp(2πiω+/ω−), q̃ = exp(−2πiω−/ω+).

For a simple proof of (2.3), see e.g. [26, Prop. 6.1]. Note that the requirement
ω+/ω− ∈ H+ is necessary for the right hand side of (2.3) to be well defined, since it
implies that |q| < 1 and |q̃| < 1. On the other hand, |q| = 1 and |q̃| = 1 corresponds
to co-linear ω± ∈ C+, in which case the hyperbolic gamma function G(z) itself still
makes perfect sense.

2.2. Root systems. The Cherednik-Macdonald constant terms and their general-
izations in the present paper are naturally attached to root systems. We fix in this
subsection the necessary notations. Let Σ ⊂ V be an irreducible, crystallographic,
reduced root system in an Euclidean space V of rank n. We write 〈·, ·〉 for the scalar
product of V and ‖ · ‖ for the associated norm on V . We normalize the root system Σ
such that ‖α‖2 = 2 for short roots α ∈ Σ. The co-roots are α∨ = 2α/‖α‖2 for α ∈ Σ.
Let W be the Weyl group of Σ, and denote Q, Q∨, P and P∨ for the root lattice,
co-root lattice, weight lattice and co-weight lattice of Σ, respectively. Note that Q
(respectively Q∨) is a sublattice of P (respectively P∨) of finite index. We write

(2.5) f = #(P/Q)

for the index of Q in P . It is also equal to the index of Q∨ in P∨.
We fix a basis {αj}n

j=1 for Σ. We denote Σ+ and Σ− = −Σ+ for the associated sets
of positive and negative roots in Σ, and we write ωj ∈ P and ω∨j ∈ P∨ (1 ≤ j ≤ n)
for the associated fundamental weights and co-weights.

A W -invariant complex valued function k : Σ → C is called a multiplicity function.
We write kα for the value of the multiplicity function k at α ∈ Σ. Let K be the
complex vector space consisting of multiplicity functions. It is one dimensional if all
roots α ∈ Σ have the same length and two dimensional otherwise. For k ∈ K we write
ρk = 1

2

∑
α∈Σ+ kαα for the k-deformation of the half sum of positive roots. Note that

(2.6) ρk =
n∑

j=1

kαj
ωj .
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Following Macdonald [16], [17], we formulate two types of generalized Cherednik-
Macdonald integral identities associated to Σ. The two types depend on two different
choices (i) and (ii) of an auxiliary multiplicity function u ∈ K:

(i) uα = 1 for all α ∈ Σ.
(ii) uα = 2/‖α‖2 for all α ∈ Σ.

The possible values of uα are 1, 1
2 or 1

3 . We write α′ := uαα for α ∈ Σ, so that α′ = α
for case (i) and α′ = α∨ for case (ii).

2.3. The integral identities. For α ∈ Σ and for parameters ω± ∈ C+ we write

Gα(z) = Gα(ω+, ω−; z) := G(ω+, uαω−; z),

ωα = 1
2 (ω+ + uαω−) and Λα = Z≥0iω+ + Z≥0iuαω−. Since G(rω+, rω−; rz) =

G(ω+, ω−; z) for r > 0 and G(ω+, ω−; z) = G(ω−, ω+; z) (both are immediate from
the definition of G(z)) we can alternatively write Gα(z) = G(ω−, u−1

α ω+;u−1
α z).

The integral identities depend, besides on the root system Σ, on ω± and on a
multiplicity function k : Σ → C. We formulate the integral identities for parameters
in the open, arcwise connected parameter space

(2.7) S = {(ω+, ω−, k) ∈ C×2
+ ×K | ω+ω− ∈ H−, kα ∈ C− ∩ ω+ω−C+ ∀α ∈ Σ}.

So for parameters ω± ∈ C+ satisfying ω+ω− ∈ H− we have (ω+, ω−, k) ∈ S for k ∈ K
iff k takes value in the non-empty open wedge within C− bounded by the half-lines
ω+ω−iR≤0 and iR≤0. Note that the associated deformation parameters q and q̃ (see
(2.4)) for (ω+, ω−, k) ∈ S have moduli < 1 (respectively moduli = 1) if ω+/ω− ∈ H+

(respectively ω+/ω− ∈ R>0).
Let dv be Lebesgue measure on V normalized by

∫
D

dv = 1, where D is the
parallelepiped in V spanned by the fundamental co-weights ω∨j (1 ≤ j ≤ n). The
extension of the scalar product 〈·, ·〉 to a complex bilinear form on the complexification
VC of V will also be denoted by 〈·, ·〉.

Theorem 2.1. For (ω+, ω−, k) ∈ S we have∫
V

∏
α∈Σ

Gα(〈α′, v〉+ iωα)
Gα(〈α′, v〉+ i(kα + ωα))

dv =

= f#W
n∏

j=1

√
ω+ω−
uαj

′∏
α∈Σ+

Gα(i(〈ρk, α∨〉+ ωα))Gα(i(〈ρk, α∨〉 − ωα))
Gα(i(〈ρk, α∨〉+ kα + ωα))Gα(i(〈ρk, α∨〉 − kα − ωα))

,

where the regularized product
′∏

means that the factors Gαj (i(〈ρk, α∨j 〉 − kαj − ωαj ))
(1 ≤ j ≤ n) in the denominator should be omitted.

For the set of parameters {(ω+, ω−, k) ∈ S |ω+/ω− ∈ R>0}, Theorem 2.1 gives
generalized Cherednik-Macdonald identities with associated deformation parameters
q and q̃ of moduli one.

Remark 2.2. Using the W -invariance of the integrand, (2.6), and the special value
(cf. [26, A.8])

G
(
ω+, ω−;

i

2
(−ω+ + ω−)

)
=
√

ω−/ω+
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of the hyperbolic gamma function, the integral identity is equivalent to∫
V +

∏
α∈Σ

Gα(〈α′, v〉+ iωα)
Gα(〈α′, v〉+ i(kα + ωα))

dv =

= fωn
−

∏
α∈Σ+

Gα(i(〈ρk, α∨〉+ ωα))Gα(i(〈ρk, α∨〉 − ωα))
Gα(i(〈ρk, α∨〉+ kα + ωα))Gα(i(〈ρk, α∨〉 − kα + uαω−δα − ωα))

(2.8)

where

V + := {v ∈ V | 〈α, v〉 ≥ 0 ∀α ∈ Σ+} =
n⊕

j=1

R≥0ω
∨
j

is the closed positive Weyl chamber and δα (α ∈ Σ+) is 1 if α ∈ {α1, . . . , αn} and is
0 otherwise. See also section 4 for alternative expressions of the integral identities for
root systems Σ of type A1, Bn and Cn.

We now verify that both sides of (2.8) are well defined, and that they depend
analytically on (ω+, ω−, k) ∈ S. The actual proof of the integral identity (2.8) is
postponed to the next section. Write

(2.9) I(v) :=
∏
α∈Σ

Gα(〈α′, v〉+ iωα)
Gα(〈α′, v〉+ i(kα + ωα))

for the integrand of (2.8), viewed as meromorphic function on v ∈ VC.

Lemma 2.3. (a) For parameters (ω+, ω−, k) ∈ S the integral
∫

V + I(v)dv is absolutely
convergent. It depends analytically on (ω+, ω−, k) ∈ S.
(b) The right hand side of (2.8) depends analytically on (ω+, ω−, k) ∈ S.

Proof. (a) First we show that the integrand I(v) is analytic at v ∈ V . For this it is
convenient to rewrite the integrand I(v) using the reflection equation [21, Prop. III.2]

(2.10) G(z)G(−z) = 1

for the hyperbolic gamma function (its validity is immediate from the definition of
G(z)). Together with (2.2) it yields

(2.11) G(z + iω)G(−z + iω) = 4 sinh(πz/ω+) sinh(πz/ω−).

Using (2.10) and (2.11) the integrand I(v) can then be rewritten as

I(v) =
∏

α∈Σ+

{
4 sinh

(
π〈α′, v〉/ω+

)
sinh

(
π〈α, v〉/ω−

)
×Gα

(
〈α′, v〉 − i(kα + ωα)

)
Gα

(
−〈α′, v〉 − i(kα + ωα)

)}
,

(2.12)

from which it immediately follows that the possible poles of v 7→ I(v) are at

(2.13) 〈α′, v〉 ∈ −ikα + Λα, α ∈ Σ.

Since (ω+, ω−, k) ∈ S we have kα ∈ C− and Λα ⊂ H+, hence −ikα + Λα ⊂ H+ for all
α ∈ Σ. It follows that I(v) is analytic at v ∈ V .

For the convergence of the integral (2.8) we use asymptotic estimates for the hy-
perbolic gamma function from [22, Thm. A.1] (see also [20]), which imply that for
compacta K± ⊂ C+, K ⊂ R there exist R,C > 0 depending only on K± and K such
that

|G(ω+, ω−; z)| ≤ C| exp
(
∓πiz2/2ω+ω−

)
|
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when Re(z) ≷ R, Im(z) ∈ K and ω± ∈ K±. Applied to the alternative expression
(2.12) of the integrand I(v), we obtain for compacta K ⊂ S the estimate

|I(v)| ≤ CK | exp
(
−4π〈ρk, v〉/ω+ω−

)
|, ∀ v ∈ V +, ∀ (ω+, ω−, k) ∈ K

for some constant CK > 0. Observing that −kα/ω+ω− ∈ C− (α ∈ Σ) if (ω+, ω−, k) ∈
S and that 2〈ρk, ω∨j 〉 is a non-empty sum of kα’s for 1 ≤ j ≤ n, it now easily
follows that

∫
V + I(v)dv is absolutely convergent and that it depends analytically on

(ω+, ω−, k) ∈ S.
(b) For α ∈ Σ+ \ {α1, . . . , αn},

〈ρk, α∨〉 − kα

is a nonempty sum of kβ ’s. Furthermore, for (ω+, ω−, k) ∈ S we have Λα ⊂ H+ ∩
ω+ω−H+. Using these two observations it is straightforward to check that the right
hand side of (2.8) depends analytically on (ω+, ω−, k) ∈ S. �

Remark 2.4. The proof of the lemma shows that the conditions kα ∈ C− are needed
for the singular locus of the integrand I(v) to be properly separated by the integration
region V , while the conditions kα ∈ ω+ω−C+ are needed for the convergence of the
integral. The requirement ω+ω− ∈ H− is imposed to end up with an arcwise connected
parameter space S.

3. The proof of the integral identity

This section is entirely devoted to the proof of the integral identity∫
V

I(v)dv = #Wfωn
−

×
∏

α∈Σ+

Gα(i(〈ρk, α∨〉+ ωα))Gα(i(〈ρk, α∨〉 − ωα))
Gα(i(〈ρk, α∨〉+ kα + ωα))Gα(i(〈ρk, α∨〉 − kα + uαω−δα − ωα))

(3.1)

for (ω+, ω−, k) ∈ S. As remarked in the previous section, this is equivalent to the
integral identity as stated in Theorem 2.1.

Since S is arcwise connected, Lemma 2.3 implies that it suffices to prove (3.1) for
parameters in the smaller parameter domain

S ′ := {(ω+, ω−, k) ∈ (C+ ∩H−)×2×K | ω+/ω− ∈ H+,

kα ∈ C− ∩ ω+C+ ∩ (ω−H+ − ω+) ∀α ∈ Σ}
(3.2)

(hereby thus destroying the symmetric role of ω+ and ω−). Observe that for ω± ∈
C+ ∩H− with ω+/ω− ∈ H+ the set C− ∩ ω+C+ ∩ (ω−H+ − ω+) is an open triangle
in the third quadrant C− ∩H− of the complex plane.

We thus assume the parameter conditions (ω+, ω−, k) ∈ S ′ throughout this section.
The bases associated to (ω+, uαω−) for α ∈ Σ are denoted by

qα = exp(2πiω+/uαω−), q̃α = exp(−2πiuαω−/ω+),

which, under the present assumptions, have moduli < 1. We also write

tα = exp(−2πikα/uαω−), t̃α = exp(−2πikα/ω+),
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which also have moduli < 1 since ω+/ω− ∈ H+. Finally it is convenient to use the
notation

qz
α = exp(2πiω+z/uαω−), q̃z

α = exp(−2πiuαω−z/ω+)

for z ∈ C, which allows us to write tα = q
−kα/ω+
α and t̃α = q̃α

kα/uαω− .

3.1. Splitting the integral. The starting point for the proof of (3.1) is the following
observation.

Lemma 3.1. For (ω+, ω−, k) ∈ S ′ (see (3.2)) we have∫
V

I(v)dv = (iω−)n

∫
V

I(iω−v)dv,

with both sides absolutely convergent.

Proof. Write ϑ ∈ (0, π/2) for the argument of iω− ∈ C+ ∩H+. Set E+
ϑ = {reiθ | r ≥

0, 0 ≤ θ ≤ ϑ}, which is the closure of the open wedge ω−C+ ∩H+ in C, and write

V +
ϑ := {v ∈ VC | 〈α, v〉 ∈ E+

ϑ , ∀α ∈ Σ+}.

Observe that v =
∑n

j=1 λjω
∨
j ∈ V +

ϑ iff λj ∈ E+
ϑ for 1 ≤ j ≤ n. We apply

Cauchy’s Theorem to rotate the coordinate-wise integrations over the half lines [0,∞)
to eiϑ[0,∞) in the integral∫

V +
I(v)dv =

∫ ∞

λ1=0

· · ·
∫ ∞

λn=0

I
( n∑

j=1

λjω
∨
j

)
dλ1 · · · dλn.

To justify the application of Cauchy’s Theorem, we have to show that the integrand
I(v) is analytic at v ∈ V +

ϑ and that |I(v)| has sufficient uniform asymptotic decay
when |v| → ∞ for v ∈ V +

ϑ .
Since the poles of the integrand I(v) (see (2.9)) are at 〈α′, v〉 ∈ −ikα +Λα (α ∈ Σ)

and (
−ikα + Λα

)
∩
(
E+

ϑ ∪ (−E+
ϑ )
)

= ∅, ∀α ∈ Σ,

the integrand I(v) is analytic at v ∈ V +
ϑ . Unfortunately, the asymptotic estimates for

the hyperbolic gamma function G(z) from [22, Appendix A] and [20, Cor. 2.3] are
not good enough to establish the necessary uniform bounds on the integrand I(v) for
v ∈ V +

ϑ . In fact, for our purposes we would need uniform asymptotics of G(z) for z in
suitable translates of E+

ϑ , but these regions are not allowed in [20, Cor. 2.3] because
E+

ϑ includes the half-line R≥0e
iϑ running parallel to the wedge iω+R≥0iω++R≥0iω−

generated by the zeros iω + Λ of G(z). To bypass this problem, we establish the
necessary asymptotics of I(v) using Shintani’s product formula (2.3) for G(z), which
we are allowed to use since ω+/ω− ∈ H+.

Using the alternative expression (2.12) for the integrand I(v) in combination with
the reflection equation (2.10) and the product formula (2.3) for the hyperbolic gamma
function, we then write

(3.3) I(v) = exp
(
−4π〈ρk, v〉

ω+ω−

) ∏
α∈Σ+

Aα
+

(
φ+(〈α′, v〉)

)
Aα
−
(
φ−(〈α, v〉)

)
Bα

+

(
φ+(〈α′, v〉)

)
Bα
−
(
φ−(〈α, v〉)

)
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with φ±(z) = exp(−2πz/ω±) and with the four complex analytic functions

Aα
+(z) = (1− z)

(
q̃αt̃αz; q̃α

)
∞, Aα

−(z) = (1− z)
(
qαt−1

α z; qα

)
∞,

Bα
+(z) =

(
t̃−1
α z; q̃α

)
∞, Bα

−(z) =
(
tαz; qα

)
∞.

Our goal is to show that the α-dependent factors in (3.3) are uniformly bounded on
V +

ϑ . Fix α ∈ Σ+, then V +
ϑ is mapped onto E+

ϑ by the complex linear functionals 〈α, ·〉
and 〈α′, ·〉. By the parameter conditions we have E+

ϑ ⊂ ω±C+ (where C+ is the closed
right half plane), hence φ± map E+

ϑ into the closed unit disc D = {z ∈ C | |z| ≤ 1}.
Consequently, Aα

± ◦φ±, Bα
± ◦φ± : E+

ϑ → C are bounded. Furthermore, Bα
− is zero-free

on D since |tα| < 1, hence (Bα
− ◦φ−)−1 is bounded on E+

ϑ . Now |t̃−1
α | > 1, so Bα

+ has
a finite number of poles {t̃αq̃−j

α }r
j=0 in D, where r is the largest nonnegative integer

such that t̃αq̃−r
α ∈ D. Yet we still claim that E+

ϑ 3 z 7→ Bα
+(φ+(z)) is zero free

and that its inverse is bounded on E+
ϑ . For this it suffices to show that the poles

{t̃αq̃−j
α }r

j=0 of Bα
+ in D are not contained in the closure of φ+(E+

ϑ ).
Fix 0 ≤ j ≤ r and choose an open neighborhood U of kα contained in the open

triangle C− ∩ ω+C+ ∩ (ω−H+ − ω+). Since φ+ is an open map, q̃−j
α φ+(iU) is an

open neighborhood of q̃−j
α t̃α. It suffices to show that φ+(E+

ϑ ) ∩ q̃−j
α φ+(iU) = ∅, or

equivalently that E+
ϑ ∩ Uj(l) = ∅ for all l ∈ Z, where Uj(l) = i(U − juαω− + lω+).

If l ≤ 0 then Uj(l) ⊂ H− since U ⊂ C− and −ω± ∈ C−. On the other hand, E+
ϑ is

contained in the closed upper half plane, hence E+
ϑ ∩ Uj(l) = ∅.

If l > 0 then U − juαω−+ lω+ ⊂ ω−H+, hence Uj(l) ⊂ ω−C−. On the other hand,
E+

ϑ is contained in the closure of ω−C+, hence again E+
ϑ ∩ Uj(l) = ∅, as required.

The bounds thus obtained now give, in combination with (3.3), the uniform esti-
mate

|I(v)| ≤ C

∣∣∣∣exp
(
−4π〈ρk, v〉

ω+ω−

)∣∣∣∣ , ∀ v ∈ V +
ϕ

for some constant C > 0. In particular, for v =
∑n

j=1 λjω
∨
j ∈ V +

ϑ we have

|I(v)| ≤ C

n∏
j=1

exp(4πcj |λj |)

with

cj = Max
0≤θ≤ϑ

Re

(
−
〈ρk, ω∨j 〉eiθ

ω+ω−

)
.

By the parameter conditions we have cj < 0 for 1 ≤ j ≤ n, hence Cauchy’s theorem
can be applied repeatedly to obtain∫

V +
I(v)dv = (iω−)n

∫
V +

I(iω−v)dv.

Symmetrizing both sides yields the desired result. �

The product formula (2.3) applied to the expression (2.9) of the integrand I(v)
gives for (ω+, ω−, k) ∈ S ′,

I(iω−v) = K∆(v)∆̃(v)
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with the constant

(3.4) K =
∏

α∈Σ+

exp
(
−πikα(kα + 2ωα)/uαω+ω−

)
and with

∆(v) =
∏
α∈Σ

(
exp(2πi〈α, v〉); qα

)
∞(

tα exp(2πi〈α, v〉); qα

)
∞

,

∆̃(v) =
∏
α∈Σ

(
t̃αq̃

1+〈α,v〉
α ; q̃α

)
∞(

q̃
1+〈α,v〉
α ; q̃α

)
∞

.

(3.5)

Observe that ∆(v) is P∨-invariant. By Lemma 3.1 we can thus write

(3.6)
∫

V

I(v)dv = (iω−)nK

∫
D

∆(v)

( ∑
λ∈P∨

∆̃(v + λ)

)
dv

for (ω+, ω−, k) ∈ S ′.

3.2. Applying the Cherednik-Macdonald identities. As a first step in the cal-
culation of the right hand side of (3.6) we use Macdonald’s summation identity [17, §7],
which reads in our notations as follows: for ω+/ω− ∈ H+, κ ∈ K with κα ∈ ω−ω−1

+ H+

and for w ∈ VC such that 〈α′, w〉 6∈ Z for all α ∈ Σ, we have
(3.7)∑

λ∈Λ

∏
α∈Σ

(
q
1+κα+〈α′,w+λ〉
α ; qα

)
∞(

q
1+〈α′,w+λ〉
α ; qα

)
∞

= f
∏

α∈Σ+

(
q
〈ρκ,α∨〉+κα+1
α , q

〈ρκ,α∨〉−κα+δα
α ; qα

)
∞(

q
〈ρκ,α∨〉+1
α , q

〈ρκ,α∨〉
α ; qα

)
∞

with the sum being absolutely convergent and with Λ = P∨ in case (i) (in which
case uα = 1 and α′ = α for all α ∈ Σ) and with Λ = P in case (ii) (in which case
uα = 2/‖α‖2 and α′ = α∨ for all α ∈ Σ). We need the following reformulation of
(3.7).

Lemma 3.2. For (ω+, ω−, k) ∈ S ′ (see (3.2)) and for v ∈ VC such that 〈α, v〉 6∈ Z
for all α ∈ Σ, the sum

(3.8) Ñ :=
∑

λ∈P∨

∆̃(v + λ)

is absolutely convergent and independent of v. Moreover,

Ñ = f
∏

α∈Σ+

(
q̃αt̃α exp(−2πi〈ρk, α∨〉/ω+); q̃α

)
∞

(
q̃δα
α t̃−1

α exp(−2πi〈ρk, α∨〉/ω+); q̃α

)
∞(

q̃α exp(−2πi〈ρk, α∨〉/ω+); q̃α

)
∞

(
exp(−2πi〈ρk, α∨〉/ω+); q̃α

)
∞

.

Proof. We relate (3.8) to Macdonald’s sum (3.7) for case (i) and case (ii) separately.
The lemma for case (i) with parameters (ω′+, ω′−, k) ∈ S ′ follows from case (i) of

(3.7) with w = v and the parameters specialized to (ω+, ω−, κ) = (−ω′−, ω′+, k/ω′−),
where k/ω′− is the multiplicity function that takes value kα/ω′− at α ∈ Σ.

For case (ii) we write ϕ ∈ Σ for the highest root with respect to Σ+ (which is

a long root). For α ∈ Σ we define α̃ = u
− 1

2
ϕ α∨. Then Σ̃ = {α̃}α∈Σ is a reduced

irreducible root system in V , normalized so that short roots have squared length two.
We take {α̃i}n

i=1 as basis of Σ̃. Observe that the weight lattice of Σ̃ is u
− 1

2
ϕ P∨ and that
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ueα = uϕ/uα. The lemma for case (ii) with parameters (ω′+, ω′−, k) ∈ S ′ now follows

from case (ii) of (3.7) with Σ replaced by Σ̃, w = u
− 1

2
ϕ v, (ω+, ω−) = (−uϕω′−, ω′+)

and κeα = kα/uαω′−. �

Lemma 3.2 and (3.6) thus yield

(3.9)
∫

V

I(v)dv = (iω−)nKÑ

∫
D

∆(v)dv

for (ω+, ω−, k) ∈ S ′. The Cherednik-Macdonald constant term identity, which was
conjectured by Macdonald [16, §12] and proved by Cherednik in [6] using double affine
Hecke algebras, is the integral evaluation∫

D

∆(v)dv = #WN,

N :=
∏

α∈Σ+

(
exp(−2πi〈ρk, α∨〉/uαω−); qα

)
∞

(
qα exp(−2πi〈ρk, α∨〉/uαω−); qα

)
∞(

tα exp(−2πi〈ρk, α∨〉/uαω−); qα

)
∞

(
qα

tα
exp(−2πi〈ρk, α∨〉/uαω−); qα

)
∞

,

which is valid for (ω+, ω−, k) ∈ S ′ (see (3.2)). Substituting the Cherednik-Macdonald
constant term identity in (3.9) we thus obtain the explicit integral evaluation

(3.10)
∫

V

I(v)dv = #W (iω−)nKNÑ

for (ω+, ω−, k) ∈ S ′. By the product formula (2.3) for the hyperbolic gamma function
we have

(iω−)nKNÑ =

= fωn
−

∏
α∈Σ+

Gα(i(〈ρk, α∨〉+ ωα))Gα(i(〈ρk, α∨〉 − ωα))
Gα(i(〈ρk, α∨〉+ kα + ωα))Gα(i(〈ρk, α∨〉 − kα + uαω−δα − ωα))

,

hence (3.10) gives the integral identity (3.1) for (ω+, ω−, k) ∈ S ′. By analytic contin-
uation using Lemma 2.3, the identity (3.1) is valid for (ω+, ω−, k) ∈ S (see (2.7)). As
remarked before, this result also proves Theorem 2.1.

4. Connection to type II integral evaluations

In this section we show that the generalized Cherednik-Macdonald constant term
identity for root system Σ of type A1, Bn and Cn is a special case of the first level
degeneration [8, Thm. 5] of the type II multivariate hyperbolic integral evaluation
[8, Thm. 4], see also [20, Cor. 4.4]. This integral identity is the hyperbolic analogue
of the constant term associated to Koornwinder’s [13] extension of the Macdonald
theory. Before giving the identity we first have to introduce some more notations.

Consider Rn with standard scalar product 〈·, ·〉 and standard orthonormal basis
{εj}n

j=1. We write d′v for the Lebesgue measure on Rn normalized by
∫
[0,1]n

d′v = 1.
Set

Rs = {±εj}n
j=1, Rl = {±(εr ± εs)}1≤r<s≤n,

where Rl is the empty-set if n = 1 (all sign combinations are allowed). We write
γ = (γ1, γ2, γ3, γ4) ∈ C4 and |γ| = γ1 + γ2 + γ3 + γ4. Define the parameter space SBC
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to be the set of parameters (ω+, ω−, γ, κ) ∈ C2
+ × C5 satisfying

ω+ω− ∈ H−,

γr ∈ C− (1 ≤ r ≤ 4),

ω+ + ω− + |γ| ∈ ω+ω−C+,

κ ∈ C− ∩ ω+ω−C+.

(4.1)

It serves as the analogue of the parameter space S for the generalized Cherednik-
Macdonald identities. For n = 1 the space SBC should be interpreted as the set of
parameters (ω+, ω−, γ) ∈ C2

+ × C4 that are subject to the conditions given by the
first three lines of (4.1).

For (ω+, ω−, γ, κ) ∈ SBC we now consider the integral

JBC :=
∫

Rn

{ ∏
α∈Rs

G(〈α, v〉+ iω)G(〈α, v〉+ iω+
2 )G(〈α, v〉+ iω−

2 )∏4
j=1 G(〈α, v〉+ i(ω + γj))

×
∏

β∈Rl

G(〈β, v〉+ iω)
G(〈β, v〉+ i(ω + κ))

 d′v.

Note that the integrand can be simplified since∏
α∈Rs

G(2〈α, v〉+ iω) =
∏

α∈Rs

G(〈α, v〉+ iω)G
(
〈α, v〉+

iω+

2
)
G
(
〈α, v〉+

iω−
2
)
,

which follows from the identity

(4.2) G(2z + iω) = G(z)G
(
z +

iω+

2
)
G
(
z +

iω−
2
)
G(z + iω)

(see [21, Prop. III.2]) and the reflection equation (2.10). The integral JBC is then
seen to be equivalent to the integral from [8, Thm 5]. It follows from [8, Thm. 5] that
JBC is absolutely convergent for (ω+, ω−, γ, κ) ∈ SBC and that it is equal to
(4.3)

NBC = 2nn!
(√

ω+ω−
)n n−1∏

j=0

G(i(ω + κ))G(i(ω + (2n− j − 2)κ + |γ|))
G(i(ω + (j + 1)κ))

∏
1≤r<s≤4 G(i(ω + jκ + γr + γs))

.

This can also be proved by a straightforward generalization of the arguments in
this paper, replacing the role of the Cherednik-Macdonald constant term identity by
Gustafson’s [10] multivariate Askey-Wilson integral evaluation and the role of Mac-
donald’s summation identity by van Diejen’s [7] multivariate 6Ψ6 summation formula.
It can also be obtained as rigorous limit from the multivariate hyperbolic integral eval-
uation of type II ([8, Thm. 4], [20]), see [3]. For n = 1, the integral identity is the
hyperbolic Askey-Wilson integral evaluation from [23, 26].

We now proceed to show that the generalized Cherednik-Macdonald integrals∫
V

I(v)dv for root systems Σ of types A1, Bn and Cn are special cases of the hy-
perbolic integral JBC . We leave the (rather cumbersome) identification of their exact
evaluations to the evaluation formula NBC of JBC to the reader. For this identification
one needs the identities G(0) = 1 (which is obvious) and

G
( iω±

2

)
= exp

(1
2

∫ ∞

0

dy
( 1

ω∓y2
− 1

y sinh(ω∓y)

))
=
√

2,
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see e.g. [21, (3.17)] for the last equality.

4.1. Σ of type A1 and of type Bn. We realize the root system Σ of type Bn

(n ≥ 2) as Σ = Σs ∪ Σl ⊂ Rn with

Σs = {±
√

2εj}n
j=1, Σl = {±

√
2(εr ± εs)}1≤r<s≤n,

so Σs =
√

2Rs and Σl =
√

2Rl (the awkward normalization is caused by the re-
quirement that the short roots Σs in Σ should have squared length two). We include
n = 1 as the case Σ = Σs = {±

√
2ε1}, in which case it is the root system of type A1.

In the discussion below the obvious modifications have to be made for n = 1. We
have P∨ = 1√

2

⊕n
j=1 Zεj , so dv = (

√
2)nd′v. For a given multiplicity function k ∈ K

we write ks for its value on the short roots Σs and kl for its value on the long roots Σl.

Case (i) (uα = 1 for all α ∈ Σ): After a change of integration variables the
generalized Cherednik-Macdonald integral becomes∫

V

I(v)dv =
∫

Rn

∏
α∈Rs

G(〈α, v〉+ iω)
G(〈α, v〉+ i(ks + ω))

∏
β∈Rl

G(〈β, v〉+ iω)
G(〈β, v〉+ i(kl + ω))

d′v

for (ω+, ω−, k) ∈ S. It equals JBC with the parameters (γ, κ) specialized to

(γ, κ) =
(
ks,−

ω+

2
,−ω−

2
,−ω, kl

)
.

Under this parameter correspondence the requirement (ω+, ω−, γ, κ) ∈ SBC exactly
corresponds to (ω+, ω−, k) ∈ S.

In particular, with this parameter specialization, the hyperbolic Askey-Wilson in-
tegral evaluation reduces to the generalized Cherednik-Macdonald identity for Σ of
type A1:

(4.4)
∫

R

G(v + iω)G(−v + iω)
G(v + i(k + ω))G(−v + i(k + ω))

d′v = 4
√

ω+ω−
G(i(k + ω))G(i(k − ω))

G(i(2k + ω))

for (ω+, ω−, k) ∈ S.

Case (ii) (uα = 2/‖α‖2 for α ∈ Σ): The generalized Cherednik-Macdonald integral
becomes∫

V

I(v)dv =
∫

Rn

{ ∏
α∈Rs

G(ω+, ω−; 〈α, v〉+ iω)
G(ω+, ω−; 〈α, v〉+ i(ks + ω))

×
∏

β∈Rl

G
(
ω+, ω−

2 ; 〈β,v〉
2 + i(ω+

2 + ω−
4 )
)

G
(
ω+, ω−

2 ; 〈β,v〉
2 + i(kl + ω+

2 + ω−
4 )
)
 d′v

for (ω+, ω−, k) ∈ S. We rewrite the integrand involving only hyperbolic gamma
functions with parameters (2ω+, ω−) using

G(ω+, ω−; z) = G
(
2ω+, ω−; z +

iω+

2
)
G
(
2ω+, ω−; z − iω+

2
)
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and G(ω+, ω−/2; z) = G(2ω+, ω−; 2z) (see [21, Prop. III.2]). We conclude that∫
V

I(v)dv equals JBC with respect to the quasi-periods (2ω+, ω−) and with the pa-
rameters (γ, κ) specialized to

(γ, κ) =
(
ks, ks − ω+,−ω−

2
,−ω+ − ω−

2
, 2kl

)
.

The requirement (ω+, ω−, γ, κ) ∈ SBC then becomes (ω+, ω−, k) ∈ S.

4.2. Σ of type Cn. We realize the root system Σ of type Cn (n ≥ 2) as Σ = Σs∪Σl ⊂
Rn with

Σs = {±(εr ± εs)}1≤r<s≤n, Σl = {±2εj}n
j=1,

so Σs = Rl and Σl = 2Rs. We have f = #(P∨/Q∨) = 2 and Q∨ =
⊕n

j=1 Zεj , so
d′v = 1

2dv. For a given multiplicity function k ∈ K we write ks for its value on the
short roots Σs and kl for its value on the long roots Σl.

Case (i) (uα = 1 for all α ∈ Σ): The generalized Cherednik-Macdonald integral
becomes∫

V

I(v)dv = 2
∫

Rn

∏
α∈Rs

G(2〈α, v〉+ iω)
G
(
2(〈α, v〉+ ikl

2 ) + iω
) ∏

β∈Rl

G(〈β, v〉+ iω)
G(〈β, v〉+ i(ks + ω))

d′v

for (ω+, ω−, k) ∈ S. By (4.2) and (2.10), the product over α ∈ Rs can be rewritten
as ∏

α∈Rs

G(〈α, v〉+ iω)G
(
〈α, v〉+ iω+

2

)
G
(
〈α, v〉+ iω−

2

)∏
ξ G
(
〈α, v〉+ i(kl

2 + ξ)
) ,

where the product is over ξ ∈ {0, ω+
2 , ω−

2 , ω}. Hence
∫

V
I(v)dv equals 2JBC with the

parameters (γ, κ) specialized to

(γ, κ) =
(kl

2
,
kl

2
− ω+

2
,
kl

2
− ω−

2
,
kl

2
− ω, ks

)
.

The parameter conditions (ω+, ω−, γ, κ) ∈ SBC become (ω+, ω−, k) ∈ S.
Case (ii) (uα = 2/‖α‖2 for all α ∈ Σ): The generalized Cherednik-Macdonald

integral becomes∫
V

I(v)dv = 2
∫

Rn

{ ∏
α∈Rs

G
(
ω+, ω−

2 ; 〈α, v〉+ i(ω+
2 + ω−

4 )
)

G
(
ω+, ω−

2 ; 〈α, v〉+ i(kl + ω+
2 + ω−

4 )
)

×
∏

β∈Rl

G(ω+, ω−; 〈β, v〉+ iω)
G(ω+, ω−; 〈β, v〉+ i(ks + ω))

 d′v.

We rewrite the integrand involving only hyperbolic gamma functions with quasi-
periods (ω+, ω−) using

G
(
ω+,

ω−
2

; z
)

= G
(
ω+, ω−; z +

iω−
4
)
G
(
ω+, ω−; z − iω−

4
)
,

cf. [21, Prop. III.2]. We conclude that
∫

V
I(v)dv equals 2JBC with the parameters

(γ, κ) specialized to

(γ, κ) =
(
kl, kl −

ω−
2

,−ω+

2
,−ω, ks

)
.
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The parameter conditions (ω+, ω−, γ, κ) ∈ SBC again become (ω+, ω−, k) ∈ S.
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